Skip to main content
Log in

Heterogeneous Distribution of Kir3 Potassium Channel Proteins Within Dopaminergic Neurons in the Mesencephalon of the Rat Brain

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

1. Dopaminergic neurons in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA) of the ventral mesencephalon play an important role in the regulation of the parallel basal ganglia loops.

2. We have raised affinity-purified polyclonal rabbit antibodies specific for all four members of the Kir3 family of inwardly rectifying potassium channels (Kir3.1–Kir3.4) to investigate the distribution of the channel proteins in the dopaminergic neurons of the rat mesencephalon at light and electron microscopic level. In addition, immunocytochemical double labeling with tyrosine hydroxylase (TH), a marker of dopaminergic neurons, were performed.

3. All Kir3 channels were present in this region. However, the individual proteins showed differential cellular and subcellular distributions.

4. Kir3.1 immunoreactivity was found in SNc fibers and some neurons of the substantia nigra pars reticulata (SNr). Few Kir3.3-positive neurons were found in the SNc. However, a strong Kir3.3 signal was identified in the SNr neuropil. Weak Kir3.4 staining was detected in neuronal somata as well as in dendritic fibers of both parts of the SN.

5. In the VTA, Kir3.1, Kir3.3, and Kir3.4 showed only weak staining of neuropil structures. The distribution of the Kir3.2 channel protein was especially striking with strong labeling in the SNc and in the lateral but not central VTA.

6. Our results suggest that the heterogeneously distributed Kir3.2 channel proteins could help to discriminate the dopaminergic neurons of VTA and SNc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  • Adelbrecht, C., Murer, M. G., Lauritzen, I., Lesage, F., Ladzunski, M., Agid, Y., and Raisman-Vozari, R. (1997). An immunocytochemical study of a G-protein-gated inward rectifier K+ channel (GIRK2) in the weaver mouse mesencephalon. Neuroreport 8:969–974.

    Article  PubMed  CAS  Google Scholar 

  • Andres, K. H., and von Düring, M. (1981). General methods for characterization of brain regions. In Heym, C. H., and Forssmann, W. G. (eds.), Techniques in Neuroanatomical Research, Springer, Heidelberg Berlin New York, pp. 100–108.

    Google Scholar 

  • Bosboom, J. L., Stoffers, D., and Wolters, E. C. (2004). Cognitive dysfunction and dementia in Parkinson's disease. J. Neural. Transm. 111:1303–1315.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S. C., Ehrhard, P., Goldowitz, D., and Smeyne, R. J. (1997). Developmental expression of the GIRK family of inward rectifying potassium channels: Implications for abnormalities in the weaver mutant mouse. Brain Res. 778:251–264.

    Article  PubMed  CAS  Google Scholar 

  • Cheney, J. A., Weisser, J. D., Bareyre, F. M., Laurer, H. L., Saatman, K. E., Raghupathi, R., Gribkoff, V., Starrett, J. E., Jr., and McIntosh, T. K. (2001). The maxi-K channel opener BMS-204352 attenuates regional cerebral edema and neurologic motor impairment after experimental brain injury. J. Cereb. Blood Flow Metab. 21:396–403.

    Article  PubMed  CAS  Google Scholar 

  • Dissmann, E., Wischmeyer, E., Spauschus, A., von Pfeil, D., Karschin, C., and Karschin, A. (1996). Functional expression and cellular mRNA localization of a G protein-activated K+ inward rectifier isolated from rat brain. Biochem. Biophys. Res. Commun. 223:474–479.

    Article  PubMed  CAS  Google Scholar 

  • Drake, C. T., Bausch, S. B., Milner, T. A., and Chavkin, C. (1997). GIRK1 immunoreactivity is present predominantly in dendrites, dendritic spines, and somata in the CA1 region of the hippocampus. Proc. Natl. Acad. Sci. U.S.A. 94:1007–1012.

    Article  PubMed  CAS  Google Scholar 

  • Duvoisin, R. C. (1999). Genetic and environmental factors in Parkinson's disease. Adv. Neurol. 80:161–163.

    PubMed  CAS  Google Scholar 

  • Golanov, E. V., and Zhou, P. (2003). Neurogenic neuroprotection. Cell. Mol. Neurobiol. 23:651–663.

    Article  PubMed  Google Scholar 

  • Gonzalez-Hernandez, T., Barroso-Chinea, P., Acevedo, A., Salido, E., and Rodriguez, M. (2001). Colocalization of tyrosine hydroxylase and GAD65 mRNA in mesostriatal neurons. Eur. J. Neurosci. 13:57–67.

