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SUPPLEMENTARY NOTES 

1. Sample processing and data generation 

1.1 Tissue, RNA, and DNA preparation 

RNA and DNA were isolated from 50-100 mg of homogenized retina tissue in TRIzol® 

(Invitrogen, Carlsbad, CA) according to a modified version of the manufacturer’s protocol that 

included additional washing steps1.  The order of extraction was randomized for all samples.  

RNA quality and quantity were evaluated using the Bioanalyzer 2100 RNA 6000 Nano assay 

(Agilent Technologies, Santa Clara, CA).  Seven samples with RIN ≤ 5.0 were excluded from 

the study.  DNA was quantified using the QuantiFluor® dsDNA System (Promega, Madison, 

WI). 

1.2 RNA library preparation and sequencing 

Processing order was randomized before libraries were constructed over two days largely in 

batches of 24 or 48 with the TruSeq® Stranded mRNA Library Preparation Kit (Illumina, San 

Diego, CA).  The DNA concentration of the sequencing library was determined using the 

Bioanalyzer DNA 1000 assay (Agilent Technologies, Santa Clara, CA), and a pool of 12 

barcoded libraries were layered on a random selection of one of the eight lanes of the Illumina 

flow cell bridge.  Paired-end reads of 125 or 126 base pairs were obtained using the HiSeq 

2500 platform (Illumina, San Diego, CA).  Sequence data were processed for primary analysis 

to generate QC values (see Alignment, QC, and quantification below).  Samples with a 

minimum of 10 million mapped reads were retained for downstream analysis. 

1.2.1 RNA-Seq Quality Control (QC) 

Of the 523 samples that were sequenced, twenty-six samples were excluded because of 

inconsistent or poor subject descriptors as follows: ocular history (1 sample), ambiguous (1) or 

missing MGS level (5), age at death < 55 years (7), and RIN < 5.0 (12).  Six samples were 

removed after sequencing since < 10 million reads were mapped and/or less than 80% of reads 

aligned to the reference genome, and 10 samples were eliminated because of skewed gene 



body coverage over housekeeping genes.  Six samples were taken out due to divergence from 

European (Caucasian) ancestry.  Discordant CFH and ARMS2 SNP calls between in-house and 

Michigan genotyping results were also removed from further analysis (CFH: 1 sample; ARMS2: 

6 samples).  Discordance between nominal gender, genetically inferred gender, and gender 

inferred from RNA-Seq Principal Component Analysis identified 7 mismatches, and these 

samples were not used for further analysis.  Thus, a total of 70 unique samples were removed, 

and the entire QC process yielded 453 high-quality samples for gene expression analysis (105 

MGS1, 175 MGS2, 112 MGS3, and 61 MGS4).  

1.2.2 Alignment, QC, and quantification 

Raw RNA-Seq reads were trimmed for Illumina adapters and low quality (SLIDING WINDOW 

4:5; LEADING 5; TRAILING 5; MINLEN 25) in Trimmomatic (version 0.36)2.  QC check was 

performed using FastQC (version 0.11.5) (see URLs).  Trimmed reads were aligned to the 

Ensembl release 85 (GRCh38.p7)3 human genome using STAR (version 2.5.2a)4 with per-

sample 2-pass mapping and ENCODE standard options.  Additional QC metrics were calculated 

from Trimmomatic, FastQC and STAR using in-house Python and R scripts, including FASTQ 

and BAM file sizes, total number of reads, number of mapped and unmapped reads, and 

percentage of mapped reads.  RNA-Seq data were also inspected for uniform full-length gene 

body coverage across housekeeping genes using RSeQC (version 2.6.4)5, 6.  RSEM (version 

1.13.1)7 was used to obtain estimated gene- and transcript expression levels.  Normalization 

was performed using Trimmed Mean of M-values (TMM) in Counts per Million (CPM) using 

edgeR (version 3.18.1)8-10, and then converted into log2 CPM with an offset of 1.  For eQTL 

analysis, normal quantile transformation was applied instead to log2(CPM) values.  Non-

autosomal genes and genes aligning on chromosomal patches/scaffolds were removed from 

reference transcriptome and eQTL analyses.  Expression of cell-type specific markers in the 

retina did not show any significant changes across MGS stages, indicating no major loss of cell 

types during AMD progression (data not shown). 



