- 1 Supplement for:
- 2 Climatic warming and the future of bison as grazers
- 3 Joseph M. Craine, E. Gene Towne, Mary Miller, Noah Fierer
- 4
- 5

#### Supplemental methods 6

| 7  | The barcodes used were 12-bp error-correcting barcodes unique to each sample <sup>1</sup> . The             |
|----|-------------------------------------------------------------------------------------------------------------|
| 8  | theromocycling program used an initial step at 94 °C for 2 minutes, a final extension at                    |
| 9  | 72 °C for 2 minutes and the following steps cycled 35 times: 2 minutes at 94 °C, 1 minute                   |
| 10 | at 55 °C, and 30 seconds at 72 °C. Sequences were demulitplexed using a python script                       |
| 11 | available from: https://github.com/leffj/helper-code-for-                                                   |
| 12 | uparse/blob/master/prep_fastq_for_uparse_paired.py Paired end reads were then merged                        |
| 13 | using fastq_merge pairs <sup>2</sup> . Since merged reads often extended beyond the amplicon region         |
| 14 | of the sequencing construct, we used fastx_clipper to trim primer and adaptor regions                       |
| 15 | from both ends (https://github.com/agordon/fastx_toolkit). Sequences lacking a primer                       |
| 16 | region on both ends of the merged reads were discarded.                                                     |
| 17 | Sequences were quality trimmed to have a maximum expected number of errors per read                         |
| 18 | of less than 0.1 and only sequences with more than 3 identical replicates were included in                  |
| 19 | downstream analyses. BLASTN 2.2.30+ was run locally, with a representative sequence                         |
| 20 | for each OTU as the query and the current NCBI nt nucleotide and taxonomy database as                       |
| 21 | the reference. The tabular BLAST hit tables for each OTU representative were then                           |
| 22 | parsed so only hits with $> 97\%$ query coverage and identity were kept.                                    |
| 23 |                                                                                                             |
| 24 | In the isotopic mixing model, the diet-feces carbon isotopic offset was set to $-0.9$ % <sup>3,4</sup> .    |
| 25 | Reference $C_3$ and $C_4 \delta^{13}C$ values were derived from a survey of herbaceous Konza plant          |
| 26 | species collected at the time of first flowering <sup>5,6</sup> . These included 309 herbaceous $C_3$       |
| 27 | species (-29.7 $\pm$ 0.08 ‰) and 56 herbaceous C <sub>4</sub> species (-13.2 $\pm$ 0.2 ‰). Data on foliar N |

| 28 | concentrations (Fig. S1 and Ceanothus herbaceus in text) were taken from ref 6. A                      |
|----|--------------------------------------------------------------------------------------------------------|
| 29 | conversion of 6.25:1 was used between $[CP]$ and $[N]^7$ .                                             |
| 30 |                                                                                                        |
| 31 | For NIRS analysis, after collection, fecal samples were frozen and later dried at 60 $^{\circ}$ C in a |
| 32 | forced air oven, ground to 1 mm particle size and re-dried at 60 °C prior to scanning with             |
| 33 | near infrared spectroscopy (NIRS) by Texas A&M's Grazingland Animal Nutrition                          |
| 34 | Lab <sup>8,9</sup> . Spectra (400–2500 nm) were collected on a Foss NIRS 6500 scanning                 |
| 35 | monochrometer with spinning cup attachment. Reference chemistry and chemometrics                       |
| 36 | for NIRS calibration development that link forage chemistry and fecal spectra were                     |
| 37 | generated for cattle <sup>10</sup> .                                                                   |
| 38 |                                                                                                        |
| 39 |                                                                                                        |

# 42 Supplemental discussion

### 43 **OTU Richness**

44 The richness of OTUs in diet for bison in the Kansas and South Dakota grasslands are

45 similar. In the Kansas grassland, an average of  $14.1 \pm 0.5\%$  distinct OTUs per bison fecal

46 sample were recovered with a total of 65 OTUs detected across all samples per year

47 (minimum 1% relative read abundance). At the South Dakota grassland, bison consumed

48 a similar richness of species in their diet as in Kansas—an average of 13.8 OTUs per

49 sample from DOY 94-281 vs. 14.0 OTUs for the same period (P > 0.85). During this

50 time period, as the season progressed, dietary richness increased (DR = 9.49 +

51 0.025\*DOY,  $r^2 = 0.09$ , P = 0.0026) with no significant difference between sexes or sites

52 in the relationship (P > 0.05).

