Skip to main content

The Place of Dopamine Neurons Within the Organization of the Forebrain

  • Chapter
Dopamine in the CNS I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 154 / 1))

  • 262 Accesses

Abstract

The midbrain dopamine neurons play a unique role in basal ganglia and cortical circuits, modulating a broad range of behaviors from learning and “working memory” to motor control. Dopamine neurons are considered to be key for focusing attention on significant and rewarding stimuli, a requirement for the acquisition of behaviors Schultz et al. 1997 Yamaguchi and Kobayashi 1998. This acquisition not only involves limbic, cognitive, and motor pathways, but requires the coordination of information between these pathways. Consistent with its role as a mediator of complex behaviors in response to the environment Ljungberg et al. 1992; Schultz et al. 1995, the dopamine pathways are in a position to provide an interface between the limbic, cognitive, and motor functional domains of the forebrain, through complex forebrain neuronal networks. The differential relationship between dopamine projections to the striatum and cortex further emphasizes the role midbrain dopamine neurons play in the ability to respond appropriately to environmental cues. Subpopulations of dopamine neurons have been associated with different functions such as reward and motivation, cognition and higher cortical processing, and movement and sensorimotor integration. Classically, these functions are related to the mesolimbic, mesocortical system, and striatonigral pathways respectively. This chapter reviews the organization of the midbrain dopamine pathways and how they relate to the integration of limbic, cognitive, and motor functions of the forebrain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolphs R, Tranel D, Damasio H, Damasio A (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372:669–672

    Article  PubMed  CAS  Google Scholar 

  • Aggleton JP (1993) The contribution of the amygdala to normal and abnormal emotional states. Trends Neurosci 16:328–333

    Article  PubMed  CAS  Google Scholar 

  • Afifi AK, Bahuth NB, Kaelber WW, Mikhael E, Nassar S (1974) The cortico-nigral fibre tract. An experimental Fink-Heimer study in cats. J Anat 118(3):469–476

    PubMed  CAS  Google Scholar 

  • Aggleton JP, Burton MJ, Passingham RE (1980) Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res 190:347–368

    Article  PubMed  CAS  Google Scholar 

  • Alheid GF, Heimer L (1988) New perspectives in basal forebrain Organization of special relevance for neuropsychiatric disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39

    Article  PubMed  CAS  Google Scholar 

  • Amaral DG, Cowan WM (1980) Subcortical afferents to the hippocampal formation in the monkey J Comp Neurol 189:573–591

    CAS  Google Scholar 

  • Bjorklund A, Lindvall O (1984) Dopamine-containing Systems in the CNS. In: Bjorklund, Hokfelt (eds) Handbook of Chemical Neuroanatomy, Vol. II: Classical Transmitters in the CNS, Part I, pp 55–122. Amsterdam: Elsevier

    Google Scholar 

  • Bunney BS, Aghajanian GK (1976) The precise localization of nigral afferents in the rat as determined by a retrograde tracing technique. Brain Res 117:423–435

    Article  PubMed  CAS  Google Scholar 

  • Carpenter MB, Peter P (1971) Nigrostriatal and nigrothalamic fibers in the rhesus monkey. J Comp Neurol 144:93–116

    Article  Google Scholar 

  • Carter CJ (1980) Glutamatergic pathways from the medial pre-frontal cortex to the anterior striatum, nucleus accumbens and substantia nigra. Brti J Phermacol 70:50–51

    Google Scholar 

  • Cassell MD, Freedman LJ, Shi C (1999) The Intrinsic Organization of the Central Extended Amygdala. Annais of the New York Academy of Sciences 877:217–241

    Article  CAS  Google Scholar 

  • Cassell MD, Gray TS, Kiss JZ (1986) Neuronal architecture in the rat central nucleus of the amygdala: a cytological, hodological, and immunocytochemical study. Journal of Comparative Neurology 246(4):478–99

    Article  PubMed  CAS  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  PubMed  CAS  Google Scholar 

  • Deutch AY, Goldstein M, Roth RH (1986) The ascending projections of the dopaminergic neurons of the substantia nigra, zona reticulata: a combined retrograde tracer-immunohistochemical study. Neuroscience Letters 71:257–263