1.2.3 Reference annotation-based assembly 

After individual transcriptomes were assembled using the Reference Annotation-based 

Transcript Assembly method within Cufflinks suite (version 2.21)11, all assemblies were merged 

in Cuffmerge and a single, unique set of assembled transcripts was generated using 

Cuffcompare.  Over 91% of transcripts in the reference annotation were captured (196,558 out 

of 215,929 transcripts), giving a comprehensive general view of the retina transcriptome.  This 

transcript assembly was then processed using the following filters to identify putative lincRNA 

and protein-coding transcripts: (1) exon count, (2) transcript length, (3) coding potential, (4) 

functional protein domains, (5) distance to nearest protein-coding gene, and a transcript-level 

expression threshold at least 1 CPM  50% of MGS1 controls.   

In order to identify lincRNA, multi-exonic transcripts of at least 200 base pairs were 

extracted from the transcript assembly.  TransDecoder (version 2.0.1) 12 was applied to select 

for transcripts with a maximum open-reading frame of 75 amino acids lacking coding capacity.  

CPAT (version 1.2.2)13 was used as a second independent method to assess coding potential, 

and only those lincRNA located at least 2 Kb away from the nearest protein-coding gene were 

retained.  In order to determine protein-coding transcripts, all multi-exonic transcripts were 

extracted from the transcript assembly.  TransDecoder was applied to select for transcripts with 

a minimum open reading frame of 50 amino acid residues of coding capacity, Pfam-based 

HMMER (version 3.1.b) (see URLs) was used to retain transcripts with best 1 domain e-value of 

≤ 0.05 and at least one known functional domain, and CPAT was implemented to further assess 

coding potential.  The logistic regression model and hexamer table required for CPAT were built 

using 10,000 coding sequences from the Consensus Coding Sequence Project14 and 10,000 

annotated noncoding sequences from GenCODE (release 25)15.  The model was evaluated with 

10-fold cross validation.  A two-graph receiver operating characteristic curve was generated to 

select the optimum coding probability cutoff value (coding  0.3755; noncoding < 0.3755).  



1.3 Genotyping 

DNA from 516 samples, along with replicates as QC for 30 random samples, were genotyped 

using the UM_HUNT_Biobank v1.0 chip, which is based on the Illumina Infinium CoreExome-24 

bead array platform (Illumina, San Diego, CA) with 547,655 markers and an additional 55,939 

custom content markers.  Genotype analysis was performed with Illumina GenomeStudio 

(module 1.9.4, algorithm GenTrain 2.0).  We also performed TaqMan SNP genotyping for two 

variants, in CFH (Y402H; rs1061170) and ARMS2 (A69S; rs10490924), using the ABI 7900HT 

sequence detection system (Applied Biosystems, Foster City, CA).  The Y402H variant in CFH 

was assayed using a custom-made probe and the A69S variant in ARMS2 was analyzed using 

a commercially available TaqMan probe (C_29934973_20).  Briefly, 15-30 ng of DNA was 

mixed with TaqMan genotyping master mix (Applied Biosystems, Foster City, CA) and TaqMan 

SNP genotyping assay mix (40X; Applied Biosystems, Foster City, CA) in a total volume of 15 

l.  Following PCR, allele discrimination was carried out with the ABI Prism 7900HT genetic 

detection system (Applied Biosystems, Foster City, CA). 

1.3.1 eQTL QC and imputation 

Of the genotyped samples, 20 samples were excluded from analysis: missingness > 5% in 1 

sample, relatedness (2nd degree or higher) in 14 samples, and contradictions in inferred and 

reported sex in 5 samples.  Initial QC at the SNP-level involved (1) removal of SNPs with HWE 

p-value < 1  10-6, (2) call rate < 95%, and (3) duplicate and non-autosomal variants.  We 

retained 570,441 variants.  Genotypes were imputed with IMPUTE2 (version 2.3.1)16 based on 

the 1000 Genomes Project Phase 3 reference panel (October 2014) 17.  For our eQTL analysis, 

QC after imputation excluded: (1) poorly imputed variants (info < 0.3), (2) indels of length > 51 

bp, (3) imputed variants with HWE < 1  10-6, (4) imputed variants with MAF < 1%, and (5) 

monomorphic variants.  In total, 8,924,684 autosomal variants across 406 individuals were 

retained, and coordinates were then converted from Ensembl GRCh 37.p13 to Ensembl GRCh 



38.p7 in order to match the retina RNA-Seq data.  Population stratification was examined using 

Eigenstrat (version 7.2.1) to identify 11 significant principal components18, 19; 10 of these were 

used in the final eQTL model. 

