SARS-CoV-2-specific T Cell Memory is Sustained in COVID-19 Convalescent Patients for 10 Months with Successful Development of Stem Cell-like Memory T Cells

Jae Hyung Jung[†], Min-Seok Rha[†], Moa Sa, Hee Kyoung Choi, Ji Hoon Jeon, Hyeri Seok, Dae Won Park, Su-Hyung Park, Hye Won Jeong^{*}, Won Suk Choi^{*}, Eui-Cheol Shin^{*}

Supplementary Information

Supplementary Figure 1. Proportion of S-, M-, and N-specific IFN- γ responses among total IFN- γ responses. PBMC samples from COVID-19 convalescent patients were stimulated with OLPs of S, M, or N (1 µg/mL) for 24 h and spot-forming units of IFN- γ -secreting cells were examined by ELISpot. Pie charts showing the proportion of S-, M-, and N-specific IFN- γ responses among the total IFN- γ responses in T1 (n=49, 31 - 99 DPSO), T2 (n=41, 100 - 199 DPSO), and T3 (n=31, \geq 200 DPSO).

Supplementary Figure 2. Correlation between the frequency of CD137⁺OX40⁺ cells and the frequencies of alternative AIM⁺ cells (OX40⁺CD154⁺ or CD137⁺CD154⁺ cells) among CD4⁺ T cells. PBMC samples from individuals with SARS-CoV-2 infection were stimulated with OLPs of S, M, or N (1 µg/mL) for 24 hours, and the correlation between the frequency of CD137⁺OX40⁺ cells and the frequencies of alternative AIM⁺ cells (OX40⁺CD154⁺ or CD137⁺CD154⁺ cells) among CD4⁺ T cells was analyzed (n=78). Statistical analysis was performed using the two-sided Spearman correlation test.

Supplementary Figure 3. Correlation of the frequency of AIM⁺ **cells between CD4**⁺ **and CD8**⁺ **T cells.** PBMC samples from individuals with SARS-CoV-2 infection were stimulated with OLPs of S, M, or N (1 μg/mL) for 24 h and the correlation between the frequency of AIM⁺ (CD137⁺OX40⁺) cells among CD4⁺ T cells and AIM⁺ (CD137⁺CD69⁺) cells among CD8⁺ T cells was analyzed (n=146). Statistical analysis was performed using the two-sided Spearman correlation test.

Supplementary Figure 4. Kinetics of anti-SARS-CoV-2 antibodies up to 10 months post-infection. The levels of SARS-CoV-2 S receptor binding domain (RBD)-specific IgG antibodies and SARS-CoV-2 neutralizing activity were measured in plasma samples from individuals with SARS-CoV-2 infection (n=91). **a**, Scatter plots showing the relationship between DPSO and the relative level of RBD IgG antibodies (upper) or neutralizing activity measured by SARS-CoV-2 surrogate virus neutralization assays (lower). The black line is a LOESS smooth nonparametric function, and the grey shading represents the 95% confidence interval. **b**, RBD IgG antibody levels and neutralizing activity were compared among T1 (n=23, 31 - 99 DPSO), T2 (n=30, 100 - 199 DPSO), and T3 (n=14, \ge 200 DPSO). Data are presented as median and IQR. **c,d**, Correlation of RBD IgG antibodies and neutralizing activity with IFN- γ spot numbers (n=14) (**c**) and SARS-CoV-2 S-specific AIM⁺CD4⁺ and AIM⁺CD8⁺ T cells (n=14) (**d**). Statistical analyses were performed using the two-sided Kruskal-Wallis test with two-sided Dunns' multiple comparisons test (**b**) or two-sided Spearman correlation test (**c,d**). n.s., not significant.

Supplementary Figure 5. Frequency of T_{SCM} cells among SARS-CoV-2-specific T cells according to days postsymptom onset. a,b, PBMC samples from COVID-19 convalescent patients were stimulated with OLPs of S, M, or N (1 µg/mL) for 24 h and the frequency of T_{SCM} (CCR7⁺CD45RA⁺CD95⁺) cells was analyzed among AIM⁺ (CD137⁺OX40⁺) CD4⁺ (a) and AIM⁺ (CD137⁺CD69⁺) CD8⁺ T cells (b). The frequencies of T_{SCM} cells were compared between T1 (n=26, 31 - 99 DPSO), T2 (n=21, 100 - 199 DPSO), and T3 (n=31, \geq 200 DPSO). Data are presented as median and IQR. Statistical analysis was performed using the two-sided Kruskal-Wallis test with Dunns' multiple comparisons test. n.s, not significant.