    Article  PubMed  CAS  Google Scholar 

  • Gruber, A., and Zingales, B. (1995). Alternative method to remove antibacterial antibodies from antisera used for screening of expression libraries. Biotechniques 19:28–30.

    PubMed  CAS  Google Scholar 

  • Haber, S. N., and Fudge, J. L. (1997). The primate substantia nigra and VTA: Integrative circuitry and function. Crit. Rev. Neurobiol. 11:323–342.

    PubMed  CAS  Google Scholar 

  • Harashima, C., Jacobowitz, D. M., Witta, J., Borke, R. C., Best, T. K., Siarey, R. J., and Galdzicki, Z. (2006). Abnormal expression of the G-protein-activated inwardly rectifying potassium channel 2 (GIRK2) in hippocampus, frontal cortex, and substantia nigra of Ts65Dn mouse: A model of Down syndrome. J. Comp. Neurol. 494:815–833.

    Article  PubMed  CAS  Google Scholar 

  • Harlow, E., and Lane, D. (eds.) (1988). Antibodies: A Laboratory Manual, CSH Laboratory Press, Cold Spring Harbor, NY.

  • Hirsch, E. C., Faucheux, B., Damier, P., Mouatt-Prigent, A., and Agid, Y. (1997). Neuronal vulnerability in Parkinson's disease. J. Neural. Transm. Suppl. 50:79–88.

    PubMed  CAS  Google Scholar 

  • Iizuka, M., Tsunenari, I., Momota, Y., Akiba, I., and Kono, T. (1997). Localization of a G-protein-coupled inwardly rectifying K+ channel, CIR, in the rat brain. Neuroscience 77:1–13.

    Article  PubMed  CAS  Google Scholar 

  • Inanobe, A., Horio, Y., Fujita, A., Tanemoto, M., Hibino, H., Inageda, K., and Kurachi, Y. (1999a). Molecular cloning and characterization of a novel splicing variant of the Kir3.2 subunit predominantly expressed in mouse testis. J. Physiol. 521:19–30.

    Article  PubMed  CAS  Google Scholar 

  • Inanobe, A., Yoshimoto, Y., Horio, Y., Morishige, K. I., Hibino, H., Matsumoto, S., Tokunaga, Y., Maeda, T., Hata, Y., Takai, Y., and Kurachi, Y. (1999b). Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. J. Neurosci. 19:1006–1017.

    PubMed  CAS  Google Scholar 

  • Karschin, C., Dissmann, E., Stuhmer, W., and Karschin, A. (1996). IRK(1–3) and GIRK(1–4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J. Neurosci. 16:3559–3570.

    PubMed  CAS  Google Scholar 

  • Kobayashi, T., Washiyama, K., and Ikeda, K. (2004). Inhibition of G protein-activated inwardly rectifying K+ channels by various antidepressant drugs. Neuropsychopharmacology 29:1841–1851.

    Article  PubMed  CAS  Google Scholar 

  • Liao, Y. J., Jan, Y. N., and Jan, L. Y. (1996). Heteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain. J. Neurosci. 16:7137–7150.

    PubMed  CAS  Google Scholar 

  • Liss, B., Neu, A., and Roeper, J. (1999b). The weaver mouse gain-of-function phenotype of dopaminergic midbrain neurons is determined by coactivation of wvGirk2 and K-ATP channels. J. Neurosci. 19:8839–8848.

    PubMed  CAS  Google Scholar 

  • Liss, B., Bruns, R., and Roeper, J. (1999a). Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons. EMBO J. 18:833–846.

    Article  PubMed  CAS  Google Scholar 

  • Liss, B., and Roeper, J. (2001). Molecular physiology of neuronal K-ATP channels. Mol. Membr. Biol. 18:117–127.

    Article  PubMed  CAS  Google Scholar 

  • McRitchie, D. A., Hardman, C. D., and Halliday, G. M. (1996). Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans. J. Comp. Neurol. 364:121–150.

    Article  PubMed  CAS  Google Scholar 

  • Mendez, I., Sanchez-Pernaute, R., Cooper, O., Vinuela, A., Ferrari, D., Bjorklund, L., Dagher, A., and Isacson, O. (2005). Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson's disease. Brain 128:1498–1510.

    Article  PubMed  Google Scholar 

  • Miyashita, T., and Kubo, Y. (1997). Localization and developmental changes of the expression of two inward rectifying K(+)-channel proteins in the rat brain. Brain Res. 750:251–263.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, A. D., Carroll, M. E., Loth, A. K., Stoffel, M., and Wickman, K. (2003). Decreased cocaine self-administration in Kir3 potassium channel subunit knockout mice. Neuropsychopharmacology 28:932–938.