 

2. Batch correction 

Exclusion criteria for negative control genes in SSVA included: (1) Genes within 100 Kb of 

linkage disequilibrium of known 34 AMD susceptibility loci identified in the most recent GWAS 

study for AMD20, (2) RetNet (retinal Information Network) genes (see URLs), (3) AMD candidate 

genes from PubMed literature search over the last five years (see Weighted Gene-correlation 

Network Analysis in Methods), (4) aging- and gender-associated genes from GTEx analysis21, 

(5) X and Y chromosomal genes, and (6) genes that did not meet the expression-level threshold 

1 CPM in  10% of all samples. 

 

3. eQTL, TWAS, and eCAVIAR 

3.1 Enrichment 

We examined whether there is a broader relationship between cis-eQTLs and AMD genetic 

susceptibility beyond what has been observed for known GWAS loci.  A Q-Q plot for each of the 

GWAS datasets was generated by: (1) subsetting to International HapMap Project phase 3 

(NCBI build 36, dbSNPb129) variants in the European population with MAF  5%, (2) removal of 

variants in the major histocompatibility complex region, and (3) removal of variants within +/- 1 

Mb of the known GWAS signals.  We then stratified the variants into multiple (overlapping) 

categories based on eQTL characteristics: (1) retina-specific eQTLs: eVariants that regulate 

gene expression only in retina, (2) GTEx-1 eQTLs: eQTLs that regulate gene expression in at 

least 1 GTEx tissue (3) GTEx-20 eQTLs: eQTLs that regulate gene expression in at least 20 



GTEx tissues, and (4) GTEx-40 eQTLs: eQTLs that regulate gene expression in at least 40 

GTEx tissues. 

3.2 Colocalization 

Fine mapping using eCAVIAR (version 2.0) was performed in the following manner: (1) for each 

lead variant in GWAS, a 1Mb window around it was defined as its locus, (2) for all variants 

within the locus, we identified/defined target genes as genes that are associated at FDR ≤ 5% 

with any of these variants in the eQTL study, and (3) we calculated the colocalization posterior 

probability (CLPP) for each variant and target gene within the loci.  The most relevant target 

gene was then defined as the gene with the highest CLPP above the threshold of 1% within the 

loci.  A maximum of three possible causal variants for each locus was assumed. 

3.3 TWAS 

The TWAS procedure required that we model gene expression with genotype.  The gene 

expressions were modeled using either elastic net 22, mixed models, or least absolute shrinkage 

and selection operator (LASSO).  The LASSO23 lambda parameter was calculated using the 

heritability; genes for which the heritability could not be calculated used the average heritability 

across genes instead.  Of the 18,053 genes expressed in the retinal samples, 17,345 were 

present in the TWAS analysis.  Genes not analyzed in TWAS were located on either sex 

chromosomes, the mitochondrial chromosome, on scaffolds, or did not have SNPs within 1 Mb 

of the merged GWAS-eQTL SNP set.  The mean cross-validated model fit was 0.07, and the 

mean heritability of the 14,353 genes for which it could be calculated was 0.127.  As expected, 

the higher the heritability, the better the cross-validated model fit.  LASSO was the best fit for 

approximately half of the genes, and elastic net accounted for another quarter; genes for which 

the mixed model provided the best fit had models that captured less variation in expression than 

other genes.  

The TWAS statistics does not take into account LD between genes, so we performed 

summary-level equivalent conditional tests for each chromosome for genes that were both 



significant at an FDR of 5% and had a genetic expression model R2 > than 0.01.  Genes were 

added in a stepwise manner into the model, from lowest marginal p-value to highest, until no 

gene remained significant.  The model prior to this saturation was used as the final conditional 

model; no provision was made to prevent over-fitting24.  Of the 61 genes tested, 47 remained 

nominally significant at α = 0.05; of these, 39 remained significantly associated after Bonferroni 

correction for multiple testing (using all 61 genes considered for the test, not just ones included 

in the models).  A permutation test (described in Methods) was also performed; seven genes 

were significant after Bonferroni correction and had a gene model R2 
 0.01, and three of these 

were outside of the GWAS loci: PARP12, MTMR10, and SH3BGR.   