Supplementary Figure 6. Proliferation, multipotency, and self-renewal capacity of SARS-CoV-2-spikespecific T_{SCM} T cells. a, The proliferation capacity of SARS-CoV-2-specific T_{SCM} cells. Flow cytometry plots showing the proliferation of SARS-CoV-2-specific CD8⁺ T_{SCM} cells from COVID-19 convalescent patients (n=3) following stimulation with the S OLP pool (1 µg/mL) for 7 days. b, Multipotency of SARS-CoV-2-specific T_{SCM} cells (n=3). Flow cytometry plot (left) and summary graph (right) showing the composition of memory subsets among the progeny of SARS-CoV-2-specific CD8⁺ T_{SCM} cells following stimulation with the S OLP pool for 7 days. Data are presented as mean values \pm SD. c, The self-renewal capacity of SARS-CoV-2specific T_{SCM} cells. Flow cytometry plot (left) and summary graph (right) showing the proliferation of SARS-CoV-2-specific CD4⁺ and CD8⁺ T_{SCM} cells in response to IL-15 treatment (25 ng/mL) for 5 days. Following culture with IL-15, the AIM assay was performed to detect SARS-CoV-2-specific T_{SCM} cells.

Supplementary Figure 7. Comparison of long-term SARS-CoV-2-specific T-cell responses according to peak disease

severity. a-d, Long-term (≥ 200 DPSO) SARS-CoV-2-specific T-cell responses were compared between the asymptomatic/mild group (blue) and the moderate/severe/critical group (red). **a-c,** Summary graphs showing **(a)** the spot-forming units of IFN-γ-secreting cells (asymptomatic/mild group, n=20; moderate/severe/critical group, n=11), **(b)** the frequency of AIM⁺ CD4⁺ or CD8⁺ T cells (asymptomatic/mild group, n=19; moderate/severe/critical group, n=10), and **(c)** the frequency of polyfunctional cells exhibiting positivity for ≥ 2 effector functions among SARS-CoV-2-specific CD4⁺ and CD8⁺ T cells (asymptomatic/mild group, n=12; moderate/severe/critical group, n=8). **d,** Summary graphs showing the frequency of T_{SCM} (CCR7⁺CD45RA⁺CD95⁺) cells among AIM⁺CD4⁺ or AIM⁺CD8⁺ T cells (asymptomatic/mild group, n=19; moderate/severe/critical group, n=10, and to compare the severe/critical group, n=10; moderate/severe/critical group, n=19; moderate/severe/critical group, n=19; moderate/severe/critical group, n=19; moderate/severe/critical group, n=9). Data are presented as median and interquartile range (IQR). Statistical analyses were performed using the two-sided unpaired Mann-Whitney U test. n.s., not significant.

Supplementary Fig. 8. Comparison of long-term SARS-CoV-2-specific IFN- γ responses between the asymptomatic and symptomatic groups. The results of IFN- γ ELISpot assays of PBMCs from long-term COVID-19 convalescent patient samples (\geq 200 DPSO) were compared between the asymptomatic group (blue; n=3) and symptomatic group (red; n=29). Data are presented as median and IQR. Statistical analyses were performed using the two-sided unpaired Mann-Whitney U test. n.s., not significant.

Supplementary Figure 9. Subgroup analysis of SARS-CoV-2-specific T-cell responses according to days postsymptom onset. Within the asymptomatic/mild group or moderate/severe/critical group, the spot-forming units of IFN- γ -secreting cells (a) or the frequencies of SARS-CoV-2-specific AIM⁺CD4⁺ T cells and AIM⁺CD8⁺ T cells (b) were compared among T1 (31 - 99 DPSO), T2 (100 - 199 DPSO), and T3 (\geq 200 DPSO). a, The magnitude of IFN- γ responses in the asymptomatic/mild group (n=30 (T1), n=26 (T2), and n=20 (T3)), and the moderate/severe/critical group (n=19 (T1), n=15 (T2), and n=11 (T3)). b, The frequency of SARS-CoV-2-specific AIM⁺ CD4⁺ (upper) and CD8⁺ (lower) T cells in the asymptomatic/mild group (n=28 (T1), n=25 (T2), and n=19 (T3)), and the moderate/severe/critical group (n=17 (T1), n=16 (T2), and n=9 (T3)). Data are presented as median and IQR. Statistical analyses were performed using the two-sided Kruskal-Wallis test with two-sided Dunns' multiple comparisons test. n.s., not significant.