## 53 **Biomass vs. protein intake**

54 The *trnL* sequence examined here is a chloroplast intron with no known variation in copy number<sup>11</sup>. Because chloroplast density scales with foliar nitrogen concentrations and 55 therefore protein concentrations <sup>7,12</sup>, the percentage of trnL sequences in fecal material 56 57 should scale with the percentage of protein ingested from that plant species. That 58 metabarcoding provides information on protein rather than C or biomass intake is not 59 necessarily a drawback given that many herbivores are more limited by protein than energy<sup>13</sup>, allowing for resolution of relative importance of different plant species for a 60 61 limiting nutrient to herbivores.

A feeding trial has indicated a strong 1:1 relationship between biomass intake and RRA<sup>14</sup>, 62 63 but this could be explained by the two plant species used in the feeding trial having 64 similar protein concentrations. The relatively greater proportion of C<sub>4</sub> species in bison 65 diet here suggested by isotopic analysis as opposed to metabarcoding likely reflects the 66 lower N concentrations of C<sub>4</sub> grasses relative to other species (Fig. S1). The slope of the 67 relationship between the proportion of C<sub>4</sub> plants in bison diet estimated with isotopes and 68 C<sub>4</sub> grass RRA indicates that the underrepresentation was greatest when C<sub>4</sub> grass 69 component of diet was lowest (Fig. 4), which is probably the time of the greatest 70 difference in protein concentrations between C<sub>4</sub> grasses and eudicots.

71

#### 74 Forage quality differences between sites

75 Forage quality is primarily defined by the concentrations of crude protein (CP) and digestible organic matter (DOM) in plant matter consumed by grazers <sup>7</sup>. When the ratio 76 of concentrations of DOM to CP is relatively high (e.g. > 4), weight gain is determined 77 more by the concentration of CP in forage than DOM<sup>15</sup>. Typically, CP is more limiting to 78 79 weight gain in North American grazers. In a synthesis of continental-scale patterns of 80 forage quality, dietary DOM:CP for cattle on pastures and rangelands was generally high indicating greater protein-limitation than energy-limitation<sup>13</sup>. Geographic patterns in 81 82 forage quality characteristics also demonstrated that protein limitation became greater as MAT increased as peak spring CP concentrations decreased with increasing 83 temperatures<sup>13</sup>. 84

85 In 2003, we had measured seasonal patterns of [CP] at the South Dakota grassland and found that [CP] had peaked at 182 mg  $g^{-1}$  in May. This is 48 mg  $g^{-1}$  greater than peak 86 [CP] for the Kansas grassland (ref 16 and this study). Concomitant with the greater 87 88 measured forage quality, bison weights were also higher in the South Dakota than the 89 Kansas grassland. For example, bison calf weight is a good index of the forage quality 90 available to bison in a particular year. From 2004-2008—the first 5 years weights were 91 measured at the South Dakota grassland—calf weights averaged 199 kg (Fig. S2). By comparison, the long-term average calf weight at the Kansas grassland was 134 kg<sup>16</sup>. 92 93 Reproduction rates for adult females were also higher at the South Dakota than the 94 Kansas grassland (87% vs. 65%, respectively).