We explored the tissue specificity of these results, at least in part, using GTEx data v6.  

We downloaded the pre-computed TWAS weights derived from the data of 39 GTEx tissues 

(excluding cell lines and biological replicate tissues, such as frontal cortex and cerebellar 

hemisphere) from the TWAS website (http://gusevlab.org/projects/fusion/) and performed the 

procedure for the GTEx weights with the same set of AMD GWAS summary statistics that was 

used with retina.  The complete results of the TWAS analysis – gene model attributes, marginal 

association statistics, conditional and permutation test results, and GTEx marginal associations 

for the retinal candidates with FDR < 0.05 – are provided in Supplementary Data S5.  Please 

note that relatively few genes had weights available in most GTEx tissues. 

LocusZoom (version 0.4.8)29 was used to visualize the genetic architecture of the AMD 

GWAS around the novel gene candidates found by TWAS, as well as the known regions for 

which we identified significant overlapping eQTLs. 

3.4 Evaluation of AMD GWAS lead variants for eQTL evidence in non-retina tissues 

Of the 52 lead variants from AMD-GWAS20, 41 were analyzed in our study.  Those not found 

were either not in the reference dataset used for imputation (6 variants) or did not pass our MAF 

threshold (5 variants, MAF threshold; 1%).  Matrix eQTL (version 2.1.1)25 was then used to 



obtain the marginal associations using the same cis criteria, which were then corrected for 

multiple testing using the Bonferroni approach at the type I error rate of 5%. 

 We compared our findings to that of Strunz and colleagues26 which includes eQTLs from 

liver samples of 588 individuals and GTEx (v7).  For this comparison, we used 31 SNPs with 

MAF ≥ 5% that were common to both studies.  For each variant, eQTL analysis was performed 

for all genes that are present within a 1Mb window and expressed in the two tissues 

(Supplementary Data 3).  We also tested 37 AMD-associated variants (with MAF ≥ 1%) that 

were analyzed in the retina and detected in at least one GTEx (v7) tissue.  For each SNP-gene 

combination, we list all the GTEx tissues that had p-values less than or equal to that of retina 

(Supplementary Data 3), or if no GTEx tissue had p-value lower than the retina, we listed all 

tissues with their respective p-values. 

 

4. Gene expression analysis 

4.1 GSEA  

We focused on gene sets that passed a significance threshold of FDR q-value  0.25 and on 

key genes that appeared in at least 25% of gene sets in common functional categories using 

Leading Edge Analysis (Supplementary Data S6).  Comparison of early AMD to controls 

identified 38 significantly enriched gene sets, all upregulated and generally relating to cell killing 

(3), metabolism (12), and the immune system (15).  The largest of these categories involved 

immune system processes (13) with an average normalized enrichment score (avg. NES) of 2.4 

and 80 key genes.  Comparison of intermediate AMD to controls identified 6 upregulated and 60 

downregulated significantly enriched gene sets comprising metabolism (2), cell killing (2), and 

cellular component organization (3).  Comparison of advanced AMD to controls identified 44 

upregulated and 15 downregulated significantly enriched gene sets including those relating to 

metabolism (21), cell component organization (9), immune system (6), and stress response (4).  

Additionally, we identified downregulated gene sets that were predominant and largely exclusive 



to intermediate AMD and associated with synapses in cell communication (14, avg. NES = -2.2), 

nervous system development (9, avg. NES = -2.4), biological regulation (4, avg. NES = -2.3), 

and establishment/maintenance of cell polarity (3, avg. NES = -2.4) (Supplementary Table S6). 

4.2 Comparison of transcriptomes across retina and GTEx tissues 

The bioinformatics pipeline used to analyze RNA-Seq data in this study mainly differed from that 

of GTEx v7 in gene quantification methods and gene annotation version.  To understand the 

consequences of using different pipelines and to ensure appropriate tissue comparisons 

between studies, multidimensional scaling plots and hierarchical clustering dendrograms were 

generated based on normalized gene expression levels from the different pipelines.  Statistical 

methods used to generate the multi-dimensional scaling (MDS) plot itself were obtained from 

GTEx27, 28.  Three comparisons were made based on the following data sets: (1) Raw GTEx v7 

data processed through our pipeline, (2) Raw GTEx v7 and retina data processed through our 

pipeline, and (3) GTEx v7 gene-level TPM count data provided on the GTEx online portal.   

 Raw GTEx v7 data were processed through our pipeline as previously mentioned in 

1.2.2 Alignment, QC, and quantification.  In addition, we used similar methods that GTEx had 

applied to detect samples outliers27, 28.  PCA-based outlier detection was performed in the first 

two principal components by using Mahalanobis distance to center the data.  Outliers were 

identified using a threshold of three standard deviations. 



 

 

Supplementary Figure 1 

Characteristics of retina donor samples (n = 453) used in this study. 

(a) Violin plots showing the age distribution, in years, of donors across the four MGS stages. 
The boxplot within each violin plot depicts the median, and the lower and upper hinges 
correspond to the first and third quartiles, respectively.  Outlying data are represented by 
individual points that extend beyond 1.5 × interquartile range below the first quartile or 
above the third quartile.  The mean age of donors was 80 years (range 55-107), and the 
mean donor age increased with AMD severity: 74 years (range 55-94) in MGS1, 78 years 
(59-101) in MGS2, 84 years (60-98) in MGS3, and 88 years (range 72-107) in MGS4. 



(b) Distribution of gender across the four MGS stages.  Gender was distributed almost evenly in 
MGS1 to MGS3, with almost twice as many females as males in MGS4. 

(c) The cause of death across the four MGS stages.  Donors within each MGS stage were 
grouped into 8 categories based on the reported cause of death to determine that causes of 
death were not conflated with donor age or MGS stage. 

(d) Distribution of post-mortem interval (PMI), in hours.  PMI was defined as the mean time 
lapse from death to enucleation and tissue cryopreservation.  Mean PMI was 18.66 hours. 

(e) Quality of RNA, as defined by the RNA Integrity Number (RIN), used for RNA-Seq.  Mean 
RIN was 7.42 ± 0.6 (5.1-9). 

(f) Scatterplot of RNA integrity (RIN) versus post-mortem interval (PMI). 
(g) PCA plots of donors within each MGS level (105 MGS1, 175 MGS2, 112 MGS3, and 61 

MGS4 donors) based on normalized gene expression levels. 
  



 

 



Supplementary Figure 2 

RNA-Seq QC metrics (n = 453). 

(a) Number of RNA-Seq reads that mapped to the human reference genome Ensembl 38.85.  
The red horizontal line denotes 10 million reads. 

(b) Normalized mean per-base 5’ to 3’ gene body coverage of housekeeping genes.  Left: 
before outlier removal.  Right: after outlier removal. 

(c) Pearson’s correlation between 22 significant surrogate variables identified in SSVA and 
possible documented sources of variation.  A p-value of 0.05 was used as the significance 
threshold. Correlation coefficients are labeled in black and color-coded such that positive 
correlations are displayed in blue and negative correlations in red.  Color intensity is 
proportional to the correlation coefficients. RIN: RNA Integrity Number; PMI: post-mortem 
interval. 

(d) Principal variance component analysis (PVCA) of the retina gene expression data set.  
Residual represents the remaining variance in the data set not attributed to the specified 
batch and biological variables.  Left: before batch correction.  Right: after batch correction.  
RIN: RNA Integrity Number; PMI: post-mortem interval. 

 
  



 

 

Supplementary Figure 3 

Reference transcriptome of the human retina (n = 105 MGS1 control donor retinas). 

 (a) Gene Ontology (GO) Biological Process pathway enrichment analysis of 186 high 

abundance genes ( 100 FPKM) in the retina.  The bars represent the number of genes 
identified in each pathway, highlighting in green the number of inherited retinal disease-



causing genes in the RetNet database of ocular diseases (percentage indicated to the right 
of bar).  Redundancy of enriched GO terms was removed using a similarity cutoff of 0.40. 
Enrichment was determined by hypergeometric tests; a Benjamini-Hochberg adjusted p-
value ≤ 0.05 was used as the significance threshold. 

(b) Scatter plot of mitochondrial gene expression based on log2 (FPKM+1) values among 53 
males and 52 females. 

(c) Novel transcript discovery using reference annotation-based transcript assembly.  Top: 
Number of putative novel protein-coding and lincRNA isoforms and transcripts.  Bottom: 
Coding Potential Assessment Tool (CPAT) coding probability score of putative novel 
protein-coding and lincRNA isoforms and transcripts.  The dotted red vertical line denotes 
the calculated coding probability cutoff of 0.3755.  We discovered a total of 410 and 2,861 
lincRNA and protein-coding isoforms, respectively, and a total of 150 and 448 lincRNA and 
protein-coding transcripts, respectively.  Boxplots depict the median (white line), and the 
lower and upper hinges correspond to the first and third quartiles, respectively.  Individual 
points represent outlying data that extend beyond 1.5 × interquartile range below the first 
quartile or above the third quartile. 

(d) Multidimensional scaling plot of samples across tissues based on normalized gene 
expression levels.  We plotted 105 MGS1 control retinas and 6,421 GTEx samples across 
all body sites. 



 
 
Supplementary Figure 4 

Comparison of RNA-Seq analysis pipelines using GTEx data without retina (n = 6,421 samples 
across all body sites). 
 
Multidimensional scaling plots and hierarchical clustering dendrograms of samples across 
tissues based on normalized gene expression levels.  Left: based on our bioinformatics pipeline. 
Right: based on GTEx v7 gene-level TPM count data.  These comparisons suggest that the 
relationship between tissues was not affected by the analysis pipeline. 
 
Our RNA-seq analysis pipeline was based on the most recent literature recommendations for 
RNA-Seq analysis (as described in Methods) and mainly differed from that of GTEx in gene 
quantification methods and in gene annotation version.  We therefore downloaded the raw 
GTEx data and processed these through our bioinformatics pipeline to generate the MDS plot.  
Statistical methods used to generate the MDS plot itself were obtained from GTEx.  In addition, 
we explored whether similar findings could be obtained using a different analysis pipeline.  We 
also plotted MDS plots from expression data provided on the GTEx online portal.  MDS plots 
and hierarchical clustering dendrograms generated from different pipelines were comparable.   
  



 
 

 

Supplementary Figure 5 

eQTL analysis of human retina (n = 406).  

(a) The relationship between the strength of each cis-eQTL’s association and the distance of its 
eVariant from its eGene’s transcription start site (TSS). 

(b) The distribution of cis-independent signals for each autosomal gene.  Thus approximately 
60% of genes in the retina were found to be under genetic control with the majority of the 
genes having one independent signal (41%). 

(c) Distribution of the amount of variability left unexplained in gene expression levels after 
correction for other covariates used in the model stratified by the number of independent 
signals found per gene.  

(d) Distribution of gene length stratified by the number of independent signals found per gene.  



(e) Distribution of the amount of variability left unexplained in gene expression levels after 
correction for other covariates used in the model ordered by gene length. 

(f) Proportion of cis-eQTLs discovered in GTEx that were replicated in the retina (y-axis), 
ordered by sample size in discovery tissue (x-axis).  The color and shape of the points 
represent the sample size of the replication tissue. 

(g) Q-Q plot indicating the relationship between the observed -log10 p-values (observed p-
values, based on two-sided t-tests, obtained from the most recent GWAS study for AMD20) 
for each stratum relative to its expected null distribution.  Each stratum, except for the 
GWAS one, classifies the eVariants by how many tissues they regulate at least one gene in.  
This analysis is shown for AMD, schizophrenia, rheumatoid arthritis, and Type 2 diabetes.  
Boxplots (c-e) show the median; the lower and upper hinges correspond to the first and third 
quartiles, respectively.  Outlying data are represented by individual points that extend 
beyond 1.5 × interquartile range below the first quartile or above the third quartile. 

 
  



 

Supplementary Figure 6 

Comparison of retina-specific eQTLs across GTEx. 

(a) Boxplots showing minimum p-values across GTEx tissues for eQTLs detected only in the 
retina, after correcting for the number of tissues the eQTLs were tested in.  As a 
comparison, distribution of p-values in the retina analysis for the same eQTLs are also 
shown.  The distribution of p-values between retina and other tissues is expected given that 
these SNPs, by definition, are significant eQTLs in retina, but not in other tissues.  Boxplots 
show the median; the lower and upper hinges correspond to the first and third quartiles, 
respectively.  Outlying data are represented by individual points that extend beyond 1.5 × 
interquartile range below the first quartile or above the third quartile.  All plots are based on 
p-values obtained from two-sided t-tests using 406 individuals. 

(b) Median, 75th, and 90th percentile of -log10(p-values) of retina-specific cis-eQTLs in different 
non-retina tissues against their respective sample sizes.  These plots were generated to 
explore whether SNPs that were not detected as significant eQTLs in non-retina tissues 
using the stringent p-value threshold could still reveal some enrichment towards lower p-
values than what is expected by chance.  We also compared this trend for all eQTLs 
detected, regardless of whether they were retina-specific or not.  A weak trend towards 
lower p-values in tissues with large sample sizes for retina-specific eQTLs was observed. 
However, this trend was much weaker compared to that observed for all eQTLs.  It appears 
that retina-specific eQTLs have stronger effects in the retina though possibility of weak 
effects of these eQTLs in other tissues cannot be ruled out.   

 
 
 
  



 
 
 
 
 
Supplementary Figure 7 
 
Manhattan plots at known AMD loci. 
 
LocusZoom (version 0.4.8)29-generated Manhattan plot using the IAMDGC GWAS results (two-
sided  z-tests with no adjustments for multiple testing, ncases = 16,144, ncontrols = 17,832)20  of 
GWAS regions encompassing the candidates that fell within known AMD loci and were shown 
to be associated through multiple methods of analysis, as specified by Table 1.  The top 
variants for the independent eQTL signals determined by the conditional analysis are displayed 
as diamonds and labeled.  The SNP with the strongest GWAS signal in the region is also 
identified in each plot.  Coloration of the points is determined by strength of linkage 
disequilibrium (LD) with respect to the top variant of the strongest eQTL signal.  If LD 
information provided to LocusZoom was absent for that SNP, one of its proxies according to 
LDLink 30 (R2 > 0.99) was used.  Recombination rate is shown as a blue line. 
  



 

 

Supplementary Figure 8 

Differential expression and WGCNA analysis.  



(a) Heatmap showing the expression pattern of differentially expressed genes by comparing 
advanced AMD (n = 61) to controls (n = 105) with and without adjusting for age at the 

significance threshold of  FDR 0.20. 
(b) We identified 47 modules, each containing between 16 and 4,847 genes (for 18,053 genes 

total).  Top: Dendrogram of genes with topological overlap used as distance (shown on y-
axis).  The color bar below indicates which module the genes belong to.  Bottom: 
Hierarchical clustering of module expression eigenvalues (eigengenes).  The modules 
involved in complement (yellow), angiogenesis (light green), immune activation (magenta), 
and extracellular matrix (pink) are highlighted in red.  These modules were adjacent to each 
other according to eigenvalue-based hierarchical clustering. 

(c) Two of these modules were particularly interesting as they were enriched for literature (pink 

FDR = 2.21  10-3 via a hypergeometric test; magenta FDR = 1.37  10-9, ngenes = 18,053 

used in test) and leading edge (pink FDR = 1.10  10-3; magenta FDR = 1.33  10-26) 
candidate genes.  Additionally, the magenta module was enriched for genes from the GWAS 

loci (FDR = 2.38  10-4).  The pink module also contained three DE- (FBLN1, MOXD1, 
IGFBP7) and two AMD-associated genes (COL8A1 and MMP19).  GO analysis of the 
magenta and pink module highlighted extracellular matrix organization and immune 
response pathways, respectively, which were previously implicated in AMD pathology.  
These modules interacted closely with two other modules; the light green (also enriched for 

literature genes, FDR = 8.30  10-3) and light yellow, which were enriched for angiogenesis 
and complement GO terms, respectively.  We show only genes that fall in either literature, 
GWAS, or differentially expressed groups and are strongly correlated with another such 
candidates (adjacency > 0.05). 

 
 
 



  

Supplementary Table 1.  Summary of eQTL, eCAVIAR and TWAS analyses for prioritizing variants and target genes across AMD-GWAS loci.  
 