    Article  PubMed  CAS  Google Scholar 

  • Fallon JH (1978) Catecholamine Innervation of the Basal Forebrain. II.Amygdala, suprarhinal cortex and entorhinal cortex. J Comp Neurol 180(3):509–532

    Article  PubMed  CAS  Google Scholar 

  • Fallon JH, Loughlin SE (1987) Monoamine Innervation of cerebral cortex and a theory of the role of monoamines in cerebral cortex and basal ganglia. In: Jones EG, Peters A (eds) Cerebral Cortex, pp 41–109. Plenum Press

    Google Scholar 

  • Fallon JH, Moore RY (1978) Catecholamine Innervation of the basal forebrain. IV. Topography of the dopamine projections to the basal forebrain and neostriatum. J Comp Neurol 180(3):545–580

    Article  PubMed  CAS  Google Scholar 

  • Feiten DL, Sladek JR, Jr. (1983) Monoamine distribution in primate brain. V. Monoaminergic nuclei: anatomy, pathways and local Organization. Brain Res Bull 10:171–284

    Article  Google Scholar 

  • Flaherty AW, Graybiel AM (1994) Input-output Organization of the sensorimotor striatum in the squirrel monkey. J Neurosci 14:599–610

    PubMed  CAS  Google Scholar 

  • Francois C, Percheron G, Yelnik J (1984) Localization of nigrostriatal, nigrothalamic and nigrotectal neurons in ventricular coordinates in macaques. Neuroscience 13, No. 1:61–76

    Article  Google Scholar 

  • Francois C, Percheron G, Yelnik J, Heyner S (1985) A histological atlas of the macaque (Macaca mulatta) substantia nigra in ventricular coordinates. Brain Res Bull 14:349–367

    Article  PubMed  CAS  Google Scholar 

  • Freedman LJ, Cassell MD (1994) Distribution of dopaminergic fibers in the central division of the extended amygdala of the rat. Brain Research 633(1–2):243–52

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Hokfelt T, Ungerstedt U (1970) Morphological and Functional Aspects of Central Monoamine Neurons. Int Review of Neurobiology 13:93–126

    Google Scholar 

  • Gallagher M, Holland PC (1994) The amygdala complex: multiple roles in associative learning and attention. Proceedings of the National Academy of Sciences of the United States of America 91(25):11771–6

    Article  PubMed  CAS  Google Scholar 

  • Gaspar P, Berger B, Febvret A, Vigny A, Henry JP (1989) Catecholamine Innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine-beta-hydroxylase. J Comp Neurol 279:249–271

    Article  PubMed  CAS  Google Scholar 

  • Gaspar P, Stepneiwska I, Kaas JH (1992) Topography and collateralization of the dopaminergic projections to motor and lateral prefrontal cortex in owl monkeys. J Comp Neurol 325:1–21

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Baimbridge KG, Miller JJ (1985) The neostriatal mosaic: Compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proc Natl Acad Sci USA 82:8780–8784

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1994) Working memory dysfunetion in schizophrenia. J Neuropsychiatry Clin Neurosci 6:348–357

    PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Selemon LD (1986) Topography of corticostriatal projections in nonhuman primates and implications for functional parcellation of the neostriatum. In: Jones EG, Peters A (eds) Cerebral Cortex Vol. 5, pp 447–466. New York: Plenum Publishing Corporation

    Google Scholar 

  • Gonzales C, Chesselet M-F (1990) Amygdalonigral Pathway: An anterograde study in the rat with phaseolus vulgaris leucoagglutinin. J Comp Neurol 297:182–200

    Article  PubMed  CAS  Google Scholar 

  • Groenewegen HJ, Berendse HW (1994a) Anatomical relationships between the prefrontal cortex and the basal ganglia in the rat In: A.-M. T (ed) Motor and Cognitive Functions of the Prefrontal Cortex, pp 51–77. Berlin Heidelberg: Springer-Verlag

    Chapter  Google Scholar 

  • Groenewegen HJ, Berendse HW (1994b) The speeificity of the &quote;nonspeeifie&quote; midline and intralaminar thalamic nuclei. Trends Neurosci 17:50

    Article  Google Scholar 

  • Groenewegen HJ, Wright CI, Beijer AVJ (1996) The nucleus accumbens: gateway for limbic struetures to reach the motor System? In: Holstege G, Bandler R, Saper CP (eds) Progress in Brain Research, pp 485–511: Elsevier Science

