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A climate stress-test of the financial system
Stefano Battiston1*, Antoine Mandel2, Irene Monasterolo3, Franziska Schütze4 and Gabriele Visentin1

The urgency of estimating the impact of climate risks on the financial system is increasingly recognized among scholars and
practitioners. By adopting a network approach to financial dependencies, we look at how climate policy risk might propagate
through the financial system. We develop a network-based climate stress-test methodology and apply it to large Euro Area
banks in a ‘green’ and a ‘brown’ scenario. We find that direct and indirect exposures to climate-policy-relevant sectors
represent a large portion of investors’ equity portfolios, especially for investment and pension funds. Additionally, the portion
of banks’ loan portfolios exposed to these sectors is comparable to banks’ capital. Our results suggest that climate policy
timing matters. An early and stable policy framework would allow for smooth asset value adjustments and lead to potential
net winners and losers. In contrast, a late and abrupt policy framework could have adverse systemic consequences.

Assessing the impact of climate risks and climate policies on
the financial system is currently seen as one of the most
urgent and prominent policy issues1,2. In particular, there is

a debate on whether the implementation of climate policies to meet
the 2 ◦C target generates systemic risk or, instead, opportunities for
low-carbon investments and economic growth. However, data are
scarce and there is no consensus on the appropriate methodologies
to use to address this issue. The magnitude of so-called stranded
assets of fossil-fuel companies (in a 2 ◦C economy) has been
estimated to be around 82% of global coal reserves, 49% of global
gas reserves and 33% of global oil reserves3. Moreover, several
studies have investigated the role of stranded assets in specific
sectors and countries4–9. By investing in fossil-fuel companies,
financial institutions hold direct ‘high-carbon exposures’, which for
European actors have been estimated to be, relative to their total
assets, about 1.3% for banks, 5% for pension funds and 4.4% for
insurances10. One can compute the value at risk (VaR) associated
with climate shocks11 in the context of integrated assessment
models12 in which aggregate financial losses are derived top-down
from estimatedGDP (gross domestic product) losses due to physical
risks resulting from climate change. Yet, assessing the financial risk
of climate policies (often referred to as transition risks) requires
estimations of the likelihood of the introduction of a specific
policy. However, the likelihood that a climate policy is introduced
depends on the expectations of the agents on that very likelihood.
Thus, the intrinsic uncertainty of the policy cycle undermines the
reliability of the probability distributions of asset returns, also due
to the presence of fat tails13. Further, it is now understood that
interlinkages among financial institutions can amplify both positive
and negative shocks14–16 and significantly decrease the accuracy
of our estimation of default probabilities in an interconnected
financial system17. As a result, calculations of expected losses/gains
from climate policies carried out with traditional risk analysis
methodologies have to be taken with caution. Here, we develop
a complementary approach, rooted in complex systems science,
and consisting of a network analysis of the exposures of financial
actors18,19 to all climate-policy-relevant sectors of the economy, as
well as the exposures among financial actors themselves, across

several types of financial instruments. This analysis is meant as a
tool to support further investigations of the potential impact and
the political feasibility of specific climate policies20,21. To go beyond
the mere exposure to the fossil-fuels extraction sector, we remap an
existing standard classification of economic sectors (NACE Rev2)
according to their relevance to climate mitigation policies, and
we analyse empirical microeconomic data for shareholders of
listed firms in the European Union and in the United States.
We find (see Supplementary Table 6) that while direct exposures
via equity holdings to the fossil-fuel sector are small (4–13%
across financial actor types), the combined exposures to climate-
policy-relevant sectors are large (36–48%) and heterogeneous. In
addition, financial actors hold equity exposures to the financial
sector (13–25%), implying indirect exposures to climate-policy-
relevant sectors.

Results
By targeting the reduction of greenhouse gas (GHG) emissions,
climate policies can affect (positively or negatively) revenues and
costs of various sectors in the real economy with indirect effects on
financial actors holding securities of firms in those sectors.However,
the existing classifications of economic sectors such as NACE
Rev2 (ref. 22) or NAICS (ref. 23) were not designed to estimate
financial exposures to climate-policy-relevant sectors. Therefore, we
define a correspondence between sectors of economic activities at
NACE Rev2 4-digit level and five newly defined climate-policy-
relevant sectors (fossil fuel, utilities, energy-intensive, transport and
housing) based on their GHG emissions, their role in the energy
supply chain, and the existence in most countries of related climate
policy institutions (see Methods and Fig. 1).

The exposures of financial actors (classified according to the
standard European Systems of Accounts, ESA (ref. 24)) can
be decomposed along the main types of financial instruments:
equity holdings (for example, ownership shares including both
those tradable on the stock market and those non-tradable),
bond holdings (for example, tradable debt securities) and loans
(for example, non-tradable debt securities). By combining the
breakdown of exposures across instruments with the reclassification
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1 Data acquisition and processing

1.1 Company and shareholder data from BvD Orbis

We extracted from the Bureau Van Dijk Orbis database a dataset of 366, 225 equity
holdings of 65, 059 global shareholders in 14, 878 EU1 and US listed companies. Because
corporate financial reporting is usually for the previous fiscal year and worldwide data
consolidation in Orbis takes some time, all equity holdings refer to the last quarter of
2015. A summary of the data fields downloaded from the relational database is reported
in Table 1.

