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Summary  

Genetic diversity of SARS-CoV-2 (formerly 2019-nCoV), the virus which causes COVID-19, provides 

information about epidemic origins and the rate of epidemic growth. By analysing 53 SARS-CoV-2 

whole genome sequences collected up to February 3, 2020, we find a strong association between the 

time of sample collection and accumulation of genetic diversity. Bayesian and maximum likelihood 

phylogenetic methods indicate that the virus was introduced into the human population in early 

December and has an epidemic doubling time of approximately seven days. Phylodynamic modelling 

provides an estimate of epidemic size through time. Precise estimates of epidemic size are not possible 

with current genetic data, but our analyses indicate evidence of substantial heterogeneity in the 

number of secondary infections caused by each case, as indicated by a high level of over-dispersion in 

the reproduction number. Larger numbers of more systematically sampled sequences – particularly 

from across China – will allow phylogenetic estimates of epidemic size and growth rate to be 

substantially refined.  
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1. Introduction 

As of 1500 GMT 14 February 2020, almost 64,000 cases of COVID-19 (formerly 2019-nCoV) have been 

reported in China (with 1381 deaths), and cases have been detected in at least 24 regions or countries 

outside mainland China. Since the identification of the novel coronavirus disease from Wuhan City, 

China in December 2019 there have been ongoing efforts to identify the source of the virus. Many of 

the cases reported at the beginning of the epidemic had an epidemiological link to a seafood and 

wildlife market in Wuhan City pointing to a single spillover event from an animal reservoir [1]. Initial 

phylogenetic analysis showed that the new virus was similar to the SARS coronavirus when compared 

with other coronaviruses known to infect humans, with bats or pangolins as the most likely animal 

reservoir [2–4]. 

Genetic data can give insights into the evolving epidemic which are not always apparent from the 

epidemiological data alone. As a virus is transmitted through a population, it will accumulate 

mutations in its genetic code. By identifying changes in genetic sequences sampled from different 

patients, it is possible to reconstruct the evolutionary history of an epidemic. For a novel pathogen of 

zoonotic origin this can allow us to estimate when the pathogen was introduced into the human 

population. Population genetic modelling can also be used to infer population size trends and gives 

some indication of the unobserved burden of disease in the population. 

Previous investigations of publicly available sequence data have presented phylogenetic estimates of 

SARS-CoV-2 time of most recent common ancestor (TMRCA) and growth rates using Bayesian 

phylogenetic methods [5–7]. Here we use 53 publicly available whole genome sequences sampled up 

to February 3, 2020 to estimate the growth rate of the epidemic, the size of the epidemic, and the 

time to most recent common ancestor using a combination of Bayesian and maximum likelihood 

methods and using a phylodynamic SEIR model. 

2. Results 

Bayesian phylogenetic analysis indicates a common ancestor of these virus lineages occurred on 

December 8, 2019 (95% CI: November 21-December 20, 2019). The virus phylogeny is consistent with 

a population genetic model assuming exponential growth. Fitting the exponential growth model 

provides an estimate of the epidemic growth rate. This provides an estimate of the epidemic doubling 

time of 6.6 days (95% CI: 4.0-12.7), which is in line with previous reports based on the same genetic 

data [7]. We also estimated the time to the most recent common ancestor (TMRCA) and doubling time 

using maximum likelihood with similar findings. We estimate the TMRCA to be on 5 December 2019 

(95% CI: 6 November - 13 December 2019) and the doubling time of the epidemic to be 7.1 days (95% 

CI: 3.0-20.5) (Figure 1).   
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Figure 1. Phylodynamic estimates of epidemic origins and growth rates. A) A root to tip regression 

showing the accumulation of genetic diversity with time of sampling. Red points show samples 

while black points show estimated TMRCA between samples. B) The bootstrap distribution of 

estimated TMRCA. C) The bootstrap distribution of epidemic doubling time. D) Bayesian posterior 

distribution of TMRCA. E) Bayesian posterior of the doubling time. Red lines indicate maximum 

likelihood or posterior median and 95% confidence interval. 

Population genetic modelling can be used to infer population size trends and gives some indication of 

the unobserved burden of disease in the population. With currently available data, precise estimates 

are not possible and different methods do not give concordant results, but very wide confidence 

intervals cover a realistic range of values. By fitting a Bayesian phylodynamic SEIR model, we estimate 

that on February 3 there were cumulatively 38,000 infections (95%CI: 4,000-187,000) (Figure 2). These 

values correspond to an R0 of 2.15 (95%CI: 1.79-2.75). Alternatively, using an exponential growth 

model and adjusting for high variance in transmission rates, we estimate 26,000 cumulative infections 

by February 3 (95%CI: 6,000-176,000). With the SEIR model we estimate that on January 18 there were 

4,000 cumulative infections (95%CI: 800-15,000) [8,9]. 
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Figure 2. Estimates of cumulative infections through time based on a structured coalescent epidemic 

model. A) Diagram representing SEIR. The compartment “E” represents the incubation period and 

“R” represents recovered and deaths. There are two categories of infectious individuals to represent 

high variance in transmission rates. B) Cumulative infections through time up to February 3, 2020. 

The shaded region shows the 95% credible interval. 

Phylodynamic estimates are sensitive to assumptions regarding variance in transmission rates 

between individuals as high variance reduces genetic diversity in a sample. We find that estimates 

assuming high levels of overdispersion in the reproduction number are consistent with the 

epidemiological record which shows approximately 20,000 confirmed infections by February 3 [10]. 

Table 1 shows estimated cumulative infections by February 3 under various levels of overdispersion 

in the reproduction number. Higher levels of overdispersion lead to higher estimates of number 

infected. We further considered an exponential growth model where the rate of growth is constrained 

to values estimated in previous reports.  

There are a number of limitations to this analysis. The exponential growth model does not account for 

a reduction in transmission due to public health interventions, such as travel bans, and quarantine 

measures. These estimates do not reflect the situation in areas under quarantine and are more 

strongly influenced by epidemic dynamics near the time of origin. The model does not account for 

geographic structure and this analysis included many samples from outside of Wuhan City and outside 

of mainland China. Sampling of virus genomes was ad-hoc with all early samples originating from 

Wuhan, China, and a majority of recent samples originating from travellers outside of mainland China. 

Sampling included a number of epidemiologically linked patients and known transmission pairs. 

Samples from transmission chains were deduplicated, however transmission histories from travellers 

may be correlated in ways that cannot be easily adjusted for.  
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Table 1: Estimated cumulative infections up to February 3, 2020 based on different population 

genetic models and under various levels of overdispersion in the number of transmissions per 

infected individual. All results with the exponential growth model assume R=2.9 and a 6.5 day serial 

interval, whereas the reproduction number is estimated with the SEIR model.  

 Model type 

Overdispersion 

assumed (k) 

Exponential growth 

R = 2.9, SI = 6.5 days 

Exponential growth 

R = 2.9, SI = 6.5 days 

Growth rate constrained: 

0.14/day 

SEIR model 

(R estimated within model) 

k = 0.075 
52,000 

(13,000-349,000) 

111,000 

(32,000-512,000) 

51,000 

(11,000-335,000) 

k = 0.16 26,000 

(6,000-176,000) 

56,000 

(16,000-259,000) 

38,000 

(4,000-187,000) 

k = 0.30 16,000 

(4,000-105,000) 

33,000 

(10,000-155,000) 

- 

Estimates are given to the nearest 1000 cases. Values in parentheses show 95% confidence intervals. 

3. Conclusions 

Phylodynamic analysis of publicly available SARS-CoV-2 sequence data provides estimates of growth 

and size that are consistent with the epidemiological record. Estimates of epidemic size are highly 

dependent on the unknown level of overdispersion in the reproduction number. Estimates assuming 

relatively low levels of overdispersion are not consistent with the epidemiological record as they 

predict fewer infections than were reported which suggests that there is similar or higher variance in 

transmission rates than was observed in the 2003 SARS epidemic.  

We have found that SARS-CoV-2 evolves at a rate compatible with related coronaviruses 

(approximately 0.0007- 0.002 substitutions per site per year), but the very short period of observation 

has allowed very few mutations to occur. There remains considerable uncertainty in growth rates that 

will be reduced with the incorporation of additional samples in the coming weeks. As the epidemic 

continues to grow and affect more countries, the timely release of genetic data will be invaluable for 

refining future estimates. 

4. Methods 

Bayesian phylogenetic analyses were carried out in BEAST2.6 [11]. Two analyses were carried out with 

different population genetic priors: 1) A coalescent with exponential growth and 2) A SEIR model-

based structured coalescent using the PhyDyn package [12]. All analyses made use of a strict molecular 

clock and an HKY substitution model following previous study designs [7]. The molecular clock rate of 

substitution was constrained between 0.0007 and 0.002 substitutions per site per year. MCMC was 

run for 100 million iterations for exponential 160 million iterations for SEIR excluding 50% burn-in.  
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Estimates of effective population size from the exponential-growth coalescent were translated to 

epidemic prevalence using the transform of Fraser et al. [13]:  

 

Where R is the reproduction number,  days is the generation time, and  is the variance in 

the offspring distribution, which is the distribution in number of transmissions made by a single 

infected individual. In the absence of over-dispersion, this reduces to the equation of Volz et al [14]:

, where  is the per-capita transmission rate. Following previous reports [8,9,15], we 

examined scenarios where R=2.9, and  was chosen to correspond to a SARS-like overdispersion 

parameter of k=0.16 [16], or under the condition of no overdispersion.  

The SEIR model incorporated two classes of infectious individuals in order to produce a realistic 

variance of the offspring distribution which corresponds to the SARS-like k=0.16. The model has a high 

transmission rate group comprising 13.5% of infected individuals who transmit at a rate 74 times 

larger than the remaining infected individuals.  

Maximum likelihood analysis: Time scaled phylogenies, substitution rates, and TMRCA were estimated 

using the treedater R package 0.5.0 [17]. The rate of evolution was constrained between 0.0005-

0.00125 substitutions per site per year. Polytomies were resolved randomly prior to coalescent 

analysis and results averaged. Parametric bootstrap was used to estimate uncertainty. Sample 

selection, quality control, and computation of maximum likelihood phylogenies was based on the 

Nextstrain platform [8,9]. Sequences were aligned using MAFFT [18] and phylogenies estimated using 

IQTree [19].  Discussions on http://virological.org assisted greatly with quality control and sample 

selection. Lineages were dropped from the tree if multiple samples came from a household or a known 

transmission pair.  An exponential-growth coalescent model was implemented in the phydynR 

package [12]. This model was fitted by maximum likelihood to the bootstrap distribution of 

phylogenies.  

Sequences 

See supplementary file for GISAID IDs of sequences used for analyses: gisaid_id.csv. 
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