    Google Scholar 

  • Groenewegen HJ, Wright CI, Uylings HB (1997) The anatomical relationships of the prefrontal cortex with limbic struetures and the basal ganglia. Journal of Psychopharmacology 11(2):99–106

    Article  PubMed  CAS  Google Scholar 

  • Haber SN, Fudge JL (1997) The primate substantia nigra and VTA: Integrative cireuitry and funetion. Crit Rev Neurobiol 11(4):323–342

    Article  PubMed  CAS  Google Scholar 

  • Haber SN, Fudge JL, McFarland N (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20(6):2369–2382

    PubMed  CAS  Google Scholar 

  • Haber SN, Kunishio K, Mizobuchi M, Lynd-Balta E (1995a) The orbital and medial prefrontal cireuit through the primate basal ganglia. J Neurosci 15:4851–4867

    PubMed  CAS  Google Scholar 

  • Haber SN, Lynd E, Klein C, Groenewegen HJ (1990) Topographie Organization of the ventral striatal efferent projections in the rhesus monkey: An anterograde tracing study. J Comp Neurol 293:282–298

    Article  PubMed  CAS  Google Scholar 

  • Haber SN, McFarland NR (1999) The coneept of the ventral striatum in nonhuman primates. In: McGinty JF (ed) Advancing from the ventral striatum to the extended amygdala, pp 33–48. New York: The New York Academy of Sciences

    Google Scholar 

  • Haber SN, Ryoo H, Cox C, Lu W (1995b) Subsets of midbrain dopaminergic neurons in monkeys are distinguished by different levels of mRNA for the dopamine transporter: Comparison with the mRNA for the D2 receptor, tyrosine hydroxylase and calbindin immunoreactivity. J Comp Neurol 362:400–410

    Article  PubMed  CAS  Google Scholar 

  • Halliday GM, Tork I (1986) Comparative anatomy of the ventromedial mesencephalic tegmentum in the rat, cat, monkey and human. J Comp Neurol 252:423–445

    Article  PubMed  CAS  Google Scholar 

  • Hedreen JC, DeLong MR (1991) Organization of striatopallidal, striatonigal, and nigrostriatal projections in the Macaque. J Comp Neurol 304:569–595

    Article  PubMed  CAS  Google Scholar 

  • Heimer L, Alheid GF, de Olmos JS, Groenewegen HJ, Haber SN, Harlan RE, Zahm DS (1997) The Accumbens: Beyond the core-shell dichotomy. J Neuropsychiatry Clin Neurosci 9(3):354–381

    PubMed  CAS  Google Scholar 

  • Heimer L, de Olmos J, Alheid GF, Zaborszky L (1991) &quote;Perestroika&quote; in the basal forebrain: Opening the border between neurology and psychiatry. In: Holstege G (ed) Progress in Brain Research, Vol. 87, pp 109–165: Elsevier Science Publishers

    Google Scholar 

  • Heimer L, Switzer RD, Van Hoesen GW (1982) Ventral striatum and ventral pallidum. Components of the motor System? Trends Neurosci Vol. 5:83–87

    Article  Google Scholar 

  • Hirsch EC, Mouatt A, Thomasset M, Javoy-Agid F, Agid Y, Graybiel AM (1992) Expression of calbindin D28K-like immunoreactivity in catecholaminergic cell groups of the human midbrain: normal distribution and distribution in Parkinson’s disease. Neurodegeneration 1:83–93

    Google Scholar 

  • Hokfelt T, Martensson R, Bjorklund A, Kleinau S, Goldstein M (1984) Distributional maps of tyrosine-hydroxylase immunoreactive neurons in the rat brain. In: Bjorklund A, Hokfelt T (eds) Handbook of Chemical Neuroanatomy, Vol. II: Classical Neurotransmitters in the CNS, Part I, pp 277–379. Amsterdam: Elsevier

    Google Scholar 

  • Hopkins DA (1975) Amygdalotegmental projections in the rat, cat, and rhesus monkey. Neuroscience Letters 1:263–270

    Article  PubMed  CAS  Google Scholar 

  • Johnson TN, Rosvold HE (1971) Topographie projections on the globus pallidus and the substantia nigra of selectively placed lesions in the precommissural caudate nucleus and putamen in the monkey. Exp Neurol 33:584–596