Supplementary Figure 10. Gating strategies for cell sorting and the detection of AIM⁺ cells and cytokineproducing cells. a, Gating strategy to examine the frequencies of AIM⁺ (CD137⁺OX40⁺) CD4⁺ or AIM⁺ (CD137⁺CD69⁺) CD8⁺ T cells and to sort T_{SCM} cells (AIM⁺CCR7⁺CD45RA⁺CD95⁺) from PBMC samples from individuals with SARS-CoV-2 infection presented on Figure 2,3 and 5e. **b**, Gating strategy to examine the frequencies of functional cells (IFN- γ^+ , IL-2⁺, or CD107a⁺) from PBMC samples from individuals with SARS-CoV-2 infection presented on figure 5.

Supplementary Table 1

Parameter	COVID-19 (n=101)				
Age (years)	19-96 (median 39, IQR 30)				
Gender					
Female (%)	57 (56.4%)				
Male (%)	44 (43.6%)				
Ethnicity					
Korean	99 (98.0%)				
Non-Korean	2 (2.0%)				
Peak disease severity ^a					
Asymptomatic, n	7 (6.9%)				
Mild, n	46 (45.5%)				
Moderate, n	25 (24.8%)				
Severe, n	14 (13.9%)				
Critical, n	9 (8.9%)				
DPSO at sample collection	1-317 (median 94, IQR 117)				
Blood collection					
Multiple time points, n	56				
2	29				
3	18				
4	9				
Single time point, n	45				
Assays	Total 193 samples				
IFN-γ ELISpot assays	153 samples (n=87)				
ICS	90 samples (n=52)				
AIM assays	146 samples (n=80)				
MHC-I multimer staining	15 samples (n=11)				
Proliferation assays	18 samples (n=18)				
ELISA	91 samples (n=66)				
T _{SCM} polyfunctionality	θ complete $(n, 0)$				
assays	s samples (n=s)				
T _{SCM} proliferation assays	3 samples (n=3)				

Supplementary Table 1. Characteristics of enrolled patients

IQR, interquartile range; DPSO, days post-symptom onset; ELISpot, enzyme-linked immunospot; ICS, intracellular cytokine staining; AIM, activation-induced marker; ELISA, enzyme-linked immunosorbent assay; T_{SCM} , stem cell-like memory T cell.

^aDisease severity was defined by the NIH severity of illness categories.

Supplementary Table 2

0 annual a	ELISpot			AIM			ICS		
distribution	T1ª	T2 ^ь	T3⁰	T1	T2	T3	T1	T2	T3
	(n=49)	(n=41)	(n=31)	(n=45)	(n=41)	(n=28)	(n=27)	(n=32)	(n=22)
Asymptomatic	0/49	3/41	2/31	0/45	2/41	1/28	0/27	3/32	2/22
	(0%)	(7.3%)	(6.5%)	(0%)	(4.9%)	(3.6%)	(0%)	(9.4%)	(9.1%)
Mild	30/49	23/41	18/31	28/45	23/41	18/28	17/27	21/32	12/22
	(61.2%)	(56.1%)	(58.1%)	(62.2%)	(56.1%)	(64.3%)	(63.0%)	(65.6%)	(54.5%)
Moderate	11/49	8/41	6/31	9/45	9/41	5/28	7/27	5/32	5/22
	(22.4%)	(19.5%)	(19.4%)	(20.0%)	(22.0%)	(17.9%)	(25.9%)	(15.6%)	(22.7%)
Severe	5/49	4/41	4/31	5/45	4/41	3/28	3/27	2/32	2/22
	(10.2%)	(9.5%)	(12.9%)	(11.1%)	(9.5%)	(10.7%)	(11.1%)	(6.3%)	(9.1%)
Critical	3/49	3/41	1/31	3/45	3/41	1/28	0/27	1/32	1/22
	(6.1%)	(7.3%)	(3.2%)	(6.7%)	(7.3%)	(3.6%)	(0%)	(3.1%)	(4.5%)

Supplementary Table 2. Sample composition in each assay according to disease severity and days post-symptom onset.

