Online Supplementary information

Glutathione deficiency induces epigenetic alterations of vitamin D metabolism genes in the livers of high-fat diet-fed obese mice

Rajesh Parsanathan¹ and Sushil K. Jain^{1*}

From the ¹Department of Pediatrics and Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport, 1501 Kings Highway, Shreveport LA 71130

*To whom correspondence should be addressed: Sushil K. Jain: Department of Pediatrics, 1501 Kings Highway, Shreveport, Louisiana 71130; sjain@lsuhsc.edu: Tel. (318) 675-6086; FAX. (318) 675-6059

Contents

Cell culture and treatment
Cell viability assay2
Analysis of mRNA expression using RT-qPCR2
Supplementary Table S1: List of FAM-labeled TaqMan® primer/probe sets used for quantitative RT-PCR analysis
Western blot analysis4
Supplementary Table S2: List of antibodies and its dilutions used for Western blot analysis4
DNA dot-blot assay
EpiTect II qPCR assays5
Supplementary Table S3: Details of CpG islands targeted by EpiTect Methyl II PCR Primer Assay for Mouse
Figure S17
Figure S2
Figure S39
Figure S4
References10

Cell culture and treatment

FL83B mouse hepatocytes (ATCC[®], Manassas, VA) were cultured and maintained in F-12K complete medium. The culture was grown and maintained at 37 °C in a humidified atmosphere containing 5% CO₂. Cells were counted using the Trypan Blue method before all treatments. siRNA were purchased from Santa Cruz Biotechnology, Inc. (Dallas, TX): γ -GCSc siRNA, and Control siRNA-A, a scrambled nonspecific RNA duplex that shares no sequence homology with any of the genes, which was used as a negative control. Cells were transiently transfected with 100 nM siRNA complex using LipofectamineTM2000 transfection reagent (Invitrogen, Carlsbad, CA) following the method described earlier ^{1,2}. In another set of experiments, cells were treated with L-cysteine (300 μ M), N-acetyl-L-cysteine (NAC; 300 μ M), or GSH ethyl ester (GSHee; 2.5 mM) (Cayman Chemical Company, Ann Arbor, Michigan), respectively, for 24 h. Buthionine sulfoximine (BSO) is an irreversible inhibitor of γ glutamylcysteine synthetase (K_i <100 μ M), the rate-limiting enzyme for L-glutathione (GSH) synthesis, which depletes GSH ^{3,4}. Cells were exposed to BSO (10 μ M) for 12 h in basal medium (without serum or any growth factors). In another set of experiments, after BSO (10 μ M) for 12 h in basal medium, cells washed twice with PBS and left either for 6h or 12h in basal media alone without BSO treatment (withdrawal).

Cell viability assay

Cell viability was determined using the Alamar Blue reduction bioassay. This method is based upon Alamar Blue dye reduction by live cells. Briefly, cells were plated into 96 well plates after treatment per the above-described protocols, AlamarBlue® Cell Viability Reagent (ThermoFisher Scientific, Grand Island, NY) was added, and the cells were incubated at 37 °C in the dark for 4 h. Absorbance was read at 590 nm using a plate reader. Data are expressed as a percentage of viable cells.

Analysis of mRNA expression using RT-qPCR

Total RNA was extracted from cells or tissue using either an AllPrep DNA/RNA/Protein Mini Kit (Qiagen, Germantown, MD) or TRIzol Reagent (Invitrogen, Carlsbad, CA) following the manufacturer's instructions. The concentration and quality of the extracted RNA were determined on a NanoDrop spectrophotometer. RNA (1 μ g) from each sample was reverse transcribed according to the manufacturer's instructions using a High Capacity RNA-To-cDNA kit (Applied Biosystems, Foster City, CA) to synthesize cDNA. RT-qPCR was performed using the Applied BiosystemsTM TaqManTM Gene Expression Assays with primer/probe sets (Supplementary Table 1). The relative amount of mRNA was calculated using the relative quantification ($\Delta\Delta$ CT) method. The relative amount of each mRNA was normalized to housekeeping gene Glyceraldehyde 3-phosphate dehydrogenase (GADPH). Following Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines, all of our experiments included technical replicates (n=3) and biological replicates (n=4). Data were analyzed using the comparative CT method, and the fold change was calculated using the 2^{- $\Delta\Delta$ CT} method ⁵ using a 7900HT Real-Time PCR system and software (Applied Biosystems). The results were expressed as relative quantification (RQ).

Supple ment	ary Table S1: List of FAM-labeled TaqMan®	primer/probe se	ts used fo	r quantitative H	RT-PCR analys	is			
Gene symbol	Gene Name	Assay ID	Transcript	RefSeq	Translated	Exon	Assay	Amplicon	Context sequence
			variant		Protein	Boundary	Location	Length	
GCLC	Glutamate cysteine ligase, catalytic subunit	Mm00802655_ml	1	NM_010295.2	NP_034425.1	1213	1666	98	tcattcc gctgtccaag gttgacga
GCLM	Glutamate cysteine ligase, modifier subunit	Mm01324400_m1		NM_008129.4	NP_032155.1	56	963	L8	gctgtatcag tg <mark>g</mark> gcacagg taaaa
GSS	Gutathione synthetase	Mm00515065_ml	2	NM_001291111.1	NP_001278040.1	56	600	19	ctc agctaatgc <mark>g</mark> gtggtgctac tg
			1	NM_008180.2	NP_032206.1	L9	735	19	ctcagcta atgcggtggt gctactg
GSR	Glutathione reductase	Mm00439154_ml		NM_010344.4	NP_034474.4	68	1116	65	ttgaagt tcacacaggt taaggaag
CYP2R1	Cytochrome P450, family 2, subfamily R, polypeptide 1	Mm01159413_ml	1	NM_177382.4	NP_796356.2	12	238	9L	cgggt gtatggcgag attttcagtt
CYP27A1	Cytochrome P450, family 27, subfamily A, polypeptide 1	Mm00470430_ml		NM_024264.4	NP_077226.2	23	503	69	cctatgggat cttcatcgca caagg
CYP27B1	Cytochrome P450, family 27, subfamily B, polypeptide 1	Mm01165918 g1		NM_010009.2	NP_034139.2	45	820	73	atc agatgtttgc ctttgcccag ag
CYP24A1	Cytochrome P450, family 24, subfamily A, member 1	Mm00487244 ml		NM 009996.3	NP 034126.1	78	1357	66	agtgga gacgaccgca aacagcttg
VDR	Vitamin D receptor	Mm00437297 ml		NM 009504.4	NP 033530.2	34	289	95	ett cttcaggcgg agcatgaagc g
Dnmt 1	DNA methyltransferase (cytosine-5) 1	Mm01151063 ml	1	NM 001199431.1	NP 001186360.2	56	708	58	cttca cgaaggggcc cactaaacgg
	- (NM 001199432.1	NP 001186361.1	56	589	58	cttc acgaagggc ccactaaacg g
			7	NIM 0011004331	NP 001186367 1	56	1214	58	oftrarrass agarage
			7 t	1.00490100 MINI	NTD_02/106.5	2-0	705	20	citeaceaa ggg cooran taaanan nttranna ann nornan taaanan
		1	1 0	PIN_010000.4	NTP_001250201	17 10	0000	20	clicarga aggg coccae laaargg
Unmtsa	DNA methy ltransferase 3A	MIM00452881_mI	ۍ <u>-</u>	NM_0012/1/55.1	NP_001258082.1	17-18	2339	28	acag aagcatat cc aggagtgggg c
			-	NIM_00/8/2.4	1.848160_HV	1/-18	2385	28	acagaagc atat ccagga gtggggc
			2	NM_153743.4	NP_714965.1	1213	1563	58	acagaagcat at c caggagt ggggc
Dnmt3b	DNA methy ltransferase 3B	Mm01240113_m1	2	NM_001003960.4	NP_001003960.2	19-20	2518	83	gatte etggeatgta acceagtgat
			1	NM_001003961.4	NP_001003961.2	20-21	2578	83	gatte etggeat <mark>g</mark> ta acceagtgat
			4	NM_001003963.4	NP_001003963.2	20-21	2578	83	gatte etggeatgta acceagtgat
			5	NM_001122997.2	NP_001116469.1	19-20	2466	83	gatteet ggeatgtaae eeagtgat
			9	NM_001271744.1	NP_001258673.1	19-20	2463	83	gatteetgge atgtaaceea gtgat
			7	NM_001271745.1	NP_001258674.1	18-19	2403	83	gattcctggc atgtaaccca gtgat
			8	NM 001271746.1	NP 001258675.1	19-20	2463	83	gatteetgge atgtaaceea gtgat
			6	NM 001271747.1	NP_001258676.1	18-19	2403	83	gatteetgge atgtaaceea gtgat
			3	NM 010068.5	NP 034198.3	19-20	2518	83	gatte etggeatgta acceagtgat
Tet1	Tet methy cytosine dioxygenase 1	Mm01169087 ml	1	NM 001253857.1	NP 001240786.1	910	4851	63	te ettateaaaa teagetegaa tat
	0,	1	2	NM 027384.1	NP 081660.1	89	4755	63	tecttate agaatcaget gegatat
Tet2	Tet methy cytosine dioxygenase 2	Mm00524395 ml	1	NM 001040400.2	NP 001035490.2	78	4310	70	aca gragragrea ceeteaatag ag
Tet3	Tet methy cytosine dioxygenase 3	Mm00805756 ml	2	NM 183138.2	NP 898961.2	910	3121	74	te cactere et caccetea cea
Idg	Thymine DNA glycosylase	Mm02602088_g1	1	NM_011561.2	NP_035691.2	910	1202	92	t caaatggggt a acageteae agtg
	•		2	NM_172552.3	NP_766140.2	910	1301	92	tc aaatgggcta acagetcaca gtg
MCP-1/Ccl2	Monocyte Chemoattractant Protein-1	Mm00441242_ml		NM_011333.3	NP_035463.1	12	165	74	ctcagcca gatgcagtta acgcccca
INF	Tumor Necrosis Factor	Mm00443258_ml	2	NM_001278601.1	NP_001265530.1	12	352	81	c ccaaagggat gagaagttcc caaa
			1	NM_013693.3	NP_038721.1	12	352	81	c ccaaagggat gagaagttcc caaa
INFR1	Tumor Necrosis Factor Receptor Type 1	Mm00441883_g1		NM_011609.4	NP_035739.2	910	1364	82	cctgacaat gcagaccttg cgattc
rGFB1	Transforming Growth Factor Beta-1	Mm01178820_ml		NM_011577.1	NP_035707.1	56	1728	65	ctatt getteagete cacagagaag
Cola1	Collagen Type I Alpha 1 Chain	Mm00801666_g1		NM_007742.3	NP_031768.2	49-50	4071	89	cg atggattccc gttcgagtac gga
$\alpha SMA/Acta2$	Actin Alpha 2, Smooth Muscle	Mm00725412_s1		NM_007392.3	NP_031418.1	66	1403	56	tagecetgge etageaacae tgatt
Timp 1	Tissue Inhibitor Of Metalloproteinases 1	Mm01341361_m1	1	NM_001044384.1	NP_001037849.1	56	618	100	ggetg tggggtgtgc acagtgttte
			3	NM_001294280.2	NP_001281209.1	45	538	100	ggetg tggggtgtgtgc acagtgttte
			2	NM_011593.2	NP_035723.2	56	615	100	ggetgtgg ggtgtgcaca gtgttte
Чp	Haptoglobin	Mm00516884_ml	1	NM_017370.2	NP_059066.1	45	424	69	aatgtgagg cagtgtgtgg gaagee
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase	Mm99999915_g1	1	NM_001289726.1	NP_001276655.1	23	117	107	ggtgtg aacggatttg gccgtattg
			2	NM_008084.3	NP_032110.1	23	265	107	ggtgtgaa cgga t ttggc cgtattg

Western blot analysis

The tissue homogenates were processed for the immunoblotting studies. ~ 100 mg of liver tissue was homogenized in RIPA buffer on ice using a rotor-stator to extract protein from the liver. RIPA buffer (50 mM Tris pH 8, 150 mM NaCl, 1% NP-40, 0.5% deoxycholic acid, and 0.1% SDS) was supplemented with protease and phosphatase inhibitors (1 mM PMSF, 5 µg/mL leupeptin, 2 µg/mL aprotinin, 1 mM EDTA, 10 mM NaF, and 1 mM NaVO4). For whole-cell extraction, after treatment, the hepatocytes (FL83B cells) were washed twice with ice-cold PBS and lysed in RIPA buffer. Lysates were then centrifuged for 10 min at 10,000 x g at 4 °C. Supernatants were collected and the protein concentrations determined using a Pierce BCA assay kit (Thermo Fisher Scientific, Rockford, IL) for Western blot analysis and HPLC assay. Equal amounts of proteins (20 µg) were separated on 10 % SDS-PAGE and transferred to a polyvinyl difluoride (PVDF) membrane. Membranes were blocked at room temperature for 2 h in a blocking buffer containing 1% BSA to prevent non-specific binding and then incubated with an appropriate primary antibody (Supplementary Table 2). The membranes were washed in TBS-T (50 mmol/L Tris-HCl, pH 7.6, 150 mmol/L NaCl, 0.1 % Tween 20) for 30 min and incubated with the appropriate HRP-conjugated secondary antibody (1:5000 dilution) for 2 h at room temperature. The protein bands were detected using ECL detection reagents (Thermo Scientific, Rockford, IL) and exposed to blue X-ray film (Phenix Research Products, Candler, NC). All of our immunoblot experiments included technical replicates (n=2) and biological replicates (n=4). Western blot scans were analyzed using ImageJ software (developed by Wayne Rasband, National Institutes of Health, Bethesda, MD; available at http://rsb.info.nih.gov/ij/index.html). Densitometry analyses of Western blots were normalized to β -actin (ratio).

Antibody	Туре	Antibody dilution and	Molecular	Supplier (Catalog #)
Designation		incubation time	weight	
			(kDa)	
GCLC	Rabbit Polyclonal	1:500, 4° C overnight	73	Abcam (ab53179)
GCLM	Rabbit Monoclonal	1:1000, 4° C overnight	31	Abcam (ab126704)
GSS	Rabbit Monoclonal	1:10000, 4° C overnight	52	Abcam (ab124811)
GSR	Rabbit Polyclonal	1:2000, 4° C overnight	58	Abcam (ab16801)
CYP2R1	Rabbit Polyclonal	1:1000, 4° C overnight	57	Abcam (ab79924)
CYP27A1	Rabbit Monoclonal	1:1000, 4° C overnight	60	Abcam (ab126785)
CYP27B1	Rabbit Polyclonal	1:1000, 4° C overnight	57	Abcam (ab95047)
CYP24A1	Rabbit Polyclonal	1:1000, 4° C overnight	59	Abcam (ab175976)
VDR	Rabbit Polyclonal	1:1000, 4° C overnight	53	Abcam (ab3508)
β-actin	Mouse Monoclonal - HRP	1:25000, 2 h RT	42	Abcam (ab49900)
Goat anti-Rabbit-HRP Secondary Antibody		1:4000, 2 h RT	NA	Millipore (12-348)

Supplementary Table S2: List of antibodies and its dilutions used for Western blot analysis

DNA dot-blot assay

Genomic DNA was sonicated to generate fragments with lengths between 200 and 500 bp, denatured in 2x DNA denaturing buffer (200 mM NaOH and 20 mM EDTA), incubated at 95 °C for 10 min, and then immediately chilled on ice for 5 min. The denatured DNA fragments were spotted onto a positively charged 0.2 µm nitrocellulose membrane (Bio-Rad, Hercules, California). Briefly, DNA spots were airdried for 15 min and UV-crosslinked (20 s, 1200J/cm²). Membranes were blocked in 1% BSA in TBS-T (50 mmol/L Tris-HCl, pH 7.6, 150 mmol/L NaCl, 0.1 % Tween 20) for 2 h at room temperature (RT). Afterward, the membranes were incubated with appropriate primary antibodies (5-methylcytosine (5-mC) (D3S2Z), rabbit mAb (CellSignaling #28692, Danvers, MA), 5-hydroxymethylcytosine (5-hmC) (HMC31), or mouse mAb (CellSignaling #51660, Danvers, MA)) diluted 1:1000 in 1% BSA in TBST for 4 °C overnight. The membranes were washed in TBS-T for 30 min and incubated with the appropriate HRP-conjugated secondary antibody (1:5000 dilution) for 2 h at room temperature. After a final wash step, the membranes were incubated in Clarity Western ECL substrate (Bio-Rad, Hercules, California), and then 5-mC and 5-hmC were visualized using chemiluminescence and exposed on blue X-ray film (Phenix Research Products, Candler, NC). The membrane was stained with Methylene Blue (0.02%) Methylene Blue in 3 M sodium acetate) after immunoblotting to ensure the equal loading. The membranes were destained by swirling them in distilled water. Dot-blot scans were analyzed using ImageJ software (developed by Wayne Rasband, National Institutes of Health, Bethesda, MD; available at http://rsb.info.nih.gov/ij/index.html). Densitometry semi-quantitative data analyses of the dot-blots are represented by fold change.

EpiTect II qPCR assays

DNA methylation was assessed using EpiTect II qPCR assays. The EpiTect II qPCR assays use differential digestion of unmethylated and methylated DNA, using methylation-sensitive (Ms) and methylation-dependent (Md) restriction enzymes, which reduces the risk of false-positive results. Digestions were conducted as individual digests (Ms or Md), in combination (Ms+Md), and as mock digests in a SimpliAmp Thermal Cycler (Applied Biosystems), at 37 °C overnight (16 h), followed by a 20 minute incubation at 65 °C to inactive the enzymes, as recommended by the manufacturer. The DNA is remaining after digestion was quantified using qPCR (Applied Biosystems 7900HT Fast Real-Time PCR System; 384-well), using primers flanking the region of interest and RT² SYBR green fluor qPCR master mix (Qiagen). The PCR reactions were carried out using the following conditions: 10 min at 95 °C, followed by 40 cycles of 15 min at 97 °C and 1 min at 72 °C, as recommended by the manufacturer. The relative amounts of methylation were calculated using an Excel-based data analysis template provided by the manufacturer, using delta-Ct values. The mock digest was used for initial DNA input quantification, the Ms digest to quantify methylated DNA and the Md digest for quantifying unmethylated DNA. The Ms+Md digest was used to quantify the undigested amount of DNA as a background control. EpiTect Methyl II PCR methylation-sensitive and methylation-dependent digest

control assays were used to test the cutting efficiency of the restriction enzymes and to ensure reliable and reproducible results.

Gene	CpG	CpG Island Location	TSS	TSS	Size	Qiagen (Catalog #)
	Island ID		Position	Orientation		
CYP2R1	110354	Chr7: 121706083 - 121706583	121706486	Reverse	500	EPMM110354-1A
CYP27A1	100226	Chr1: 74760192 - 74760405	74760147	Forward	213	EPMM100226-1A
CYP27B1	101224	Chr10: 126486076 - 126486319	126485301	Forward	243	EPMM101224-1A
CYP24A1	106871	Chr2: 170322710 - 170323048	170321927	Reverse	338	EPMM106871-1A
VDR	104088	Chr15: 97738408 - 97739146	97738727	Reverse	738	EPMM104088-1A

Supplementary Table S3: Details of CpG islands targeted by EpiTect Methyl II PCR Primer Assay for Mouse

Figure S1.

Figure S1. Impact of high-fat-diet on circulating plasma 25(OH)VD₃ and GSH. (A) Bar graph showing Δ body weight, (B) Blood glucose, (C) plasma insulin, (D) HOMA-Insulin Resistance, (E) plasma GSH, and (F) 25(OH)VD₃ in HFD-fed mice for 16 weeks compared with those of mice with the control diet. Unpaired Student's *t*-test was used to compare the control with the HFD group. * $p \leq 0.05$ for a statistical test was considered significant. Data are expressed as mean ± SEM (n=6).

Figure S2.

Figure S2. Effect of HFD on liver GSH biosynthesis pathway genes and oxidative stress parameters. (A) RT-qPCR was performed to assess the level of GSH biosynthesis in the pathway of the target gene mRNA as indicated (n=4). (B-D) Liver protein carbonyl content, reactive oxygen species, lipid peroxidation from the livers of mice fed an HFD for 16 weeks compared with those from mice fed the control diet. An unpaired Student's *t*-test was used to compare the control group with the HFD group. * $p \le 0.05$ was considered significant. Data are expressed as mean \pm SEM.

Figure S3.

Figure S3. GCLC siRNA alters GSH biosynthesis pathway genes and oxidative stress parameters. FL83B mouse hepatocyte cells were incubated with siRNA (100 nM) targeting GCLC mRNA for 24 h. A scrambled non-targeting siRNA was used as the control. (A) Cell viability. (B) RT-qPCR was performed to assess the level of GSH biosynthesis in the pathway of the target gene mRNA as indicated (n=6). (C-F) GSH, protein carbonyl content, reactive oxygen species, lipid peroxidation. An unpaired Student's *t*-test was used to compare the control group with the treatment group. **p*≤0.05 was considered significant. Data are expressed as mean \pm SEM.

Figure S4.

Figure S4. Effect of GSH deficiency (BSO) on hepatocyte oxidative stress parameters. FL83B mouse hepatocyte cells were treated with a GCL pharmacological inhibitor (BSO) (10 μ M) for 12 h. (A) Cell viability. (B-D) Protein carbonyl content, reactive oxygen species, lipid peroxidation (n=4). An unpaired Student's *t*-test was used to compare the control group with the treatment groups. **p*≤0.05 was considered significant. Data are expressed as mean ± SEM.

References

- Parsanathan, R. & Jain, S. K. Hydrogen sulfide increases glutathione biosynthesis, and glucose uptake and utilisation in C2C12 mouse myotubes. *Free Radic Res* 52, 288-303, doi:10.1080/10715762.2018.1431626 (2018).
- Parsanathan, R. & Jain, S. K. L-Cysteine in vitro can restore cellular glutathione and inhibits the expression of cell adhesion molecules in G6PD-deficient monocytes. *Amino Acids* 50, 909-921, doi:10.1007/s00726-018-2559-x (2018).
- 3 Reliene, R. & Schiestl, R. H. Glutathione depletion by buthionine sulfoximine induces DNA deletions in mice. *Carcinogenesis* **27**, 240-244, doi:bgi222 [pii]10.1093/carcin/bgi222 (2006).
- 4 Griffith, O. W. Mechanism of action, metabolism, and toxicity of buthionine sulfoximine and its higher homologs, potent inhibitors of glutathione synthesis. *J Biol Chem* **257**, 13704-13712 (1982).
- 5 Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative C(T) method. *Nat Protoc* **3**, 1101-1108 (2008).