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Churchill L, Klitenick MA (1993) The Circuitry Mediating the Translation of Motivational Stimuli into Adaptive Motor Responses. In: Kalivas PW, Barnes CD (eds) Limbic Motor Circuits and Neuropsychiatry, pp 237–275. Boca Raton: CRC Press, Inc

    Google Scholar 

  • Kerkerian L, Nieoullon A, Dusticier N (1983) Topographie changes in high-affinity glutamate uptake in the cat red nucleus, substantia nigra, thalamus, and caudate nucleus after lesions of sensorimotor cortical areas. Experimental Neurology 81(3):598–612

    Article  PubMed  CAS  Google Scholar 

  • Kimura M (1990) Behaviorally contingent property of movement-related activity of the primate putamen. J Neurophysiol 63:1277–1296

    PubMed  CAS  Google Scholar 

  • Koob GF, Nestler EJ (1997) The Neurobiology of Drug Addiction. The Journal of Neuropsychiatry and Clinical Neurosciences 9:482–497

    PubMed  CAS  Google Scholar 

  • Kornhuber J (1984) The cortico-nigral projection: reduced glutamate content in the substantia nigra following frontal cortex ablation in the rat. Brain Res 322:124–126

    Article  PubMed  CAS  Google Scholar 

  • Krettek JE, Price JL (1978) Amygdaloid projections to subcortical struetures within the basal forebrain and brainstem in the rat and cat. J Comp Neurol 178:225–254

    Article  PubMed  CAS  Google Scholar 

  • Künzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res 88:195–209

    Article  PubMed  Google Scholar 

  • Künzle H (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav Evol 15:185–234

    Article  PubMed  Google Scholar 

  • Lavoie B, Parent A (1991) Dopaminergic neurons expressing calbindin in normal and parkinsonian monkeys. Neuroreport 2, No. 10:601–604

    Article  Google Scholar 

  • Leichnetz GR, Astruc J (1976) The efferent projections of the medial prefrontal cortex in the squirrel monkey (Saimiri sciureus). Brain Research 109(3):455–472

    Article  PubMed  CAS  Google Scholar 

  • Levitt P, Rakic P, Goldman-Rakic P (1984) Region-specific distribution of cat cholamine afferents in primate cerebral cortex: A fluorescence histochemical analysis. J Comp Neurol 227:23–36

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Campbell MJ, Foote SL, Goldstein M, Morrison JH (1987) The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosci 7(1):279–290

    PubMed  CAS  Google Scholar 

  • Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H] raclopride, [3H] spiperone and [3H]sch23390. Neuroscience 40, No. 3:657–671

    Article  Google Scholar 

  • Liles SL, Updyke BV (1985) Projection of the digit and wrist area of precentral gyrus to the putamen: relation between topography and physiological properties of neurons in the putamen. Brain Res 339:245–255

    Article  PubMed  CAS  Google Scholar 

  • Ljungberg T, Apicella P, Schultz W (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol 67(1):145–163

    PubMed  CAS  Google Scholar 

  • Lynd-Balta E, Haber SN (1994a) The Organization of midbrain projections to the striatum in the primate: Sensorimotor-related striatum versus ventral striatum. Neuroscience 59:625–640

    Article  PubMed  CAS  Google Scholar 

  • Lynd-Balta E, Haber SN (1994b) Primate striatonigral projections: A comparison of the sensorimotor-related striatum and the ventral striatum. J Comp Neurol 343:1–17

    Article  Google Scholar 

  • McRitchie DA, Halliday GM (1995) Calbindin D28K-containing neurons are restricted to the medial substantia nigra in humans. Neuroscience 65:87–91

    Article  PubMed  CAS  Google Scholar 

  • Mehler WR (1980) Subcortical afferent connections of the amygdala in the monkey. J Comp Neurol 190:733–762

    Article  PubMed  CAS  Google Scholar 

  • Meredith GE, Pattiselanno A, Groenewegen HJ, Haber SN (1996) Shell and core in monkey and human nucleus accumbens identified with antibodies to calbindin-D28 k. J Comp Neurol 365:628–639