Companies
(14,878)

Shareholders
(65,059)

Name

BvD ID / LEI / ISIN

Country ISO code

NACE Rev2
4-digit code

Operating revenue

Total assets

NACE Rev2
one-digit code

Postcode

Market capitalization

Ticker symbol

Shareholder BvD type

Direct equity holding (%)

Total equity holding (%)
(Direct + indirect)

Table 1: Summary of data fields extracted from the BvD Orbis database. The dataset contains
data on 366, 225 equity holdings of 65, 059 global shareholders in 14, 878 EU and
US listed companies at the end of 2015. The fields listed have been extracted for
each individual company and shareholder. Data fields listed in the middle have been
extracted for both shareholders and companies.

1.1.1 Missing data

The cumulative value of the equity holdings in our dataset adds up to 93.47% of the
total market capitalization of all listed companies in the EU and US. We can therefore
effectively map all equity holdings in these companies. Market capitalization data was not

1EU 28, UK included
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available in the dataset for 3.19% of the listed companies and for 5.23% of equity holdings
the fraction of shares owned by the shareholder was not available (both direct and total).
Missing data has been neglected in the analysis by removing it from the dataset.

Company data has a good coverage, with only 1.22% of assets data missing and just 8
companies without NACE Rev2 4-digit code (they have been removed from the dataset).
Shareholder data has more limited coverage, but limitations concern mostly data fields
that do not affect our analysis. Since a majority of shareholders are physical persons (see
Table 2) it is expected that certain information is missing in most cases. Data on operating
revenue is missing for 82.52% of shareholders, total assets for 83.51%, and NACE Rev2
4-digit codes for 75.46%.

One of the most interesting fields for shareholders is the “Shareholder BvD Type”.
This data field represents an attempt by Bureau Van Dijk at classifying shareholders into
several institutional categories. As it will be explained in Section 2.2, this classification
proved inadequate for our purposes. For completeness, Table 2 lists the composition of
shareholders in our dataset according to their “Shareholder BvD Type”:

Shareholder BvD Type Fraction in dataset

Bank 1.57%

Employees/Managers/Directors 0.82%

Financial Company 7.08%

Foundation/Research Institute 0.64%

Hedge Funds 0.24%

Industrial Company 22.26%

Insurance Company 0.98%

Mutual & Pension Fund/Nominee/Trust/Trustee 12.76%

Individuals 50.10%

Private Equity Firms 1.54%

Unnamed Shareholders 2.01%

Table 2: Breakdown of the 65, 059 global shareholders in the dataset by field “Shareholder BvD
Type”. Notice the majority of Individuals.

1.2 Bank data from BvD Bankscope

In the case of banks we integrated data extracted from the BvD Orbis database with
balance sheet data obtained from the Bureau Van Dijk Bankscope database. We focus
on the set of the top 50 EU listed banks, by total assets, in 2015. These banks account
for 90% of total equity and 95% of total assets of the EU banking sector (counting only
listed banks) and are therefore assumed representative of the entire EU banking network.
The network structure of bilateral lending contracts among these institutions has been
computed through a standard estimation procedure from 2015-Q4 balance sheet data
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on the total lending and borrowing of each institution. The model employed, the fitness
model (Cimini et al., 2014, 2015; De Masi et al., 2009; Musmeci et al., 2013), takes as input
the total lending and borrowing of each bank and returns a collection of networks that
are consistent with these aggregate data and show a topology (known as core-periphery
topology) that is empirically known to correspond to the interbank lending network of
various countries. The methodology is identical to the one developed in Battiston et al.
(2016) (see Section 4) and consists in:

• simulating a sample of 1,000 networks according to the model (network density
20%),

• running the DebtRank algorithm on each network,

• computing and reporting an empirical network sample measure (e.g. mean) of the
global relative vulnerabilities thus calculated.

2 Climate-policy-relevant sectors and financial actor

types

2.1 Climate-policy-relevant sector classification

The classification of sectors is partly inspired by the list provided by the European Com-
mission report 2014/746/EU. We develop a custom classification aimed at identifying
climate-policy-relevant sectors. The classification is based on the NACE Rev2 4-digit
codes classification adopted in the EU. The complete mapping from NACE Rev2 4-digit
codes to our classification is showed in Table 3.
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NACE Rev2

4-digit codes
Sectors

B5.1-B6.2, B8.9.2, B9.1, C19.1-C19.2, C20.1.1,
C28.9.2, D35.2, F43.1.2, F43.1.3, H49.5

Fossil-fuel

B7.1, B7.2.9, B8.9.1, B8.9.3, B8.9.9, C10.2, C10.6.2,
C10.8.1, C19.8.6, C11.0.1, C11.0.2, C11.0.4, C11.0.6,
C13.1-C15.2, C16.2.9-C17.1.2, C17.2.4, C20.1.2-
C20.2, C20.4.2, C20.5.3-C22.1.9, C23.1.1, C23.1.3-
C23.5, C23.7, C23.9.1, C24.1-C24.2, C24.4-C24.4.6,
C24.5.1, C24.5.3., C25.4, C25.7, C25.9.4-C28.9.1,
C28.9.3-C29.1, C29.3.1, C30.3, C30.9, C31.0.9-
C32.9,

Energy-intensive

C23.6.1, C23.6.2, C31.0.1-C31.0.3, F41.1, F41.2,
F43.1-F43.9, I55.1, L68

Housing

D35.1, F42.2.2 Utilities

H49.1-H49.4, H50-H51.2.1, H52.5-H53.2.0 Transport

K Finance

Other Other

Table 3: Mapping of sectors from NACE Rev2 4-digit codes to our classification in climate-
policy-relevant sectors.

