## Supplementary Figure 1



Supplementary Figure 1. Representative electron density map and comparison of m336 epitope and DPP4 binding site on MERS-CoV RBD
(a) Stereo view of $2 \mathrm{~F}_{0}-\mathrm{F}_{\mathrm{c}}$ electron density at the interface of m336 and MERS-CoV RBD contoured at $1.0 \sigma$ level. The MERS-CoV RBD, m336 heavy and light chains are shown with stick representation with $\mathrm{C} \alpha$ atoms colored orange, light green and light blue, respectively. MERS-CoV RBD residue 535 is labeled for view orientation. (b and c) Side-by-side comparison of m336 epitope and DPP4 binding site on MERS-CoV RBD shown in both cartoon (top) and surface representation (bottom). The epitope of m336(b) is colored in green and the binding site of DPP4 (c) is colored in purple on MERS-CoV RBD .

## Supplementary Figure 2

m336


MERS-CoV RBD

DPP4


MERS-CoV RBD

Receptor binding subdomain

Supplementary Figure 2. m336 mimics receptor DPP4 with similar angle of approach to engage MERS-CoV
The MERS-CoV RBD, m336 heavy and light chains as well as the receptor DDP4 are shown in cartoon representation with the same color scheme as in Figures 1 and 2.

## Supplementary Figure 3

Occurrence •1-2•2-4 4-10 •10-29•29-541


Supplementary Figure 3. VDJ frequencies showing the productive VH rearrangements from different IGHV germline genes as quantified from the 454 sequencing analysis of IgM libraries derived from 69 healthy human subjects The IGHV1-69 contributes significantly (12.7\%) to the antibody repertoires, boxed in orange (out of the total of $74,393 \mathrm{VH}$ sequences).

## Supplementary Figure 4


#### Abstract

 m336 SC4098 A07R8 FLZTE JEKWS DAP65 DN540 JRFO1 JE940 JTG8G GJIIK IOLJL J1LEP GW8N9 H71FM GLZKI G0V6M F80WF IIPZV F2VYW JOFEJ JEE23 FRB3E IVVGA G7S4X IZFV5 IOBUK IXGN8 IUQ23 FG4AV IAE2T GRX7Q F42LC IG1QK IJG1L HLOR4 GQ6EI GGESY GIA8T FV24F ATEUR HKAV1

DIQLTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGID DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGID DIQMTQSPSSLSASVGDRVTITCRASQSIDSYLNWYQQKPGKPPKLLIYGASGLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE DIQMTQSPSSLSASVGDRVTITCRASQGISSALNWYQQKTGKAPKLLIYAASSLQSGVPSRFSGSGSGTE DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE DIQMTQSPSSLSVSVGDRVTITCRASQGIGNELGWFQQKPGRAPKLLIYSASSLGGEVPSRFSGSGSGTE DIHLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSPLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYVASSLQSGVPSRFSGSGSGTD DIQLTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTD DIQLTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAASSLQSGVPSRFSGSGSGTD DIQLTQSPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKVPKLLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYKASSLESGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRVSQGISSYLNWYRQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSTLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPK LIYAASSLQSGVPSRFSGSGSGTE DVVMTQSPSSLSASVGDRVTITCQASQDISNYLNWYQQKPGKAPKLLIYDASSLESGVPSRFSGSGSGTD DVVMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE EIVMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE EIVMTQSPSSLSASVGDRVTITCRASQGISNYLAWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTE RHQLTQSPSSLSASVGDRVTITCRASQSIRAYLNWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTD DIQLTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKLLIYAASSLQSGVPPRFSGSGSGID DIQLTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKILIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKLLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLIYAASSLQSGVPSRFSGSGSGTE DIQLTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKVPKLLIYAASTLQSGVPSRFSGSGSGTE DIQMTQSPSSLSASVGDRVTITCRASQGIRNDLGWYQQKPGKAPKRLISAASTLQGGVPSRFSGSGSGTE DIQTTQSPSSLSVSVGDRVTIHCRASQDIRNDLAWYQHTPGKAPQRLIYGASKLQSGVSSRFSGSGSGTE

> FTLTISSLQPEDFATYYC届|HNSYP--------------- 95 FTLTISSLQPEDFATYYCODLNSYP-LTFGGGTKVEIK 107 FTLTISSLQPEDFATYYCQQLNSYP-PTFGGGTKVEIK 107 FTLTIRSLQPEDFATYYCLQHNSYP-WTFGQGTKVEVR 107 FTLTISSLQPEDFATYYCLQHNSYP-YTFGQGTKLEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-RTFGQGTKLEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-LTFGGGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-RTFGQGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-LTFGGGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-WTFGQGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-LTFGGGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-WTFGQGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-RTFGQGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-YTFGQGTKLEIK 107 FTLTISSLQPDDFATYYCLQHNSYP-WTFGQGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-WTLGQGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-ITFGQGTRLEIK 107 FTLTISSLQPDDFATYYCLQHNSYP-YTFGQGTKLEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-FTFGQGTRLEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-LTFGGGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-PTFGGGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-PTFGQGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-WTFGQGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-YTFGQGTKLEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-LTFGGGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-YTFGQGTKLEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-LTFGGGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-WTFGQGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-YTFGQGTKLEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-WTFGQGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-LTFGGGTKVEIK 107 FTLTISSLQPEDFATYYCLQHNSYP-LTFGGGTKVEIK 107 FTLTISSLQPEDFATYYCOQLNSYP-LTFGGGTKVEIK 107 TLTISSLQPEDFATYYCEQLNSYP-LTFGGGTKVEIK 107 FTLTISSLQPEDFATYYdedLNSYP-RTFGGGTKVEIK 107 FTLTISSLQPEDFATYYCeqLNSYP-FTFGPGTKVDIK 107 FTLTISSLQPEDFATYYCQ\&LNSYP-KTFGGGTKVEIK 107 FTLTISSLQPEDFATYYCQRLNSYPPNTFGGGTKVEIK 108 FTLTISSLQPEDFATYYCQQLNSYP-RTFGQGTKVEIK 107 FTLTISSLQPEDFATYYCODLNSYP--TFGGGTKVEIK 106 FTLTISSLQPEDFATYYCdedLNSYP-LTFGGGTKVEIK 107 FTLTISSLEPEDFATYYCd\&LNSYP-ITFGQGTRLEIK 107 FTLTIFSLQPEDFATYYCQ\&LNSYPGFTFGPGTKVDIK 108


## Supplementary Figure 4. Multiple alignment of m336 $\mathrm{V}_{\mathrm{L}}$-like sequences from naïve IgM libraries derived from 69 healthy human subjects and 2 newborn babies and an anti-rabies virus $\mathrm{V}_{\mathrm{L}}$ antibody sequence

Amino acid sequences of $40 \mathrm{~V}_{\mathrm{L}}$ antibody domains (denoted by 5 -letter codes) that were found similar to that of m 336 from 454 sequencing analysis of $\operatorname{lgM}$ libraries derived 69 adult s and 2 babies., and a VL antibody chain from anti-rabies virus antibody (SC4098) from the report by Kramer et al Eur. J. Immunol. 2005. Red boxes show the pre-existing mutations in the lgM naïve repertoires as identical to that found in $\mathrm{m} 336 \mathrm{~V}_{\mathrm{L}}$ suggesting a naturally germline-related m336 $\mathrm{V}_{\mathrm{L}}$.

## Supplementary Figure 5



Supplementary Figure 5. The binding kinetics of m336, m336-gH, m336-gL and m336-gL-FR to MERS-CoV S1
Single-cycle surface plasmon resonance analyses were carried out to assess binding of m336 variants to MERS-CoV S1. Antibody at five concentrations were injected incrementally in a single cycle onto a CM5 sensor chip immobilized with MERS-CoV S1 protein. The kinetic profiles are shown in each panel.

## Supplementary Figure 6

gi|407076737|gb|AFS88936.1| S gi|582986812|gb|AHI48528.1| S gi|612348151|gb|AHX00711.1| sp gil $612348173|\mathrm{gb}| \mathrm{AHX00731.1\mid} \mathrm{sp}$ gil567322246|gb|AHC74088.1| s gi|567322257|gb|AHC74098.1| S gi|453061243|gb|AGG22542.1| s gi| $426205768|\mathrm{gb}| \mathrm{AFY} 13307.1 \mid \mathrm{s}$ gi|540362615|gb|AGV08408.1| S gi|540362578|gb|AGV08379.1| s gi|540362823|gb|AGV08584.1| S
gi|407076737|gb|AFS88936.1| S gil582986812|gb|AHI48528.1| S gi|612348151|gb|AHX00711.1| sp gil612348173|gb|AHX00731.1| sp gil567322246|gb|AHC74088.1| s gil567322257|gb|AHC74098.1| s gi|453061243|gb|AGG22542.1| s gi| $426205768|\mathrm{gb}|$ AFY13307.1| s gi|540362615|gb|AGV08408.1| S gil540362578|gb|AGV08379.1| S gi|540362823|gb|AGV08584.1| S
gi|407076737|gb|AFS88936.1| S gi|582986812|gb|AHI48528.1| S gil $612348151|g b| A H X 00711.1 \mid ~ s p$ gi|612348173|gb|AHX00731.1| sp gi|567322246|gb|AHC74088.1| s gi|567322257|gb|AHC74098.1| s gi|453061243|gb|AGG22542.1| S gi|426205768|gb|AFY13307.1| s gil540362615|gb|AGV08408.1| S gi|540362578|gb|AGV08379.1| S gi|540362823|gb|AGV08584.1| S
 VECDFSPLLSGTPPOVYNFKRLVFTNCNYNLTKLLSLESVNDFTCSOTSPAATASNCYSSLILDYESYPLSMKSDISVSSAGPISOENYKOSESNPTCLI
590.

TNSVCPKLEFA
$\square$
$\qquad$
$\qquad$
............
...........
...........

Supplementary Figure 6. Multiple sequence alignment of known MERS-CoV RBD
sequences with point mutations from clinical isolates was shown with the prototype
EMC/2012 sequence (top) Isolates harboring the identified A431P, S457G, S460F, A482V, L506F, D509G, and V534A substitution are shown with conserved residues marked as dots.

Supplementary Table 1. Contribution of different m336 regions to its MERS-CoV RBD binding interface

|  | Heavy chain $\left(\AA^{2}\right)$ | Light chain $\left(\AA^{2}\right)$ |
| :--- | :---: | :---: |
| Framework 1 | 0 | 0 |
| CDR1* | $203(23.6 \%)$ | 0 |
| Framework 2 | 0 | 0 |
| CDR2 | $280(32.6 \%)$ | 0 |
| Framework 3 | $14(1.7 \%)$ | 0 |
| CDR3 | $250(29.1 \%)$ | $111(12.9 \%)$ |
| Total | $747(87.1)$ | $111(12.9 \%)$ |

*: all complementarity determining regions (CDRs) were defined according to Kabat nomenclature.

Supplementary Table 2. Hydrogen bonds and salt bridges between m336 and MERS-CoV RBD

| Hydrogen bonds |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | m336 | Distance ( $\AA$ ) | MERS-CoV RBD | Conserved DPP4 interaction |
| 1 | H:SER30[OG] | 3.08 | A:ASP510[OD2] | Arg317 |
| 2 | H:ASN100d[ND2] | 3.43 | A:GLY538[O] | Gln286 |
| 3 | H:ARG100e[NH1] | 2.75 | A:ASP539[OD1] | Lys267 |
| 4 | H:ARG100e[NH2] | 2.98 | A:ASP539[OD2] |  |
| 5 | H:CYS100c[N] | 2.70 | A:TYR540[O] |  |
| 6 | H:ASN100d[OD1] | 2.96 | A:TYR540[N] |  |
| 7 | H:SER31[O] | 2.64 | A:TYR540[OH] |  |
| 8 | H:CYS100c[SG] | 3.66 | A:ARG542[N] |  |
| 9 | H:SER31[O] | 3.52 | A:ARG542[NE] |  |
| 10 | H:VAL99[O] | 3.25 | A:ARG542[NH2] |  |
| 11 | H:SER30[OG] | 3.74 | A:TRP553[NE1] |  |
| 12 | L:TYR94[N] | 3.14 | A:GLU536[OE2] |  |
| 13 | L:SER93[OG] | 2.80 | A:TRP535[NE1] |  |
| Salt bridges |  |  |  |  |
|  | m336 | Distance ( $\AA$ ) | MERS-CoV RBD | Conserved DPP4 interaction |
| 1 | H:ARG100e[NH1] | 2.75 | A:ASP539[OD1] | Lys267 |
| 2 | $\mathrm{H}: \mathrm{ARG100e[NH2]}$ | 2.98 | A:ASP539[OD2] | Lys267 |

Supplementary Table 3. Analysis of the junction showing the mapping of IGHD with a high identity with possible N1/N2 addition along with $3^{\prime} \mathrm{V}$ - region and 5'J-region.

## Analysis of the JUNCTION

## D-REGION is in reading frame 2.

Click on mutated (underlined) nucleotide to see the original one:

| Input | V name | 3'V-REGION | N1 | D-REGION | N2 | 5'J-REGION | J name | D name | Vmut | Dmut | Jmut | Ng |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| m336VH | Homsap IGHV1-69*06 | tgtgcgagag | t | gtagtaccag | gag | gatatctgg | Homsap IGHJ3*02 | Homsap IGHD2-2*03 | 0 | 0 | 0 | 5/ |

## Translation of the JUNCTION

Click on mutated (underlined) amino acid to see the original one:

|  | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 111.1 | 111.2 | 112.3 | 112.2 | 112.1 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | Frame | $\begin{gathered} \text { CDR3-TMGT } \\ \text { length } \end{gathered}$ | $\begin{aligned} & \text { Molecular } \\ & \text { mass } \end{aligned}$ | pI | $\frac{\text { PhysicoChemical Descriptor }}{\text { (by BRPAA) }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | c | A | R | V | G | Y | C | S | s | I | S | C | N | R | G | A | E | D | I | W |  |  |  |  |  |
| m336VH |  | cg |  |  |  |  |  |  |  | acc | agc |  | aac |  |  |  |  | gat |  | tgg | + | 18 | 2,196.48 | 7.87 | CARVGYCSSTSCNRGAFDIW |

Be aware that some allele reference sequences may be incomplete or from cDNAs. In those cases, IMGT/JunctionAnalysis uses automatically the allele *01 for the analysis of the JUNCTION.

## Closest D-REGIONs

|  | Score | Identity |  |
| :--- | :--- | :--- | :--- |
| $\frac{\text { M35648 }}{}$ Homsap IGHD2-2*03 F | 118 | $89.66 \%(26 / 29 \mathrm{nt})$ |  |
| J00232 | Homsap IGHD2-2*01 F | 109 | $86.21 \%(25 / 29 \mathrm{nt})$ |
| $\mathrm{X97051}$ Homsap IGHD2-2*02 F | 109 | $86.21 \%(25 / 29 \mathrm{nt})$ |  |



## Supplementary Table 4. Analysis of the nucleotide divergence of m336 heavy chain and light chain from its germline counterpart

## Heavy chain:




L22583 Homsap IGHV1-69*06 F
m336VH

L22583 Homsap IGHV1-69*06 F
$\qquad$


- IMGT
 ... ttt ggt aca gca agc tac gca cag aag ttc cag ... ggc aga N
... --- --- --- --- -a- --- --- --- --- --- --- .. . --- ---




L22583 Homsap IGHV1-69*06 F

## Nucleotide (nt) mutations

| IMGT labels |  | V-REGION | FR1-IMGT | CDR1-IMGT | FR2-IMGT | CDR2-IMGT | FR3-IMGT | CDR3-IMGT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nb of positions including IMGT gaps (nt) |  | 319 (320) | 78 | 36 | 51 | 30 | 117 | 7 (8) |
| Nb of nucleotides |  | 295 (296) | 75 | 24 | 51 | 24 | 114 | 7 (8) |
| Nb of identical nucleotides |  | 294 | 75 | 24 | 51 | 24 | 113 | 7 |
| Nb of mutations |  | 1 (2) | 0 | 0 | 0 | 0 | 1 | 0 (1) |
| Mutations | Silent | 0 (1) | 0 | 0 | 0 | 0 | 0 | 0 (1) |
|  | Nonsilent | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| Transitions | $a>g$ | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
|  | g>a | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | c>t | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $t>c$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Transversions | $\mathrm{a}>\mathrm{c}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | c>a | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $a>t$ | 0 (1) | 0 | 0 | 0 | 0 | 0 | 0 (1) |
|  | $t>a$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $\mathbf{g}>\mathbf{c}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $\mathbf{c}>\mathbf{g}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $\mathbf{g}>$ t | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $t>g$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Amino acid (AA) changes

| IMGT labels |  |  | V-REGION | FR1-IMGT | CDR1-IMGT | FR2-IMGT | CDR2-IMGT | FR3-IMGT | CDR3-IMGT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nb of positions including IMGT gaps (AA) |  |  | 106 | 26 | 12 | 17 | 10 | 39 | 2 |
| Nb of AA |  |  | 98 | 25 | 8 | 17 | 8 | 38 | 2 |
| Nb of identical AA |  |  | 97 | 25 | 8 | 17 | 8 | 37 | 2 |
| Nb of AA changes |  |  | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
| AA changes | Very similar | ( ++ + | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Similar | (++-) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | (+ - +) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Dissimilar | (+--) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | $(-+-)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | $(--+)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Very dissimilar | (---) | 1 | 0 | 0 | 0 | 0 | 1 | 0 |

## Light chain:

m336VL
X72808 Homsap IGKV1-17*01 F
D88255 Homsap IGKV1-17*02 F
M64858 Homsap IGKV1-6*01 F
KM455558 Homsap IGKV1-6*02 F
Z00006 Homsap IGKV1-13*02 F
m336VL
X72808 Homsap IGKV1-17*01 F
D88255 Homsap IGKV1-17*02 F
M64858 Homsap IGKV1-6*01 F
KM455558 Homsap IGKV1-6*02 F
Z00006 Homsap IGKV1-13*02 F
m336VL
X72808 Homsap IGKV1-17*01 F
D88255 Homsap IGKV1-17*02 F
M64858 Homsap IGKV1-6*01 F
KM455558 Homsap IGKV1-6*02 F
Z00006 Homsap IGKV1-13*02 F
m336VL
X72808 Homsap IGKV1-17*01 F
D88255 Homsap IGKV1-17*02 F
M64858 Homsap IGKV1-6*01 F
KM455558 Homsap IGKV1-6*02 F
Z00006 Homsap IGKV1-13*02 F
m336VL
X72808 Homsap IGKV1-17*01 F
D88255 Homsap IGKV1-17*02 F
M64858 Homsap IGKV1-6*01 F
KM455558 Homsap IGKV1-6*02 F
Z00006 Homsap IGKV1-13*02 F
m336VL
X72808 Homsap IGKV1-17*01 F
D88255 Homsap IGKV1-17*02 F
M64858 Homsap IGKV1-6*01 F
KM455558 Homsap IGKV1-6*02 F
Z00006 Homsap IGKV1-13*02 F
m336VL
X72808 Homsap IGKV1-17*01 F

| $<--------------------------------------------------~$ | FR1 - IMGT |  |  |
| :--- | :---: | :---: | ---: |
| 1 | 5 | 10 | 15 |

gac atc cag ttg acc cag tct cca tcc tcc ctg tct gca tct gta --- --- --- a-- --- --- --- --- --- --- --- --- --- --- ----- --- --- a-- --- --- --- --- --- --- --- --- --- ----c- --- --- a-- --- --- --- --- --- --- --- --- --- ---c- --- --- a-- --- --- --- --- --- --- --- --- --- --- --t -c- --- --- --- --- --- --- --- --- --- --- --- ---
---------------------------------------------->> $\quad 20 \quad 25 \quad 30$
gga gac aga gtc acc atc act tgc cgg gca agt cag ggc att... --- --- --- --- --- --- --- --- --- --- --- --- --- -- .. --- --- --- --- --- --- --- --- --- --- --- --- --- --- .. --- --- --- --- --- --- --- --- --- --- --- --- --- -- .. . --- --- --- --- --- --- --- --- --- --- --- --- --- -- .. . --- --- --- --- --- --- --- --- --- --- --- --- -- -- .- . .
_ CDR1 - IMGT $\qquad$
3540

... ... ... ... ... aga aat gat tta ggc tgg tat cag cag aaa ... .. . . . . . . . --- --- --- --- --- --- --- -- -- -- -... .. . . . . . .. --- --- --- --- --- --- --- -- -- -- -... ... ... ... ... --- --- --- --- --- --- --- --- --- -. . . . . . . . . ... --- --- --- --- --- --- --- --- -- -... .. . . . . . ... --c -g- -C- --- -C- --- --- --- -- --

| FR2 - IMGT $------------------------\gg$ | 55 | CDR2 |
| :---: | :---: | :---: |
| 50 | 60 |  |

cca ggg aaa gcc cct aag ctc ctg atc tat gct gca ... ... ... --- --- --- --- --- --- -g- --- --- --- --- --- .. ... .. --- --- --- --- --- --- -g- --- --- --- --- --- ... ... .. --- --- --- --- --- --- --- --- --- --- --- --- ... ... .. --- --- --- --- --- --- --- --- --- --- --- --- ... ... .. --- --- --- --t --- --- --- --- --- --- -a- --c ... .. ...

- IMGT $\qquad$ <-------------------------------------------------1
65
70
... ... ... ... tcc agt tta caa agt ggg gtc cca ... tca agg
... ... ... ... --- --- --g --- --- --- --- --- ... --- ---
... .. . . . .. --- --- --g --- --- --- --- --- .. . --- ---
... ... ... ... --- --- --- --- --- --- --- --- ... --- ---
... .. . .. ... --- --- --- --- --- --- --- --- .. . --- --
... .. . . . .. --- --- --g g-- --- --- --- --- ... --- --


atc agc agc ctg cag cct gaa gat ttt gca act tat tac tgt caa --- --- --- --- --- --- --- --- --- --- --- --- --- --- -t-

D88255 Homsap IGKV1-17*02 F
M64858 Homsap IGKV1-6*01 F
KM455558 Homsap IGKV1-6*02 F
Z00006 Homsap IGKV1-13*02 F

```
--- --- -a- --- --- --- --- --- --- --- --- --- --- --- -- --
```

--- --- --- --- --- --- --- --- --- --- --- --- -- -- -- --
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --


CDR3 - IMGT $\qquad$
m336VL
X72808 Homsap IGKV1-17*01 F
D88255 Homsap IGKV1-17*02 F
M64858 Homsap IGKV1-6*01 F
KM455558 Homsap IGKV1-6*02 F
Z00006 Homsap IGKV1-13*02 F
cag ctt aat agt tac ccg ctc act ttc ggc gga ggg acc aaa gtg
--- -a- --- --- --- --t -c
--- -a- --- --- --- --t -c
--a ga- t-c -a- --- --t -c
--a ga- t-c -a- --- --t -c
--- t-- --- --- --- --t -a

## Nucleotide (nt) mutations

| IMGT labels |  | V-REGION | FR1-IMGT | CDR1-IMGT | FR2-IMGT | CDR2-IMGT | FR3-IMGT | CDR3-IMGT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nb of positions including IMGT gaps (nt) |  | 332 (335) | 78 | 36 | 51 | 30 | 117 | 20 (23) |
| Nb of nucleotides |  | 284 (287) | 78 | 18 | 51 | 9 | 108 | 20 (23) |
| Nb of identical nucleotides |  | 276 (277) | 77 | 18 | 50 | 9 | 104 | 18 (19) |
| Nb of mutations |  | 8 (10) | 1 | 0 | 1 | 0 | 4 | 2 (4) |
| Mutations | Silent | 3 (5) | 0 | 0 | 0 | 0 | 3 | 0 (2) |
|  | Nonsilent | 5 | 1 | 0 | 1 | 0 | 1 | 2 |
| Transitions | $a>g$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | g>a | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
|  | $\mathbf{c}>$ t | 0 (1) | 0 | 0 | 0 | 0 | 0 | 0 (1) |
|  | $t>c$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| Transversions | a>c | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
|  | c>a | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $a>t$ | 3 | 1 | 0 | 0 | 0 | 1 | 1 |
|  | $t>a$ | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
|  | $\mathbf{g}>\mathbf{c}$ | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
|  | $\mathbf{c}>\mathbf{g}$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | $\mathbf{g}>\mathbf{t}$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
|  | $t>g$ | 0 (1) | 0 | 0 | 0 | 0 | 0 | 0 (1) |

Amino acid (AA) changes

| IMGT labels |  |  | V-REGION | FR1-IMGT | CDR1-IMGT | FR2-IMGT | CDR2-IMGT | FR3-IMGT | CDR3-IMGT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nb of positions including IMGT gaps (AA) |  |  | 110 (111) | 26 | 12 | 17 | 10 | 39 | 6 (7) |
| Nb of AA |  |  | 94 (95) | 26 | 6 | 17 | 3 | 36 | 6 (7) |
| Nb of identical AA |  |  | 89 (90) | 25 | 6 | 16 | 3 | 35 | 4 (5) |
| Nb of AA changes |  |  | 5 | 1 | 0 | 1 | 0 | 1 | 2 |
| AA changes | Very similar | (+++) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Similar | (++-) | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
|  |  | (+ - + ) | 1 | 0 | 0 | 0 | 0 | 1 | 0 |
|  | Dissimilar | (+--) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  |  | $(-+-)$ | 1 | 0 | 0 | 1 | 0 | 0 | 0 |
|  |  | $(--+)$ | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
|  | Very dissimilar | (---) | 2 | 0 | 0 | 0 | 0 | 0 | 2 |