    Article  PubMed  CAS  Google Scholar 

  • Mogenson GJ, Brudzynski SM, Wu M, Yang CR, Yim CCY (1993) From motivation to action: A review of dopaminergic regulation of limbic-nucleus accumbens-pedunculopontine nucleus circuitries involved in limbic-motor Integration. In: Kalivas PW, Barnes CD (eds) Limbic Motor Circuits and Neuropsychiatry, pp 193–236. Boca Raton: CRC Press

    Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: Functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    Article  PubMed  CAS  Google Scholar 

  • Nauta WJH, Domesick VB (1978) Crossroads of limbic and striatal circuitry: hypothalamic-nigral connections. In: Livingston KE, Hornykiewicz O (eds) Limbic Mechanisms, pp 75–93. New York: Plenum Publishing Corp

    Google Scholar 

  • Nauta WJH, Smith GP, Faull RLM, Domesick VB (1978) Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience 3:385–401

    Article  PubMed  CAS  Google Scholar 

  • Nishijo H, Ono T, Nishino H (1988) Single neuron responses in amygdala of alert monkey during complex sensory Stimulation with affective significance. J Neurosci 8:3570–3583

    PubMed  CAS  Google Scholar 

  • Norita M, Kawamura K (1980) Subcortical afferents to the monkey amygdala: an HRP study. Brain Res 190:225–230

    Article  PubMed  CAS  Google Scholar 

  • Olszewski J, Baxter D (1954) Cytoarchitecture of the Human Brain Stern. Basil: S. Karger

    Google Scholar 

  • Parent A, Bouchard C, Smith Y (1984) The striatopallidal and striatonigral projections: two distinct fiber Systems in primate. Brain Res 303:385–390

    Article  PubMed  CAS  Google Scholar 

  • Parent A, Hazrati L-N (1994) Multiple striatal representation in primate substantia nigra. J Comp Neurol 344:305–320

    Article  PubMed  CAS  Google Scholar 

  • Parent A, Lavoie B (1993) The heterogeneity of the mesostriatal dopaminergic system as revealed in normal and Parkinsonian monkeys. Adv Neurol 60:25–20

    PubMed  CAS  Google Scholar 

  • Parent A, Mackey A, De Bellefeuille L (1983) The subcortical afferents to caudate nucleus and putamen in primate: a fluorescence retrograde double labeling study. Neuroscience 10(4):1137–1150

    Article  PubMed  CAS  Google Scholar 

  • Pearson J, Goldstein M, Brandeis L (1979) Tyrosine hydroxylase immunohistochemistry in human brain. Brain Res 165:333–337

    Article  PubMed  CAS  Google Scholar 

  • Poirier LJ, Giguere M, Marchand R (1983) Comparative morphology of the substantia nigra and ventral tegmental area in the monkey, cat and rat. Brain Res Bull 11:371–397

    Article  PubMed  CAS  Google Scholar 

  • Porrino LJ, Goldman-Rakic PS (1982) Brainstem Innervation of prefronal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. J Comp Neurol 205:63–76

    Article  PubMed  CAS  Google Scholar 

  • Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. J Neurosci 1:1242–1259

    PubMed  CAS  Google Scholar 

  • Rolls ET, Burton MJ, Mora F (1980) Neurophysiological analysis of brain-stimulation reward in the monkey. Brain Research 194:339–357

    Article  PubMed  CAS  Google Scholar 

  • Sadikot AF, Parent A (1990) The monoaminergic Innervation of the amygdala in the squirrel monkey: an immunohistochemical study. Neuroscience 36:431–447

    Article  PubMed  CAS  Google Scholar 

  • Samson Y, Wu JJ, Friedman AH, Davis JN (1990) Catecholaminergic Innervation of the hippocampus in the cynomolgus monkey. J Comp Neurol 298:250–263

    Article  PubMed  CAS  Google Scholar 

  • Schultz W, Dayan P, Montague PR (1997) A neural Substrate of prediction and reward. [Review] [37 refs]. Science 275:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Schultz W, Romo R, Ljungberg T, Mirenowicz J, Hollerman JR, Dickinson A (1995) Reward-related signals carried by dopamine neurons. In: Houk JC, Davis JL, Beiser DG (eds) Models of Information Processing in the Basal Ganglia, pp 233–248: Cambridge: MIT Press

    Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794

    PubMed  CAS  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1990) Topographie intermingling of striatonigral and striatopallidal neurons in the rhesus monkey. J Comp Neurol 297:359–376

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Deutch AY, Roth RH, Bunney BS (1989) Topographical Organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. Journal Of Comparative Neurology 290:213–242

    Article  PubMed  CAS  Google Scholar 

  • Sesack SR, Hawrylak VA, Melchitzky DS, Lewis DA (1998) Dopamine Innervation of a subclass of local cireuit neurons in monkey prefrontal cortex: ultrastructural analysis of tyrosine hydroxylase and parvalbumin immunoreactive struetures. Cerebral Cortex 8(7):614–22

    Article  PubMed  CAS  Google Scholar 

  • Smith Y, Parent A (1986) Differential connections of the caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus). Neuroscience 18(2):347–371

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Bolam JP, Totterdell S, Smith AD (1981) Monosynaptic input from the nucleus accumbens-ventral striatum region to retrogradely labelled nigrostriatal neurones. Brain Res 217:245–263

    Article  PubMed  CAS  Google Scholar 

  • Szabo J (1967) The efferent projections of the putamen in the monkey. Exp Neurol 19:463–476

    Article  PubMed  CAS  Google Scholar 

  • Szabo J (1970) Projections from the body of the caudate nucleus in the rhesus monkey. Exp Neurol 27:1–15

    Article  PubMed  CAS  Google Scholar 

  • Szabo J (1979) Cellular and synaptic Organization of basal ganglia. Appl Neurophysiol 42:9–12

    PubMed  CAS  Google Scholar 

  • Szabo J (1980) Organization of the ascending striatal afferents in monkeys. J Comp Neurol 189:307–321

    Article  PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand 367:153–174

    Google Scholar 

  • Usunoff KG, Romansky KV, Malinov GB, Ivanov DP, Blagov ZA, Galabov GP (1982) Electron microscopic evidence for the existence of a corticonigral tract in the cat. Journal für Hirnforschung 23(1):23–9

    PubMed  CAS  Google Scholar 

  • Verney C, Milosevic A, Alvarex C, Berger B (1993) Immunocytochemical evidence of well-developed dopaminergic and noradernergic innervations in the frontal cerebral cortex of human fetuses at midgestation. J Comp Neurol 336:331–344

    Article  PubMed  CAS  Google Scholar 

  • Voorn P, Brady LS, Berendse HW, Richfield EK (1996) Densitometrical analysis of Opioid reeeptor ligand binding in the human striatum —I. Distribution of μ Opioid reeeptor defines shell and core of the ventral striatum. Neuroscience 75:777–792

    Article  PubMed  CAS  Google Scholar 

  • Wilson FA, Rolls ET (1993) The effects of Stimulus novelty and familiarity on neuronal activity in the amygdala of monkeys performing recognition memory tasks. Experimental Brain Research 93(3):367–82

    Article  CAS  Google Scholar 

  • Wise RA, Rompre PP (1989) Brain dopamine and reward. Annual Review of Psychology 40:191–225

    Article  PubMed  CAS  Google Scholar 

  • Wright CI, Groenewegen HJ (1996) Patterns of overlap and segregation between insular cortical, intermediodorsal thalamic and basal amygdaliod afferents in the nucleus accumbens of the rat. Neuroscience 73:359–373

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi S, Kobayashi S (1998) Contributions of the dopaminergic system to voluntary and automatic orienting of visuospatial attention. Journal Of Neuroscience 18:1869–1878

    PubMed  CAS  Google Scholar 

  • Zaborszky L, Alheid GF, Beinfeld MC, Eiden LE, Heimer L, Palkovits M (1985) Cholecystokinin Innervation of the ventral striatum: A morphological and radioimmunological study. Neuroscience 14, No. 2:427–453

    Article  Google Scholar 

  • Zahm DS, Brog JS (1992) On the significance of subterritories in the &quote;accumbens&quote; part of the rat ventral striatum. Neuroscience 50, No. 4:751–767

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haber, S.N. (2002). The Place of Dopamine Neurons Within the Organization of the Forebrain. In: Di Chiara, G. (eds) Dopamine in the CNS I. Handbook of Experimental Pharmacology, vol 154 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-56051-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-56051-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62726-2

  • Online ISBN: 978-3-642-56051-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics