File Name: Supplementary Information Description: Supplementary Figures, Supplementary Tables, Supplementary Notes and Supplementary References

File Name: Supplementary Data 1 Description: Statistics of apple genome resequencing for each accession

File Name: Supplementary Data 2 Description: List of Malus species groups in this study with habitat and pedigree information from the USDA GRIN database

File Name: Supplementary Data 3 Description: List of SNPs significantly associated with fruit skin color in apple

File Name: Supplementary Data 4 Description: List of genes in the region highly associated with the fruit skin color

File Name: Supplementary Data 5 Description: Putative genomic regions of selective sweep in M. domestica from M. sieversii in Kazakhstan

File Name: Supplementary Data 6 Description: List of genes within putative regions of selective sweeps from M. sieversii in Kazakhstan. Differentially expressed genes during fruit development are highlighted

File Name: Supplementary Data 7 Description: Putative genomic regions of selective sweep in M. domestica from M. sylvestris

File Name: Supplementary Data 8

Description: List of genes within putative regions of selective sweeps from M. sylvestris. Differentially expressed genes during fruit development are highlighted

File Name: Supplementary Data 9 Description: Genome-wide scanning of GO enriched genes within selective sweep regions from M. sieversii in Kazakhstan and from M. sylvestris

File Name: Supplementary Data 10 Description: List of nonsynonymous SNPs highly divergent between different species groups (top 1% Fst)

File Name: Supplementary Data 11 Description: List of nonsynonymous SNPs highly divergent between rootstock and scion cultivars (top 1% Fst)

File Name: Supplementary Data 12 Description: Genes within selection sweeps from M. sieversii in Kazakhstan and M. sylvestris that underlie fruit weight QTLs fw1 and fw2

File Name: Supplementary Data 13

Description: Genes within selection sweeps from M. sieversii in Kazakhstan and M. sylvestris that underlie a sorbitol QTL

Supplementary Figure 1. Comparative phenotypic analysis of *M. domestica*, *M. sieversii* in Kazakhstan and *M. sylvestris*. Phenotypic data including fruit flavor (**a**), flesh firmness (**b**), soluble solid content (**c**), fruit weight (**d**), fruit length and width (**e**), and fruit skin color (**f**) were collected from the USDA GRIN database (<u>https://npgsweb.ars-grin.gov/gringlobal/cropdetail.aspx?type=descriptor&id=115</u>). Each error bar represents standard error (SE) of more than six replicates. Different letters (A, B and C) represent significant phenotypic differences between different species groups (Tukey's HSD pairwise test, *P*-value <0.05).

Supplementary Figure 2. Plot of ΔK values with *K* ranging from 3 to 19 in the population structure analysis using STRUCTURE.

	ଟ ଟ ଟ ଟ ଟ ୦	<u> </u>	\$* \$* \$* \$*	Arres file 10
K =5				
Species	Syl / Ori	Sie_X	Bac	Ang, loe / Flo
Habitat	Europe / Central Asia	Xinjiang(China), east of Tian Shan Mountain	China	N America / Europe

а

Supplementary Figure 3. Population structure and geographic distribution of species with pure ancestral background. (a) Bayesian model-based clustering for *Malus* species with pure ancestral background at *K*=5. Each vertical bar represents one apple accession. Each color represents one putative ancestral background and the bar length quantifies ancestry membership. Species names and their habitats are listed under the structure plot.
(b) Global map for species with pure ancestral background. Ang, *M. angustifolia*; Bac, *M. baccata*; Flo, *M. florentina*; Hup, *M. hupehensis*; Ioe, *M. ioensis*; Ori, *M. orientalis*; Sie_X, *M. sieversii* in Xinjiang; Syl, *M. sylvestris*.

M. prunifolia 'Qiuzi' (fruit diameter 2-4 cm) M. hupehensis 'Pingyitiancha' (fruit diameter < 2 cm)

Supplementary Figure 4. Phylogenetic relationship and population structure of *M. sieversii* and other wild species accessions. (a) A neighborjoining phylogenetic tree for *M. sieversii* in Kazakhstan and Xinjiang (red dots) and other wild species (green dots) with pear (black dot) as the outgroup, constructed using 4D SNPs. (b) Two ancestral genepool clustering of M. sieversii and other wild species accessions. Each row represents one apple accession. Each color represents one sub-population and the bar length in each row quantifies sub-population membership. (c) Representative apple fruit pictures with approximated fruit sizes from different phylogenetic clades.

Supplementary Figure 5. Population structure of hybrid species with admixed ancestral background. Bayesian model-based clustering for *Malus* species with admixed ancestral background at K=5. (a) Structure analyses support that *M. asiatica, M. prunifolia and M. hybrid* are from crosses between *M. sieversii* in Kazakhstan and *M. baccata*. (b) Structure analyses support that the hybridization between *M. baccata* and *M. prunifolia* generates *M. robusta*, but do not support the known pedigree of *M. platycarpa*. (c) Structure analyses support the known pedigrees of G rootstocks. Each vertical bar represents one apple accession. Each color represents one putative ancestral background and the bar length quantifies ancestry membership.

Supplementary Figure 6. GWAS of apple fruit skin color. (a) Manhattan plot of GWAS for fruit skin color. The dotted horizontal line indicates the threshold for genome-wide statistical significance (FDR = 0.1; P = 3.03×10^{-6}). (b) Q-Q plots of the fruit skin color GWAS results.

	Dom	Sie_K	Sie_X	Syl	Asi	Hup	Bac	Rob
Dom	0	0.11	0.22	0.13	0.14	0.48	0.38	0.16
Sie_K	0.11	0	0.1	0.21	0.11	0.5	0.41	0.16
Sie_X	0.22	0.1	0	0.32	0.16	0.57	0.48	0.21
Syl	0.13	0.21	0.32	0	0.23	0.47	0.38	0.21
Asi	0.14	0.11	0.16	0.23	0	0.45	0.35	0.13
Hup	0.48	0.5	0.57	0.47	0.45	0	0.27	0.37
Вас	0.38	0.41	0.48	0.38	0.35	0.27	0	0.24
Rob	0.16	0.16	0.21	0.21	0.13	0.37	0.24	0

Supplementary Figure 7. Matrix of pairwise *F*_{ST} values among eight species groups. Asi, *M. asiatica*; Bac, *M. baccata*; Dom, *M. domestica*; Hup, *M. hupehensis*; Rob, *M. robusta*; Sie_K, *M. sieversii* in Kazakhstan; Sie_X, *M. sieversii* in Xinjiang; Syl, *M. sylvestris*.

Supplementary Figure 8. Genome-wide distribution of major alleles in scion (**a**) and rootstock (**b**) cultivars of *M. domestica* derived from *M. sieversii* in Kazakhstan (Sie_K in blue) and *M. sylvestris* (Syl in red). For each 100 kb successive window, ratio of alleles derived from the two species was obtained and represented as fold change <2, 2-4 or >4. Gray bars represent undetermined regions. The derived allele percentages from Sie_K and Syl for each chromosome are listed in blue and in red numbers, respectively.

Supplementary Figure 9. Genome-wide distribution of selective sweeps in *M. domestica* from *M. sieversii* in Kazakhstan for each chromosome. (a) Distribution of XP_CLR scores for each chromosome with selected regions marked by red bars. (b) Distribution of nucleotide diversity (π) in *M. domestica* and *M. sieversii* in Kazakhstan for each chromosome. (c) Distribution of F_{ST} values between *M. domestica* and *M. sieversii* in Kazakhstan for each chromosome. Nonsynonymous SNPs with top 1% F_{ST} values are marked in red.