2.2 Financial actor type classification

The classification of financial actors has always been traditionally challenging. Many
institutional investors offer a broad spectrum of financial services to customers and may
be classified simultaneously as asset managers, investment funds, banks (both commercial
and investment), pension funds and many more. Generally, most financial companies are
organized in subsidiaries offering different financial services and owned by a single holding
company, with the result that it is not always clear how to consolidate the different
subsidiaries. It is important to allow sufficient detail in classification, in order to identify
the function of a single branch, while retaining a general idea of what the ultimate entity,
and final receiver of potential financial shocks, is.

Our classification is partly based on NACE Rev2 4-digit codes and partly on the
proprietary classification offered by Bureau Van Dijk. NACE codes were not available for
75.46% of shareholders (all the minor ones and of course all Individuals). On the other side
the Bureau Van Dijk classification, as offered through the data field “BvD Shareholder
Type” does not exactly reflect the traditional taxonomy of institutional investors (for
instance, “Blackrock Inc” is considered to be of type “Bank”). For a given shareholder,
if the NACE code was provided, we classified it according to Table 4.
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NACE Rev2
4-digit codes Sectors

K64.1 Banks

K64.2, K64.3, K64.9.1, K66.1.2,
K66.3 Investment funds

K65.1-K65.3, K66.2 Insurance and Pension funds

K64.9.2, K64.9.9 Other Credit Institutions

K66.1.1, K66.1.9, Other Financial Services

All non-K codes Industrial Company

Table 4: Partial mapping of shareholders from NACE Rev2 4-digit codes to our classification
in financial actors. This classification has been adopted for all shareholders with
reported NACE Rev2 4-digit code in our dataset.

For those shareholders for which no NACE 4-digit code was provided, we followed the
Bureau Van Dijk classification. This widened our previous classification, forcing us, in
particular, to add two new financial actor types:

• Individuals

• Governments

The breakdown by financial actor type for our dataset is shown in Table 5.

Type Fraction in dataset Absolute number in dataset

Banks 1.23% 798

Governments 0.19% 125

Individuals 51.85% 33,733

Industrial Companies 22.83% 14,851

Insurance and Pension Funds 9.82% 6,392

Investment Funds 7.88% 5,124

Other Credit Institutions 1.47% 955

Other Financial Services 4.74% 3,081

Table 5: Relative and absolute number of shareholders in dataset according to our classification
of financial actor types.

3 Exposures

3.1 Relative equity exposures and mean portfolio analysis

Portfolio compositions look similar across all financial actor types. To shed more light
on the possible peculiarities of each type of financial actor, it is necessary to analyze
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relative equity exposures (both in terms of market capitalization of the sectors and total
portfolio value of the shareholders). We plotted in Figure 1 the fraction of total market
capitalization owned in the Fossil-fuel and Utilities sectors along with the fraction of such
equity exposures in the total equity portfolio of each financial actor type. The same
is shown in Figure 2, but this time for the sectors of Fossil-fuel, Utilities, and Energy-
intensive. The fraction of market capitalization gives information about the size of the
equity exposure in climate-policy-relevant sectors for each financial actor type and can
also be used to quantify its bargaining power and influence2 on the underlying companies.
The fraction of equity portfolio, on the other hand, quantifies which financial actor types
are potentially more exposed to the climate-policy-relevant sectors (see Table 7).

Figure 1: Relative equity exposures of financial actor types to Fossil-fuel and Utilities sectors.
Bubble size proportional to total equity holdings in EU and US companies.

2The term influence is here used, instead of control, to emphasize that most investment funds act
as fiduciaries or custodians and are thus seldom interested in exercising voting rights of their shares.
Nevertheless, this ownership allows them to potentially exercise direct control on the owned companies.
Engagement, next to divestment, is increasingly regarded as a strategy for dealing with carbon risk from
an investor perspective.
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Figure 2: Relative equity exposures of financial actor types to Fossil-fuel, Utilities, and Energy-
intensive sectors. Bubble size proportional to total equity holdings in EU and US
companies.

Investment funds represent the biggest institutional investor by far (in terms of fraction
of market capitalization owned), while industrial companies, governments and other credit
institutions have the highest relative portfolio exposure. Banks play a minor role, as
should be expected by aggregate data and the regulatory burden imposed on them in
terms of equity holdings. To further investigate the differences and similarities in portfolio
composition among financial actors, we present in Table 6 the mean portfolio for each type
of financial actor, together with the standard deviation.
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IFs

(5,124)

Banks

(798)

IPFs

(6,392)

NFCs

(14,851)

OFSs

(3,081)

GOV

(125)

Individuals

(33,733)

OCIs

(955)

Fossil-fuel

(767)

4.91% 6.87% 6.16% 6.12% 4.73% 12.88% 4.38% 4.08%

12.43% 14.05% 14.26% 23.13% 10.28% 21.68% 20.40% 12.14%

Utilities

(216)

1.36% 2.68% 1.60% 1.80% 1.46% 6.27% 0.80% 2.10%

4.77% 8.19% 5.58% 12.77% 4.78% 16.07% 8.86% 5.92%

Energy-intensive

(3956)

27.89% 24.52% 25.37% 27.86% 25.79% 19.51% 27.28% 21.15%

22.06% 18.91% 22.05% 42.89% 19.31% 11.35% 44.44% 20.95%

Housing

(797)

5.03% 5.84% 4.68% 7.52% 4.06% 7.69% 5.21% 7.13%

10.85% 12.38% 9.99% 25.59% 8.98% 11.46% 22.17% 12.92%

Transport

(224)

2.46% 2.59% 1.93% 1.90% 2.13% 1.32% 1.19% 1.53%

7.51% 6.15% 5.68% 12.95% 5.83% 2.06% 10.82% 3.23%

Finance

(2659)

15.09% 20.09% 17.98% 13.03% 17.89% 17.01% 19.86% 25.77%

21.26% 22.76% 24.99% 32.28% 22.09% 16.42% 39.84% 25.63%

Other

(6259)

43.27% 37.43% 42.29% 41.75% 43.93% 35.32% 41.27% 38.25%

23.56% 22.75% 25.14% 47.20% 21.67% 21.44% 49.12% 22.89%

Cumulative

climate-policy

relevant sectors

41.65% 42.50% 39.73% 45.22% 38.18% 47.67% 38.87% 35.98%

Table 6: Mean (first row) and standard deviation (second row) of the relative exposure of
individual financial actors of given type in each sector as a percentage of the financial
actor’s total portfolio of equity holdings. The last row represents the cumulative
exposure of the average financial actor of each type over all climate-policy-relevant
sectors (i.e. Fossil-fuel, Utilities, Energy-intensive, Housing, and Transport).

From Table 6 some specific properties of certain financial actor types emerge. We
notice that governments tend to have higher portfolio concentrations than other financial
actor types in the Fossil-fuel and Utilities sectors, coherently with the strategic nature of
these sectors.

All actors present very big standard deviations, indicating that the underlying sets of
portfolios are generally very heterogeneous and a great degree of variability is present,
even within a given financial actor type.

In particular individuals and industrial companies show the highest values of standard
deviation in every sector, due to the fact that most of these financial actors tend to
concentrate their equity holdings in specific companies (as in the case of individuals who
own a substantial fraction of shares in the companies they founded) or sectors (as in the
case of industrial companies owning several subsidiaries in the same sector as the parent
company).

8



OCIs

(955)

GOV

(125)

Individuals

(33,733)

Banks

(798)

IPFs

(6,392)

OFSs

(3,081)

NFCs

(14,851)

IFs

(5,124)

Fossil-fuel

(767)

31.17 66.17 98.17 173.29 230.21 185.15 377.30 549.85

6.02% 11.43% 3.77% 6.34% 7.09% 5.33% 8.06% 6.05%

Utilities

(216)

19.32 63.58 21.16 77.02 55.53 65.46 93.09 249.32

3.73% 10.99% 0.81% 2.82% 1.71% 1.88% 1.99% 2.74%

Energy-intensive

(3956)

172.84 147.53 766.33 708.30 865.87 1019.84 1408.65 2701.69

33.40% 25.49% 29.47% 25.92% 26.68% 29.36% 30.08% 29.71%

Housing

(797)

13.26 15.88 100.57 59.07 85.28 76.60 146.72 189.36

2.56% 2.74% 3.87% 2.16% 2.63% 2.21% 3.13% 2.08%

Transport

(224)

11.43 18.48 55.38 47.67 54.48 69.96 106.67 173.02

2.21% 3.19% 2.13% 1.74% 1.68% 2.01% 2.28% 1.90%

Finance

(2659)

127.01 95.33 419.63 684.72 609.11 669.82 702.44 1532.08

24.54% 16.47% 16.14% 25.06% 18.77% 19.29% 15.00% 16.85%

Other

(6259)

142.44 171.80 1139.53 982.46 1345.08 1386.27 1847.40 3698.41

27.53% 29.68% 43.82% 35.95% 41.44% 39.91% 39.46% 40.67%

Table 7: Absolute (first row, in USD billions) and relative (second row, percentage of aggregate
equity portfolio) exposure of each financial actor type in each sector.

4 Stress-test of the financial system

4.1 Stress-test methodology

Framework

We implement a stress-test of the EU banking system using the dataset extracted from
BvD bankscope, presented in Section 1.2. The stress-test framework employed is identi-
cal to the one presented in Battiston et al. (2016) and allows us to decouple two main
contributions to systemic losses:

• First round losses, losses in banks’ equity due to direct exposures to shocked sectors;

• Second round losses, indirect losses in banks’ equity due to the propagation of first
round losses on the interbank lending market.

The stress-test is articulated in four main time steps, as outlined in Table 8.
In order to assess systemic losses, we focus on the relative loss in banks’ equity, in

particular:
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Time Round Effects

t = 0 Initial allocation Initial allocation of assets and li-
abilities

t = 1 First round
Shock on climate-policy-relevant
sectors, losses on banks’ balance
sheets

t = 2 Second round begins
Reverberation of first round
losses on the interbank network
according to the DebtRank
model

t = T Second round ends Model reaches convergence

Table 8: Outline of stress-test implementation.

1. the individual vulnerability of bank i

hi(t) =
Ei(0)− Ei(t)

Ei(0)
∈ [0, 1] (1)

defined as the relative cumulative equity loss of bank i up to time t,

2. the global vulnerability of the system

H(t) =
Etot(0)− Etot(t)

Etot(0)
=

n∑
i=1

Ei(0)∑n
j=1Ej(0)

hi(t) ∈ [0, 1] (2)

defined as the relative cumulative equity loss of the system up to time t.

Clearly hi(t) = 1 if bank i has defaulted at any time up to time t. Further, we assume
that for the entire duration of the stress-test no “injection” of equity or recapitalization
is performed, so that hi(t) is increasing in t, i.e. hi(t) ≥ hi(t− 1). In other words we are
interested in studying the stability of the financial system in isolation, without positing
external interventions of regulators seeking to bail-out institutions or investors willing to
invest in banks on the brink of bankruptcy. Notice that this choice of measure for systemic
losses allows us to quantify monetarily the impact of shocks on the banking system.

DebtRank algorithm

The DebtRank model was first developed in Battiston et al. (2012) as a network measure of
systemic vulnerability and systemic impact of financial institutions in a network. Unlike
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other financial contagion models (Eisenberg and Noe, 2001; Furfine, 2003; Rogers and
Veraart, 2013) DebtRank assumes that banks implement mark-to-market accounting and
CVA practices (Battiston et al., 2016), thus being one of the first financial contagion
models to take into account mark-to-market losses (Visentin et al., 2016) as an important
channel of contagion, compatibly with empirical evidence from the 2007-08 financial crisis.

The financial contagion process in terms of individual vulnerabilities is the following:

hi(t + 1) = min

{
1, hi(t) +

∑
j∈A(t)

(1−R)lbijhj(t)

}
,

where lbij is the interbank leverage of bank i towards bank j, R ∈ [0, 1] is an exogenously
imposed recovery rate, and A(t) is the set of active nodes (i.e. those nodes that propagate
financial distress onto counterparties at time t), defined as:

A(t) = {j | hj(t) > 0 and hj(t
′) = 0, ∀t′ < t}.

This definition implies that banks revalue their assets as soon as their counterparties
experience financial distress, by losing a fraction of their equity, and even before their
counterparties’ default (as required by matk-to-market accounting). Nevertheless, once
a bank has propagated distress it won’t be able to transmit further losses, despite still
being able to receive them. This amounts to saying that in this network process only first
cycles are considered.

The algorithm is run until convergence3 and the global vulnerability H(1) quantifies
first round losses, while H(T ) quantifies second round losses.

Network ensemble

As already remarked in Section 1.2, data on bilateral financial exposures among banks
is not available because of confidentiality agreements. Interbank networks can be recon-
structed from the partial information provided by total interbank lending and borrowing
of individual institutions. Following standard methodologies (Cimini et al., 2014, 2015;
De Masi et al., 2009; Musmeci et al., 2013) we generate a sample of 1,000 interbank net-
works compatible with total interbank lending and borrowing data and implement the
stress-test on each one of the network realizations. The global vulnerability reported in
subsequent stress-test results tables will always be the mean global vulnerability over the
network sample, simply referred to as “global vulnerability”.

If the stress-test is implemented on a shock distribution we run the stress-test for each
single realization of the shock on all reconstructed networks and then compute the mean
global vulnerability over the network distribution. We can then compute summary statis-
tical measures on this (mean) global vulnerability with respect to the shock distribution

3In virtue of the very definition of the set of active nodes, A(t), the process reaches convergence in
finite time.
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(thus yielding, for instance, the mean global vulnerability or the VaR). Strictly speaking,
therefore, all stress-test results are the result of two averaging processes, the first on the
ensemble of reconstructed interbank networks (for which we will always take the mean)
and the second on the shock distribution.

4.2 Maximum shock scenarios

The results in Table 9 show the impact on the top 50 listed EU banks of a 100% shock in
the market capitalization of the climate-policy-relevant sectors identified in Section 2.1 in
different, progressive aggregations.

Sectors shocked

(100%)

First Round

Relative Equity Loss

Second Round

Relative Equity Loss

Fossil-fuel 2.55% (6.08±0.10)%

Fossil-fuel

+ Utilities
3.79% (9.75± 0.15)%

Fossil-fuel

+ Utilities

+ Energy-intensive

13.18% (27.91 ± 0.45)%

Fossil-fuel

+ Utilities

+ Energy-intensive

+ Housing

+ Transport

15.09% (30.24 ± 0.40)%

Table 9: First and second round relative losses in banks’ equity for the top 50 EU listed banks,
under four different 100% shock combinations. Standard deviations on second round
losses has been computed on network ensemble distribution.

The results can be interpreted as an absolute upper bound of the potential losses of
the EU banks through the contagion channel of equity holdings. A 100% shock on all
equity holdings in the respecting climate-policy-relevant sectors allows us to identify an
upper bound to the vulnerability of the banking system to the market risk posed by a
shock on such sectors, without specifying a necessarily arbitrary shock distribution.

The contributions coming from the second round propagation of direct losses on the
interbank lending network (i.e. indirect losses) are particularly important, since they
quantify in a precise way the amplification of losses due to financial interconnectedness.
Typically such amplification is at least as sizable as the first round effect, indicating that
failing to take into proper account the interconnectedness of the financial system leads to
a severe underestimation of the systemic risk to which the system is exposed.
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We further remark that the most significant contribution comes from the Energy-
intensive sector, both because of its breadth and because of the substantial equity exposure
of banks to it.

In computing first round losses we could not fully take into account banks’ subsidiaries.
Financial institutions can have a very complex ownership structure and several divisions,
each one carrying out financial activities in different institutional sectors, e.g. investment
fund, insurance, retail, banking (commercial and/or investment). In particular the equity
holding might be recorded as owned by different entities within the same group, for
instance UBS AG is a bank while UBS Asset Management is one of its divisions and they
both belong to UBS Group AG, which is a holding company. For the moment we have
not aggregated the ownership data under the same holding company. Exposures might
be relatively higher if this consolidation were taken into account.

4.3 Scenarios with shock distribution

Description of shock distribution from LIMITS project

We now analyze climate mitigation scenarios via our stress-test methodology using distri-
butions of shocks on climate-policy-relevant sectors computed from the LIMITS Integrated
Assessment Model dataset (see Kriegler and al. (2013)). The shock scenarios analyzed in
Section 4.2 introduce a 100% shock on equity holdings. These scenarios can be considered
as an upper bound on the losses in banks’ equity potentially faced by the EU banking
industry through equity holdings. Since the results show that exposures are small we
conclude that the stability of the financial system would not be affected. It follows that
similar results hold if we were to consider scenarios with smaller shocks.

Nevertheless, to study more realistic shock scenarios, we introduce distributions of
shocks on the Fossil-fuel and Utilities sector based on the LIMITS database, which pro-
vides estimates of the impact of climate mitigation policy on energy sectors according to
a set of models, as returns scenarios displaying the stringency and the timing of climate
policy.

In particular, we have built a distribution of shocks for three sub-sectors: fossil-fuel,
fossil-fuel-based utilities and renewables-based utilities. The LIMITS database provides
time series of forecasted production levels for each sub-sector with a five-year interval, up
to 2050. We have first normalized these production levels4 to obtain:

1) the change of market shares of fossil-fuel in the primary energy supply,

4The data fields extracted are: “Primary Energy — Fossil” for the Fossil-fuel sector, nor-
malized by “Primary Energy”. “Secondary Energy—Electricity—Coal/Gas/Oil” for Fossil-fuel-
based Utilities and “Secondary Energy—Electricity—Biomass/Geothermal/Hydro/Non-biomass re-
newables/Ocean/Solar/Wind” for Renewable-based Utilities, both normalized by “Secondary En-
ergy—Electricity”
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2) the change of market shares of fossil-fuel-based utilities in secondary energy supply,
and

3) the change of market shares of renewables-based utilities in the secondary energy
supply.

From these time series, we can infer a distribution of shocks by assuming that each
change in market share from one five-year period to the next one corresponds to an
observation of a shock for the corresponding sub-sector.

In so doing, we have obtained one shock per period for each combination of scenario
and specific model as specified in the LIMITS dataset, for a total of 5,421 shocks. From
an economic viewpoint, interpreting these shocks on market shares as shocks on equity
corresponds to making the following simplifying assumptions: (i) the share of nominal
expenses on energy is constant (i.e., the demand elasticity of energy substitution is one);
(ii) the value of equity in a sub-sector is proportional to its total income; (iii) market
valuation is based on one-period (five years) ahead expectations.

Summary statistics for the shocks distributions extracted from the LIMITS database
can be found in Table 10 and in the histograms in Figures 3, 4, and 5.

Shocks on Mean Median Max Min

Fossil-fuel -2.40% -1.75% +91.23% -87.96%

Utilities
Fossil-fuel -6.24% -4.90% +81.22% -89.17%

Utilities
Renewable +10.38% +8.14% +88.47% -39.69%

Table 10: Summary statistics of shocks sample extracted from the LIMITS database. Sample
size is 5,421.
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Figure 3: Histogram of shock distribution on fossil-fuel sector extracted from the LIMITS
database.
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Figure 4: Histogram of shock distribution on fossil-fuel-based utilities sector extracted from
the LIMITS database.
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Figure 5: Histogram of shock distribution on renewables-based utilities sector extracted from
the LIMITS database.

We can see that the fossil-fuel-based utilities sector is mostly negatively impacted by
the introduction of mitigation policies, across a variety of scenarios and models. While
renewables-based utilities are on average positively impacted. Both samples consists of
negative as well as positive shocks.

4.4 Stress-test results

We implemented the shocks distributions obtained from the LIMITS database within our
stress-test framework. The results, analogous to the ones presented in Section 4, are
shown in Table 11.
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Scenario Round Mean Median VaR(5%) Max

Fossil-fuel 1st
1st+2nd

0.08 %
0.18 %

0.05 %
0.11 %

0.26 %
0.63 %

2.25 %
5.34 %

Fossil-fuel +
Fossil-fuel Utilities
(Brown banks)

1st
1st+2nd

0.12 %
0.29 %

0.08 %
0.19 %

0.41 %
0.96 %

2.84 %
6.73 %

Fossil-fuel +
Renewable Utilities

1st
1st+2nd

0.05 %
0.11 %

0.006 %
0.016 %

0.19 %
0.47 %

2.00 %
4.78 %

Renewable Utilities
(Green banks)

1st
1st+2nd

0.008 %
0.019 %

0.00 %
0.00 %

0.06 %
0.13 %

0.26 %
0.62 %

Table 11: Stress-test results for four shock scenarios. Shock distributions obtained from LIM-
ITS project. Statistical measures refer to the global vulnerability of the system (total
relative banks’ equity loss) at the end of the first and second rounds.

We can interpret the stress-results just shown by studying the variation in assets of
the average bank in our dataset. Summary balance sheet quantities and equity portfolio
of the average bank are presented in Table 12.

Balance sheet quantities

Equity USD 32.2B
Assets USD 603.8B
Interbank assets USD 29.1B

Equity holdings

Sector Exposure
Fossil-fuel USD 400M
Utilities USD 214M
Energy-intensive USD 3,025M
Housing USD 397M
Transport USD 4,015M
Finance USD 400M
Other USD 3,022M

Table 12: Basic balance sheet quantities and equity holdings of the average bank in the dataset.

We can illustrate the potential impact on the banking system by considering the
distribution of losses in assets for the average bank in case it adopts two representative
investment strategies:

• A green bank characterized by all utilities investments in renewables-based utilities
and no fossil-fuel investments (scenario 4),

• A brown bank characterized by investments in fossil-fuel and utilities investments
in fossil-fuel-based utilities (scenario 2).

Two main results emerge from the first round effect of exposures (see top part of
Figure 6): (i) the brown bank incurs more losses than the green one, but (ii) these losses
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are small in comparison to the total assets of the “average” bank that amounts to 604 bn
USD.

Yet, already from the analysis of direct exposures (the first round effect computed here)
we can see that the brown bank would be a loser, while the green bank would perform
better in terms of losses from climate policy shocks. The results show how climate policies
can generate volatility in asset prices and determine winners and losers among financial
actors. In particular, the results clearly support the conclusion that climate policies could
result in potential winners and losers across financial actors.

Adding to the results of the direct losses the indirect losses due to interbank distress
propagation (bottom part of Figure 6), we can see that the addition of the second round
effects of losses further polarizes the distribution of losses between the green and brown
bank. Indeed, the distribution of losses in assets for the brown bank is mostly negatively
affected by the climate policy shock, showing a marked tendency to develop fatter tails,
and thus the brown bank clearly emerges as a loser from the stress test.

One can interpret these results as follows. Relative to a baseline of no climate policy,
we expect early adapting investors (i.e., those who started to divest from climate-policy-
relevant sectors and invest in the green sector) to benefit from positive volatility on assets
prices. At the opposite end, investors who continued with the business as usual portfolio
allocation on climate-policy-relevant sectors could face losses in assets value. In particular,
the results of second round effects show that the “average” brown bank would emerge as
a clear loser from climate policy shocks.
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Figure 6: Absolute variation in assets for average bank in dataset at the end of the first round
(top) and at the end of the second round (bottom) under two investment strate-
gies. Brown bank corresponds to bank with equity holdings in fossil-fuel and fossil-
fuel-based utilities. Green bank corresponds to bank with equity holdings only in
renewables-based Utilities.

Summary statistics associated to the histograms shown in Figure 6 can be found in
Table 13.

Round
Investment

strategy Mean Median
Standard
deviation VaR(5%)

1st Round Green bank +22.25 +17.46 30.50 18.07
Brown bank -33.10 -26.55 74.65 131.27

1st + 2nd Round Green bank +18.47 +17.45 37.66 42.53
Brown bank -87.04 -62.67 153.62 309.92

Table 13: Summary statistics of asset variations under shock distributions extracted from the
LIMITS database for the average brown and green banks. All values are in USD
million.

Our methodology is particularly useful insofar as it provides a micro-economic ap-
proach to stress-testing. In particular, unlike previous works, we are able to assess and
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quantify the entity of both direct and indirect losses on individual institutions and in-
vestors. In Table 14 we show results analogous to the ones presented in Table 13, but for
a specific bank in our dataset, namely BNP Paribas, instead of the average bank in the
dataset. We can then see how the choice between the green bank and the brown bank
investment strategies would impact BNP Paribas, specifically determining substantially
different VaR values.