| 95  | Recently, it appears that forage quality has declined at the South Dakota site. When                |
|-----|-----------------------------------------------------------------------------------------------------|
| 96  | forage quality was measured on the 2014 South Dakota fecals, the highest [CP] measured              |
| 97  | was only 100 mg g <sup>-1</sup> (Fig. S3). Part of the relatively low peak [CP] might be influenced |
| 98  | by the relatively low frequency of sampling which could have missed peak forage quality.            |
| 99  | Yet, 2014 South Dakota [CP] was lower throughout the year than in 2003 and were now                 |
| 100 | similar to the Kansas grassland. [DOM] concentrations were also lower than in 2003, but             |
| 101 | still higher than the for the Kansas grassland. Examining the weights of bison from 2010-           |
| 102 | 2013 in the SD grassland (bison weights were not measured in 2009 or 2014), bison calf              |
| 103 | weights were lower than 2004-2008, too, declining by an average of 26 kg (e.g. calf                 |
| 104 | weights were 199.8 vs. 173.2 kg, 2010-2013 vs. 2004-2008 respectively; $P = 0.005$ ),               |
| 105 | though still higher than the long-term average calf weights for the KS grassland.                   |
| 106 | Comparing the two periods, there was little difference in monthly precipitation patterns            |
| 107 | or mean temperatures that could explain the decline in forage quality and bison weights             |
| 108 | in the SD grassland over the ten-year period. However, budget reductions had forced a               |
| 109 | cessation of prescribed fires in 2007. No prescribed fires have been set since then. Late-          |
| 110 | spring prescribed fires had been implemented in 2004, 2005, and 2006 and there was a                |
| 111 | unprescribed fire in the spring of 2008. In these 4 years, an average of approximately 140          |
| 112 | ha was burned each year, which is approximately 10% of the area available to the bison.             |
| 113 | Spring fires increase the protein concentrations of grass available to grazers by removing          |
| 114 | senesced material and increasing the protein concentrations of the new regrowth <sup>17,18</sup> .  |
| 115 | In all it appears that when fire was removed from the South Dakota grassland, forage                |
| 116 | quality and weight gain declined. Cool-season grasses such as Poa pratensis and Bromus              |
| 117 | inermis have also increased in abundance (M.M., personal observation), likely in                    |

| 118 | response to the removal of May fires, but these species appear to be little utilized by       |
|-----|-----------------------------------------------------------------------------------------------|
| 119 | bison. Although bison weight gain and reproduction is still greater at the South Dakota       |
| 120 | than the Kansas grassland, bison could not compensate for the decline in grass quality        |
| 121 | that accompanied the cessation of burning by increasing their consumption of high-            |
| 122 | protein forbs. Although there are still questions regarding the diet of bison on climatically |
| 123 | cool grasslands that have recently experienced fire, the decline in bison performance with    |
| 124 | cessation of fire further evince the importance of forage quality and landscape-level         |
| 125 | community composition in limiting the resilience of herbivores to changes in grasslands       |
| 126 | that are likely to accompany climatic warming.                                                |
| 127 |                                                                                               |
|     |                                                                                               |

| 133 | 1 | Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the      |
|-----|---|---------------------------------------------------------------------------------------|
| 134 |   | Illumina HiSeq and MiSeq platforms. The ISME journal 6, 1621-1624, (2012).            |
| 135 | 2 | Edgar, R. C. Search and clustering orders of magnitude faster than BLAST.             |
| 136 |   | Bioinformatics 26, 2460-2461, (2010).                                                 |
| 137 | 3 | Sponheimer, M. et al. An experimental study of carbon-isotope fractionation           |
| 138 |   | between diet, hair, and feces of mammalian herbivores. Can. J. Zool. 81, 871-876,     |
| 139 |   | (2003).                                                                               |
| 140 | 4 | Codron, D., Codron, J., Lee-Thorp, J. A., Sponheimer, M. & de Ruiter, D. Animal       |
| 141 |   | diets in the Waterberg based on stable isotopic composition of faeces. S. Afr. J.     |
| 142 |   | Wildl. Res. 35, 43-52, (2005).                                                        |
| 143 | 5 | Craine, J. M., Towne, E. G., Ocheltree, T. W. & Nippert, J. B. Community              |
| 144 |   | traitscape of foliar nitrogen isotopes reveals N availability patterns in a tallgrass |
| 145 |   | prairie. Plant Soil 356, 395-403, (2012).                                             |
| 146 | 6 | Craine, J. M., Wolkovich, E. M., Towne, E. G. & Kembel, S. W. Flowering               |
| 147 |   | phenology as a functional trait in a tallgrass prairie. New Phytol. 193, 673-682,     |
| 148 |   | (2012).                                                                               |
| 149 | 7 | Van Soest, P. J. Nutritional Ecology of the Ruminant. 2nd edn, (O & B Books,          |
| 150 |   | 1994).                                                                                |
| 151 | 8 | Lyons, R. K. & Stuth, J. W. Fecal NIRS equations for predicting diet quality of       |
| 152 |   | free-ranging cattle. J. Range Manag. 45, 238-244, (1992).                             |

| 153 | 9  | Roberts, C. A., Stuth, J. & Flinn, P. in Near Infrared Spectroscopy in Agriculture   |
|-----|----|--------------------------------------------------------------------------------------|
| 154 |    | (eds C A Roberts, J Workman, & J B Reeves) 231-268 (American Society of              |
| 155 |    | Agronomy-Crop Science Society of America-Soil Science Society of America,            |
| 156 |    | 2004).                                                                               |
| 157 | 10 | Showers, S. E., Tolleson, D. R., Stuth, J. W., Kroll, J. C. & Koerth, B. H.          |
| 158 |    | Predicting diet quality of white-tailed deer via NIRS fecal profiling. Rangeland     |
| 159 |    | Ecology and Management 59, 300-307, (2006).                                          |
| 160 | 11 | Taberlet, P., Gielly, L., Pautou, G. & Bouvet, J. Universal primers for              |
| 161 |    | amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol.       |
| 162 |    | 17, 1105-1109, (1991).                                                               |
| 163 | 12 | Evans, J. R. & Seeman, J. R. in <i>Photosynthesis</i> (ed W R Briggs) 183-205 (Liss, |
| 164 |    | 1989).                                                                               |
| 165 | 13 | Craine, J. M., Elmore, A. J., Olson, K. C. & Tolleson, D. Climate change and         |
| 166 |    | nutritional stress in cattle. Global Change Biology 16, 2901-2911, (2010).           |
| 167 | 14 | Willerslev, E. et al. Fifty thousand years of Arctic vegetation and megafaunal diet. |
| 168 |    | <i>Nature</i> <b>506</b> , 47-51, (2014).                                            |
| 169 | 15 | Moore, J. E., Brant, M. H., Kunkle, W. E. & Hopkins, D. I. Effects of                |
| 170 |    | supplementation on voluntary forage intake, diet digestibility, and animal           |
| 171 |    | performance. J. Anim. Sci. 77, 122-135, (1999).                                      |
| 172 | 16 | Craine, J. M., Towne, E. G., Tolleson, D. & Nippert, J. B. Precipitation timing      |
| 173 |    | and grazer performance in a tallgrass prairie. Oikos 122, 191-198, (2013).           |

| 174 | 17 | Allred, B. W., Fuhlendorf, S. D., Engle, D. M. & Elmore, R. D. Ungulate          |
|-----|----|----------------------------------------------------------------------------------|
| 175 |    | preference for burned patches reveals strength of fire-grazing interaction. Ecol |
| 176 |    | <i>Evol</i> <b>1</b> , 132-144, (2011).                                          |
| 177 | 18 | Van de Vijver, C., Poot, P. & Prins, H. H. T. Causes of increased nutrient       |
| 178 |    | concentrations in post-fire regrowth in an East African savanna. Plant Soil 214, |
| 179 |    | 173-185, (1999).                                                                 |
|     |    |                                                                                  |

- 182 Figure S1| Frequency among plant species of foliar N concentrations ([N]) in Kansas
- 183 grassland by functional group. Functional groups include C<sub>3</sub> grass [C3G], C<sub>4</sub> grass
- 184 [C4G], non-N<sub>2</sub>-fixing herbaceous eudicots [Forb], and N<sub>2</sub>-fixing eudicots [N<sub>2</sub>-fix]. Foliar
- 185 [N] for each species were measured on first day of flowering.
- 186 Figure S2| Fall weights of male and female bison calves over time at South Dakota
- 187 Prairie.
- 188 Figure S3 Crude protein (CP) and digestible organic matter (DOM) concentrations
- 189 for the Kansas grassland (2011, 2012, 2013) and the South Dakota grassland (2003,
- 190 **2014).**
- 191







Year