Supplementary Figure 9 (continued)

Supplementary Figure 9 (continued)

Supplementary Figure 9 (continued)

Supplementary Figure 9 (continued)

Supplementary Figure 9 (continued)

Supplementary Figure 9 (continued)

Supplementary Figure 9 (continued)

Supplementary Figure 10 Genome-wide distribution of selective sweeps in *M. domestica* from *M. sylvestris* for each chromosome. (a) Distribution of XP_CLR scores for each chromosome with selected regions marked by red bars. (b) Distribution of nucleotide diversity (π) in *M. domestica* and *M. sylvestris* for each chromosome. (c) Distribution of *F*_{ST} values between *M. domestica* and *M. sylvestris* for each chromosome. Dotted line represents the top 1% *F*_{ST} value threshold. Nonsynonymous SNPs with top 1% *F*_{ST} values are marked in red.

Supplementary Figure 10 (continued)

Supplementary Figure 10 (continued)

Supplementary Figure 10 (continued)

Supplementary Figure 10 (continued)

Supplementary Figure 10 (continued)

Supplementary Figure 10 (continued)

Supplementary Figure 10 (continued)

Supplementary Figure 10 (continued)

Supplementary Figure 10 (continued)

Supplementary Figure 10 (continued)

Supplementary Figure 11 Phylogenetic and target analyses of apple miRNA172 genes. Neighbor-joining phylogenetic tree based on precursor sequences of the 16 apple miRNA172 genes. *MiRNA172g* and *miRNA172h*, sharing the same precursor sequences, are the only two miRNA172 genes containing significantly differentiated SNPs between *M. domestica* and other wild species. The eight target genes of *miRNA172g* or *miRNA172h* are listed together with the numbers of highly divergent SNPs for each gene.

Groups	Group size	Raw bases (Gb)	Cleaned bases (Gb)	Cleaned mean depth per sample	No. SNPs	No. small indels
M. domestica	35	579	336	12.9	3,376,976	138,182
<i>M</i> . s <i>ieversii</i> (Kazakhstan)	15	239	108	9.7	2,190,136	100,593
<i>M.sieversii</i> (Xinjiang)	14	211	159	15.3	1,165,236	76,945
M. sylvestris	10	158	73	9.8	2,694,391	103,486
other wild species	43	590	384	12.0	6,493,769	346,498
Total	117	1,776	1,060	12.2	7,218,060	431,597

Supplementary Table 1. Summary of sequencing and variations identified in each species group

Supplementary Table 2. Statistics of SNPs and genes classified by their physical locations in the apple genome.

Genomic locations	No. SNPs	
Total	7,218,060	
Intergenic & UTRs	5,376,659	
Two kb upstream of ORF*	783,578	
Two kb downstream of ORF	821,096	
Other intergenic regions	3,771,985	
Intron	1,086,191	
Intron/exon border (2 bp)	4,543	
Other intron regions	1,081,648	
CDS	755,210	
Nonsynonymous	308,841	
Synonymous	303,136	
Nonsense	8,670	
Heterozygous base in genome	134,563	

*ORF: open reading frame.

Sample ID	Species	Accession ID	Fruit skin color*
Dom_01	Malus domestica	280400	5
Dom_02	Malus domestica	107196	0
Dom_03	Malus domestica	589596	3
Dom_04	Malus domestica	588806	3
Dom_05	Malus domestica	588853	2
Dom_06	Malus domestica	589841	4
Dom_07	Malus domestica	588785	4
Dom_08	Malus domestica	588844	4
Dom_09	Malus domestica	392303	4
Dom_10	Malus domestica	588880	0
Dom_11	Malus domestica	590185	4
Dom_12	Malus domestica	589053	3
Dom_13	Malus domestica	588943	4
Dom_14	Malus domestica	588872	4
Dom_15	Malus domestica	589478	4
Dom_16	Malus domestica	589520	0
Dom_17	Malus domestica	588850	5
Dom_18	Malus domestica	590186	4
Dom_19	Malus domestica	588859	1
Dom_20	Malus domestica	589687	3
Dom_21	Malus domestica	644174	3
Dom_22	Malus domestica	589673	0
Dom_23	Malus domestica	NA	1
Dom_33	Malus domestica	588873	0
Dom_28	Malus domestica	337319	2
Dom_31	Malus domestica	588816	1
Dom_24	Malus domestica	590184	1
Sie_K_01	Malus sieversii	632626	2

Supplementary Table 3. Phenotypic data of apple fruit skin color used for GWAS

Sie_K_02	Malus sieversii	613951	0
Sie_K_03	Malus sieversii	613987	3
Sie_K_04	Malus sieversii	613988	2
Sie_K_05	Malus sieversii	613971	3
Sie_K_06	Malus sieversii	613976	4
Sie_K_07	Malus sieversii	613978	3
Sie_K_08	Malus sieversii	613979	3
Sie_K_09	Malus sieversii	657028	0
Sie_K_10	Malus sieversii	657067	0
Sie_K_11	Malus sieversii	657002	2
Sie_K_12	Malus sieversii	657017	0
Sie_K_13	Malus sieversii	GMAL4011	2
Sie_K_14	Malus sieversii	657094	0
Sie_K_15	Malus sieversii	657101	1
Syl_01	Malus sylvestris	588908	3
Syl_02	Malus sylvestris	633825	1
Syl_03	Malus sylvestris	633827	0
Syl_04	Malus sylvestris	633824	0
Syl_05	Malus sylvestris	633826	0
Syl_06	Malus sylvestris	369855	1
Syl_07	Malus sylvestris	589382	0
Syl_08	Malus sylvestris	619168	2
Syl_09	Malus sylvestris	101888	2
Syl_10	Malus sylvestris	392302	5
Ang_01	Malus angustifolia	589727	0
Bac_01	Malus baccata	322713	4
Cor_01	Malus coronaria	588927	4
Flo_01	Malus florentina	589385	1
Fus_01	Malus fusca	589933	4
loe_01	Malus ioensis	590009	0
Kir_01	Malus kirghisorum	590043	0
Ori_01	Malus orientalis	644252	1
Pru_02	Malus prunifolia	594102	5
Pum_01	Malus pumila	589225	5
Hyb_01	Malus hybrid	LNYS2	3
Asi_01	Malus asiatica var. rinki	LNYS3	5

Hyb_02	Malus hybrid	LNYS4	3
Rob_01	Malus robusta	LNYS5	4
Spe_01	Malus spectabilis	LNYS6	0
Mic_01	Malus micromalus	LNYS7	4
Pru_01	Malus prunifolia	LNYS9	5
Roc_01	Malus rockii	LNYS10	5
Mel_01	Malus melliana	LNYS11	3
Pla_01	Malus platycarpa	LNYS12	1
Cer_01	Malus ceracifolia	LNYS13	5
Hup_01	Malus hupehensis	LNYS14	5
Xia_01	Malus xiaojinensis	LNYS15	4

*Fruit skin colors were scored as: 0, green; 1, yellow; 2, light red (green base with pink-red area and/or stripes less than half of fruit); 3, moderate red (green-yellow base with blush more than half of fruit); 4, red (without green or yellow base); 5, dark red.

Supplementary Note 1. Apple cultivation in ancient China

Apple is an ancient fruit crop that has been cultivated in China for more than 2000 years. Apples in China, including domesticated cultivars that are collectively called 'Chinese soft apples', are mostly from local open-pollinated hybridizations and native wild species with desirable fruit or floral traits¹⁻³. The native wild species cultivated as dessert apples in China mainly include *M. asiatica* and *M. prunifolia*, and those as ornamental species consist of *M. robusta*, *M. spectabilis* and *M. micromalus*. Based on pollen morphological, physiological and molecular marker analyses⁴⁻⁷, as well as our population structure analyses, Chinese soft apples probably originated from *M. sieversii* in Kazakhstan, the west side of the Tian Shan Mountain, which were spread to central and north China via the Silk Road eastward and developed into many local cultivars through hybridizations with native wild species.

Supplementary Note 2. Apple SNPs

The final set contains 7,218,060 SNPs, which allowed to develop a total of 1,039,264 tag SNPs, representing a useful resource for apple breeding. Among the final set of 7,218,060 SNPs, 3,376,976 (46.8 %) are from the group of *M. domestica*, 2,190,136 (30.3%) from *M. sieversii* in Kazakhstan, 1,165,236 (16.1%) from *M. sieversii* in Xinjiang, 2,694,391 (37.3%) from *M. sylvestris* and 6,493,769 (90.0%) from other wild species (**Supplementary Table 1**). Accessions of *M. sieversii* in Xinjiang have the lowest number of SNPs which may be caused by its isolated geographic location compared to other widely spread species. The high number of SNPs and the emergence of unique SNPs in *M. domestica* may be caused by hybridizations with different local wild species on its way of spreading all over the world, as well as diverse breeding directions in modern apple improvement. The other wild species group, which contains 43 accessions,

harbored almost twice the number of SNPs in the *M. domestica* group that comprises 35 accessions. This demonstrates the highly diverse gene pool in wild apples, a valuable genetic resource for apple improvement.

In the final set of 7,218,060 SNPs, 755,210 (10.5%) were located in gene coding regions, 1,086,191 (15.0%) in intragenic regions, and 1,604,674 (22.2%) within 2 kb upstream or downstream of genes (**Supplementary Table 2**). Among SNPs in coding regions, 308,841 were nonsynonymous and 303,136 synonymous. The ratio of nonsynonymous to synonymous SNPs was 1.02, which is higher than that of Arabidopsis⁸ (0.83) but lower than that of peach⁹ (1.31), soybean¹⁰ (1.37), and rice¹¹ (1.29), indicating apple might have a lower rate of genome variations leading to phenotypic modifications than other domesticated grain and fruit crops.

Supplementary Note 3. Pedigree evaluation for hybrid wild species

Except for seven *Malus* species with homogeneous genetic background, all other 17 wild species in this study appear to have evolved from an admixture of ancestral populations, demonstrating the heterogeneous nature of the genetic makeup of apple. Phylogenetic and bi-ancestral clustering analyses showed that *M. asiatica* and *M. prunifolia*, two native Chinese species bearing small-to-medium-sized fruits, were the closest wild relatives to *M. sieversii*, consistent with previous findings using a limited number of molecular markers and conserved sequences^{4,6,7} (**Supplementary Fig. 4**). Meanwhile, Chinese soft apple cultivars (e.g., Hyb_01 'Pinpo' and Hyb_02 'Xiango') were clustered with wild apple species rather than with *M. domestica*, suggesting that these cultivars might be ancient hybrids between large-fruited *M. sieversii* and small-fruited local wild species. Structure analysis suggests that the two Chinese native species, *M. asiatica* and *M. prunifolia* and one hybrid soft apple cultivar (Hyb_01 'Pinpo') may have originated from crosses between *M. sieversii* in

Kazakhstan and *M. baccata* (**Supplementary Fig. 5a**). The pedigree record of *M. asiatica* in the USDA-GRIN database is consistent with our findings (**Supplementary Data 2**). Our data are also in agreement with that *M. robusta* is likely from hybridizations between *M. baccata* and *M. prunifolia*, but oppose to the pedigree of *M. platycarpa* suggested in the GRIN database as derived from the cross between *M. domestica* and *M. coronaria* (**Supplementary Fig. 5b** and **Supplementary Data 2**). In addition, several rootstocks (G.41 and G.210) clearly inherited wild ancestry from their progenitor, *M. robusta* (**Supplementary Fig. 5c**), thus it was not unexpected that they clustered with wild accessions in the phylogenetic tree (**Fig. 1a**). Furthermore, our phylogenetic tree supported the reclassification of *M. kirghisorum* (Kir_01) to *M. sieversii* var. *kirghisorum*, as it tightly clustered with other *M. sieversii* accessions (**Fig. 1a** and **Supplementary Data 2**).

Supplementary Note 4. A global map of apple evolutionary history

Here we infer a global map of apple evolutionary history based on our population structure and phenotypic analyses of the 117 *Malus* accessions. Ancient wild species of genus *Malus* found in the southwestern and central parts of inland China were spread presumably by birds to what is now called the ranges of Tian Shan Mountains, where they evolved into a new species, *M. sieversii*, with medium-to-large sized fruits¹². In Kazakhstan, the west side of the Tian Shan Mountains, *M. sieversii* were domesticated to be ancient cultivated apples and their fruits, seeds and even scion woods were carried westwards along the Silk Road from central Asia to Europe, and then underwent extensive introgressions from local wild species, such as European crabapple *M. sylvestris*, to become modern *M. domestica*. Later, *M. domestica* apples were introduced to America and Australia by European colonists. During apple domestication, its fruit quality

has been remarkably improved. Soft, mild sweet, medium-large sized *M. sieversii* apples have evolved into slightly firmer, sweeter and larger ancient domesticated apples. After hybridization with firm, sour, bitter-sweet, small-sized *M. sylvestris* apples, *M. domestica* apples have inherited advantageous traits from both parents and became 'a perfect fruit' with firm and crispy texture, large fruit size, and savory flavor and aroma.

In contrast to the firm, crispy modern *M. domestica* apples which were introduced to China in the 1870s², ancient Chinese soft apples are very likely to have originated from soft *M. sieversii* apples in Kazakhstan and spread into central and north China via the Silk Road or earlier trade routes^{2,3}. During this eastward distribution, *M. sieversii* apples were hybridized with distinct native wild species including *M. baccata*, yielding different hybrid species, such as *M. asiatica*, *M. prunifolia* and *M. robusta*. Due to the significant advantage of fruit texture in modern domesticated apples over Chinese soft apples, modern *M. domestica* apples are now widely grown for fruit production in many parts of the world, including China.

Supplementary Note 5. Linkage disequilibrium patterns

Linkage disequilibrium (LD) levels may vary among populations due to several reasons, such as population size, mating system (self-pollinating and out-crossing), selective pressure and recombination rates^{13,14}. We calculated r^2 between each pair of SNPs and the decay of r^2 with increasing physical distance between SNPs. The average distance over which LD decays to half of its maximum value in apple populations are all within 1 kb (161 bp in *M. domestica*, 256 bp in *M. sieversii* in Kazakhstan, 994 bp in *M. sieversii* in Xinjiang,

375 bp in *M. sylvestris* and 224 bp in other wild species) (**Fig. 2b**). In general, LD decays very rapidly in apple, similar to maize¹⁵ but much faster than other crop species such as peach⁹, tomato¹⁶, rice¹¹, soybean¹⁰ and cucumber¹⁷.

Supplementary Note 6. Genome-wide association study of fruit skin color in apple

Apple domestication is a weak selection process characterized by the undetectable reduction in genome-wide genetic diversity and the fast LD decay in cultivated apples; therefore, a set of high-density markers should be critical in conducting trait association studies in apple. Here, using genome-wide apple SNPs as a demonstration, we performed GWAS of fruit skin color in 75 apple accessions. We detected a total of 54 SNPs that were significantly associated with fruit skin color, of which four were nonsynonymous (**Supplementary Data 3**). Forty-eight out of the 54 SNPs were located on chromosome 9 covering a continuous region from 32.13 Mb to 34.75 Mb (**Supplementary Fig. 6**). Within this region, there were 161 genes including three MYB transcription factors (*MDP0000259614*, *MYB1/A/10*; *MDP0000879675*, *MYB5*; and *MDP0000159011*, *MYB6*) and one flavonoid 3' hydroxylase (*MDP0000629122*) (**Supplementary Data 4**). *MYB1/A/10* has been reported to control apple fruit skin anthocyanin levels¹⁸⁻²⁰. Our GWAS for fruit skin color successfully pinpointed a very narrow peak interval harboring *MYB1/A/10*, the key gene regulating the studied trait, even with a small set of phenotypic data, showing the power of high-density SNPs in enhancing the resolution in GWAS, especially for perennial crops like apple with fast LD decays.

Supplementary References

- 1. Li, Y. A primarily modern systematics of genus Malus Mill. in the world. J. Fruit Sci. 13, 82-92 (1996).
- 2. Li, Y. An investigation and studies on the origin and evolution of Malus domestica Borkh. in the world. Acta Hortic. Sinica 26, 213-220 (1999).
- 3. Luo, G. The cultivation history of apple in China. J Beijing For. Univ. 13, 15-25 (2014).
- 4. Zhu, Y., Cao, M., Xu, Z., Wang, K. & Zhang, W. Polygenetic relationship between Xinjiang wild apple (*Malus sieversii* Roem.) and Chinese apple (*Malus x domestica* subsp. *chinesnsis*) based on ITS and *mat*K sequences. *Acta Hortic. Sinica* **41**, 227-239 (2014).
- 5. Li, X. et al. Ornamental crabapple pollen morphology and its taxonomic applications. Acta Hortic. Sinica 35, 1175-1182 (2008).
- 6. Li, J. et al. The genetic relationship of 41 Malus germplasm resources revealed by AFLP analysis. J. Fruit Sci. 30, 725-731 (2013).
- 7. Gao, Y., Liu, F., Yufen, C. & Wang, K. Analysis of genetic relationship for *Malus* germplasm resources by SSR markers. *J. Fruit Sci.* 24, 129-134 (2007).
- 8. Clark, R.M. et al. Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317, 338-342 (2007).
- 9. Cao, K. *et al.* Comparative population genomics reveals the domestication history of the peach, *Prunus persica*, and human influences on perennial fruit crops. *Genome Biol.* **15**, 415 (2014).
- 10. Lam, H.M. *et al.* Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. *Nat. Genet.* **42**, 1053-1059 (2010).
- 11. Xu, X. *et al.* Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. *Nat. Biotechnol.* **30**, 105-111 (2012).
- 12. Harris, S.A., Robinson, J.P. & Juniper, B.E. Genetic clues to the origin of the apple. Trends Genet. 18, 426-430 (2002).
- 13. Gupta, P.K., Rustgi, S. & Kulwal, P.L. Linkage disequilibrium and association studies in higher plants: present status and future prospects. *Plant Mol. Biol.* **57**, 461-485 (2005).
- 14. Flint-Garcia, S.A., Thornsberry, J.M. & IV, B. Structure of linkage disequilibrium in plants. Ann. Rev. Plant Biol. 54, 357-374 (2003).
- 15. Gore, M. A. et al. A first-generation haplotype map of maize. Science 326, 1115–1117 (2009).
- 16. Lin, T. et al. Genomic analyses provide insights into the history of tomato breeding. Nat. Genet. 46, 1220-1226 (2014).
- 17. Qi, J. et al. A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat. Genet. 45, 1510-1515 (2013).
- 18. Ban, Y. *et al.* Isolation and functional analysis of a *MYB* transcription factor gene that is a key regulator for the development of red coloration in apple skin. *Plant Cell Physiol.* **48**, 958-970 (2007).
- 19. Takos, A.M. *et al.* Light-induced expression of a *MYB* gene regulates anthocyanin biosynthesis in red apples. *Plant Physiol.* **142**, 1216-1232 (2006).
- 20. Espley, R.V. et al. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J. 49, 414-427 (2007).