ELISpot, enzyme-linked immunospot; AIM, Activation-induced marker; ICS, Intracellular cytokine staining. ^aT1, 31 - 99 DPSO; ^bT2, 100 - 199 DPSO; ^cT3, ≥ 200 DPSO.

Supplementary Table 3

Supplementary Table 3. Flow cytometry reagents

REAGENT	SOURCE	IDENTIFIER	Dilution
FITC Anti-human CD107a (clone H4A3)	BD Biosciences	#555800	1:100
APC Anti-human CD137 (clone 4B4-1)	BD Biosciences	#550890	1:100
BV421 Anti-human CD137 (clone 4B4-1)	BD Biosciences	#564091	1:100
PE-CF594 Anti-human CD14 (clone ΜφΡ9)	BD Biosciences	#562335	1:100
APC Anti-human CD154 (clone TRAP1)	BD Biosciences	#555702	1:100
PE-CF594 Anti-human CD19 (clone HIB19)	BD Biosciences	#562294	1:100
BV510 Anti-human CD27 (clone L128)	BD Biosciences	#563092	1:100
BV510 Anti-human CD3 (clone UCHT1)	BD Biosciences	#563109	1:100
BV786 Anti-human CD3 (clone UCHT1)	BD Biosciences	#565491	1:100
BV605 Anti-human CD4 (clone RPA-T4)	BD Biosciences	#562658	1:100
FITC Anti-human CD4 (clone RPA-T4)	BD Biosciences	#555346	1:100
PerCP™Cy5.5 Anti-human CD4 (clone RPA-T4)	BD Biosciences	#560650	1:100
AF700 Anti-human TNF (clone Mab11)	BD Biosciences	#557996	1:100
BB515 Anti-human CD45RO (clone UCHL1)	BD Biosciences	#564529	1:100
PE-Cy7 Anti-human CD69 (clone FN50)	BD Biosciences	#557745	1:100
APC-Cy7 Anti-human CD8 (clone SK1)	BD Biosciences	#560179	1:100
BV605 Anti-human CD8 (clone SK1)	BD Biosciences	#564116	1:100
BV711 Anti-human CD8 (clone RPA-T8)	BD Biosciences	#563677	1:100
PE Anti-human CD95 (clone DX2)	BD Biosciences	#555674	1:100
PE-Cy7 Anti-human IFN-γ (clone 4S.B3)	BD Biosciences	#557844	1:100
APC Anti-human IL-2 (clone $MQ1-17H12$)	BD Biosciences	#554567	1:100
BV786 Anti-human Ki-67 (clone B56)	BD Biosciences	#563756	1:100
PerCP™Cy5.5 Anti-human CCR7 (clone G043H7)	BioLegend	#353220	1:100
PE Anti-human CD137 (clone 4B4-1)	BioLegend	#309804	1:100
APC Anti-human CD3 (clone HIT3a)	BioLegend	#300312	1:100
APC-Cy7 Anti-human CD45RA (clone HI100)	BioLegend	#304128	1:100
FITC Anti-human CD8 (clone RPA-T8)	BioLegend	#301050	1:100
BV421 Anti-human OX40 (clone Ber-ACT35)	BioLegend	#350014	1:100
BV421 Anti-human PD-1 (clone EH12.2H7)	BioLegend	#329920	1:100
PE-Cy7 Anti-human TIGIT (clone MBSA43)	Invitrogen	#25-9500-42	1:100
APC YLQPRTFLL (SARS-CoV-2 S ₂₆₉) HLA-A*0201 Pentamer	Proimmune	#4339	1:20
APC GILGFVFTL (IAV MP ₅₈) HLA-A*0201 Dextramer	Immudex	#WB2161	1:20
APC NLVPMVATV (CMV pp65 ₄₉₅) HLA-A*0201 Dextramer	Immudex	#WB2132	1:20