Round Investment strategy Mean Median
Standard
deviation VaR(5%)

1st Round Green bank +96.09 +75.39 131.72 78.03
Brown bank -182.43 -144.03 430.96 730.75

1st + 2nd Round Green bank +89.94 +79.39 143.17 121.20
Brown bank -276.23 -207.77 563.68 1,038.60

Table 14: Summary statistics of asset variations under shock distributions extracted from the
LIMITS database for the individual bank “BNP Paribas”, under the two investment
strategies corresponding to a brown and a green bank. All values are in USD million.

Given the relevance of VaR as a measure of systemic risk for individual institutions,
we present in Figures 7 and 8 the VaR(5%) values at first and second round for the top 20
banks most severly affected, under the green bank and brown bank investment strategies
respectively. Notice how the brown bank investment strategy constantly yields VaR values
that are typically one order of magnitude higher than those of green banks.

VaR(5%) on asset losses (USD mil)
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Figure 7: Value at Risk at the 5% significance level of the 20 most severly affected EU listed
banks in the dataset, under the scenario that they follow the green bank investment
strategy. Darker color refers to VaR(5%) computed on the distribution of first round
losses only, while lighter color refers to VaR(5%) computed on the sum of first and
second round losses
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Figure 8: Value at Risk at the 5% significance level of the 20 most severly affected EU listed
banks in the dataset, under the scenario that they follow the brown bank investment
strategy. Darker color refers to VaR(5%) computed on the distribution of first round
losses only, while lighter color refers to VaR(5%) computed on the sum of first and
second round losses

5 Analysis of individual shareholders’ portfolios

In Section 3 we saw that mean portfolios show a similar composition across all financial
actor types. It is therefore perhaps worthwhile to take full advantage of our dataset, con-
sisting entirely of granular, microeconomic data on individual shareholders, by analyzing
and comparing the distributions of portfolios within given financial actor types.

In the analysis of the portfolios of individual shareholders we face a specific limitation
of our dataset: it comprises all US and EU listed companies, giving us a good global
market capitalization coverage, but it still does not allow us to completely reconstruct
the portfolio of each individual shareholder. For instance, 71.55% of shareholders in
our dataset have only one recorded exposure, which makes it difficult to reconstruct the
portfolio for many individual financial actors. The following table shows a breakdown of
numbers of exposures existing in the dataset by financial actor type. For each financial
actor type we list in Table 15 the fraction of shareholders of that type for which we
have respectively no exposure, only one exposure, two exposures, between two and ten
exposures and more than ten exposures in our dataset. The Table summarizes the data
presented also in Figure 9 as histograms.
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Type
= 0
(%)

= 1
(%)

= 2
(%)

2 < . . . ≤ 10
(%)

> 10
(%)

Banks
(828) 6.64% 42.75% 11.96% 19.20% 19.44%

Governments
(125) 3.20% 52.80% 3.20% 13.60% 27.20%

Individuals
(33,733) 19.46% 79.27% 0.82% 0.35% 0.01%

Industrial
companies
(14,841)

15.70% 69.44% 5.68% 5.43% 3.75%

Insurance and
pension funds

(6,386)
7.34% 61.65% 9.41% 13.36% 8.24%

Investment funds
(5,123) 11.61% 53.29% 8.65% 13.86% 12.59%

Other credit
institutions

(955)
16.13% 55.92% 7.75% 11.52% 8.69%

Other financial
services
(3,068)

12.35% 55.18% 8.70% 11.96% 11.80%

Table 15: Percentage of shareholders of given type with specified number of recorded equity
holdings in our dataset. Total number of shareholders of given type reported in
parentheses. Each equity holding is intended as recorded equity ownership in a
single company.

Table 15 captures some genuine features of the market. For example, it stands to
reason that not too many individuals have more than one recorded exposure. Indeed,
the vast majority of individuals either have shares in their own company (e.g. Mr. Mark
Zuckerberg) or own shares through brokerage or asset management firms, so that a com-
plete portfolio cannot be reconstructed and only a “partial portfolio” could be extracted
via Bureau Van Dijk.
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Figure 9: Histograms of number of recorded equity holdings in the dataset for shareholders of
given type.

For the reconstruction of portfolios, as in Figures 10 and 11 we had to use only those
shareholders for which the number of recorded exposures was sufficiently high. In the
case of individuals and industrial companies, we selected shareholders with at least two
recorded exposures, while for all remaining financial actor types we took only shareholders
with more than five recorded exposures. This allowed us to run computations and tests
only on those shareholders’ portfolios for which we knew with greatest certainty that we
had a satisfactorily complete picture. As an example of this methodology we present in
Figures 10 and 11 the portfolios of the top 15 banks and 15 investment funds, respectively,
in the climate-policy-relevant sectors analyzed.

Figure 10: Portfolio compositions of the top 15 banks in the dataset.
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Figure 11: Portfolio compositions of the top 15 investment funds in the dataset.

Figures 12 and 13, analogous to Figures 1 and 2, show market share and portfolio
share of individual major, global banks in the Fossil-fuel, Utilities, and Energy-intensive
sectors.

Figure 12: Relative equity exposures of major, global banks to Fossil-fuel and Utilities sectors.
Bubble size proportional to total equity holdings in EU and US companies.
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Figure 13: Relative equity exposures of major, global banks to Fossil-fuel, Utilities, and
Energy-intensive sectors. Bubble size proportional to total equity holdings in EU
and US companies.
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