AMD Locus 
Lead GWAS 
SNP 

Chr:Position GWAS_pval eQTL_pval 
Target 
gene(s) 

% 
Variability 
Explained 

Significant TWAS genes in 
the locus (FDR < 0.05) 

B3GALTL rs9564692 13:31821240 3.31  10-10 2.36  10-11* B3GLCT† 10.47 B3GLCT (1.37  10-4) 

RDH5/CD63 rs3138141 12:56115778 4.3  10-9 5.69  10-19* 

BLOC1S1†, 
RP11-
644F5.10 

17.80 
BLOC1S1 (6.36  10-6), 

RP11-644F5.10 (2.89  10-6) 

SLC16A8 rs8135665 22:38476276 5.53  10-11 1.56  10-3 
CTA-
228A9.3† 

2.45 CTA-228A9.3 (1.26  10-5) 

ACAD10 rs61941274 12:112132610 1.07  10-9 8.95  10-2 SH2B3† 0.71 SH2B3 (2.16  10-2) 

PILRB/PILRA rs7803454 7:99991548 4.76  10-9 3.57  10-77* 

PILRB, 
STAG3L5P, 
PILRA, 
ZCWPW1, 
TSC22D4 

57.51 

MEPCE (5.83  10-6), 

PMS2P1 (1.11  10-5), 
STAG3L5P-PVRIG2P-PILRB 

(1.88  10-5), PILRB (1.88  
10-5) 

TMEM97/VTN rs11080055 17:26649724 1.04  10-8 8.37  10-19* 

POLDIP2, 
SLC13A2**, 
TMEM199† 

17.65 
TMEM199 (2.37  10-5), 

POLDIP2 (8.27  10-5) 

CFI rs10033900 4:110659067 5.35  10-17 3.98  10-7* PLA2G12A 6.17 
CFI (3.31  10-10),  

PLA2G12A (4.53  10-10) 

KMT2E/SRPK2 rs1142 7:104756326 1.35  10-9 6.49  10-6* 
CTB-
152G17.6** 

4.91 
 

NPLOC4/TSPAN10 rs6565597 17:79526821 1.45  10-11 1.91  10-5* ARL16 4.43 ANAPC11‡ (4.03  10-3) 

C2/CFB/SKIV2L rs114254831 6:32155581 9.4  10-12 4.70  10-6* HLA-DQB1 5.06 SKIV2L (1.78  10-31) 

APOE rs429358 19:45411941 2.39  10-42 2.85  10-3 

CTB-
129P6.7, 
TOMM40† 

2.18   

APOE rs73036519 19:45748362 3.14  10-7 3.80  10-2 
ZNF180, 
TOMM40† 

1.06   

C2/CFB/SKIV2L rs116503776 6:31930462 1.17  10-103 3.71  10-4 DXO 3.09 SKIV2L (1.78  10-37) 

CETP rs5817082 16:56997349 3.56  10-19 1.18  10-3 NLRC5 2.57 HERPUD1 (9.66  10-5) 

CETP rs17231506 16:56994528 2.18  10-18 6.56  10-3 HERPUD1 1.81 HERPUD1 (9.66  10-5) 

COL8A1 rs55975637 3:99419853 1.30  10-8 1.32  10-2 NIT2 1.51 TOMM70 (2.55  10-2) 

CFH rs10922109 1:196704632 9.6  10-618 7.44  10-3 KCNT2 1.76 KCNT2 (1.04  10-20) 

CFH rs570618 1:196657064 2.0  10-590 1.42  10-2 CFH 1.48 KCNT2 (1.04  10-20) 



  

CFH rs187328863 1:196380158 1.06  10-68 2.63  10-2 ZBTB41 1.22 KCNT2 (1.04  10-20) 

CFH rs61818925 1:196815450 6.03  10-165 3.21 10-1 ZBTB41 0.24 KCNT2 (1.04  10-20) 

CNN2 rs67538026 19:1031438 2.58  10-8 9.21  10-11* TMEM259 9.87   

RAD51B rs61985136 14:68769199 1.56  10-10 2.15  10-2 PIGH 1.30 TMEM229B (2.64  10-2) 

RAD51B rs2842339 14:68986999 1.36  10-6 5.60  10-2 ZFYVE26 0.90 TMEM229B (2.64  10-2) 

MMP9*** NA NA NA NA NA NA PLTP (3.3  10-2) 

 
*eQTL is significant after correction for multiple testing. **Retina-specific. ***Lead SNP not present in the dataset, and suitable proxy SNPs are not 
available. †Gene is target of causal variant identified by eCAVIAR. ‡Low TWAS model fit (R2 < 0.01).  All results are based on eQTL analysis using 
406 donor retinas.
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