    PubMed  CAS  Google Scholar 

  • Murer, G., Adelbrecht, C., Lauritzen, I., Lesage, F., Lazdunski, M., Agid, Y., and Raisman-Vozari, R. (1997). An immunocytochemical study on the distribution of two G-protein-gated inward rectifier potassium channels (GIRK2 and GIRK4) in the adult rat brain. Neuroscience 80:345–357.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, C. S., Marinoand, J. L., and Allen, C. N. (1997). Cloning and characterization of Kir3.1 (GIRK1) C-terminal alternative splice variants. Brain Res. Mol. Brain Res. 46:185–196.

    Article  PubMed  CAS  Google Scholar 

  • Pompeia, C., Ortis, F., and Armelin, M. C. (1996). Immunopurification of polyclonal antibodies to recombinant proteins of the same gene family. Biotechniques 21:986–990.

    PubMed  CAS  Google Scholar 

  • Ponce, A., Bueno, E., Kentros, C., Vega-Saenz de Miera, E., Chow, A., Hillman, D., Chen, S., Zhu, L., Wu, M. B., Wu, X., Rudy, B., and Thornhill, W. B. (1996). G-protein-gated inward rectifier K+ channel proteins (GIRK1) are present in the soma and dendrites as well as in nerve terminals of specific neurons in the brain. J. Neurosci. 16:1990–2001.

    PubMed  CAS  Google Scholar 

  • Prüss, H., Derst, C., Lommel, R., and Veh, R. W. (2005). Differential distribution of individual subunits of strongly inwardly rectifying potassium channels (Kir2 family) in rat brain. Mol. Brain Res. 139:63–79.

    Article  PubMed  Google Scholar 

  • Prüss, H., Wenzel, M., Eulitz, D., Thomzig, A., Karschin, A., and Veh, R. W. (2003). Kir2 potassium channels in rat striatum are strategically localized to control basal ganglia function. Mol. Brain Res. 110:203–219.

    Article  PubMed  Google Scholar 

  • Schein, J. C., Hunter, D. D., and Roffler-Tarlov, S. (1998). Girk2 expression in the ventral midbrain, cerebellum, and olfactory bulb and its relationship to the murine mutation weaver. Dev. Biol. 204:432–450.

    Article  PubMed  CAS  Google Scholar 

  • Shi, R., and Blight, A. R. (1997). Differential effects of low and high concentrations of 4-aminopyridine on axonal conduction in normal and injured spinal cord. Neuroscience 77:553–562.

    Article  PubMed  CAS  Google Scholar 

  • Spauschus, A., Lentes, K. U., Wischmeyer, E., Dissmann, E., Karschin, C., and Karschin, A. (1996). A G-protein-activated inwardly rectifying K+ channel (GIRK4) from human hippocampus associates with other GIRK channels. J. Neurosci. 16:930–938.

    PubMed  CAS  Google Scholar 

  • Standen, N. B., Quayle, J. M., Davies, N. W., Brayden, J. E., Huang, Y., and Nelson, M. T. (1989). Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 245:177–180.

    Article  PubMed  CAS  Google Scholar 

  • Sturgess, N. C., Ashford, M. L., Cook, D. L., and Hales, C. N. (1985). The sulphonylurea receptor may be an ATP-sensitive potassium channel. Lancet 2:474–475.

    Article  PubMed  CAS  Google Scholar 

  • Surmeier, D. J., Mermelstein, P. G., and Goldowitz, D. (1996). The weaver mutation of GIRK2 results in a loss of inwardly rectifying K+ current in cerebellar granule cells. Proc. Natl. Acad. Sci. U.S.A. 93:11191–11195.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, L. W. (1982). The projections of the ventral tegmental area and adjacent regions: A combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res. Bull. 9:321–353.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, L., Barraud, P., Andersson, E., Kirik, D., and Bjorklund, A. (2005). Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J. Neurosci. 25:6467–6477.

    Article  PubMed  CAS  Google Scholar 

  • Thomzig, A., Laube, G., Pruss, H., and Veh, R. W. (2005). Pore-forming subunits of K-ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and cellular distribution in the rat brain. J. Comp. Neurol. 484:313–330.

    Article  PubMed  CAS  Google Scholar 

  • Wickenden, A. (2002). K(+) channels as therapeutic drug targets. Pharmacol. Ther. 94:157–182.

    Article  PubMed  CAS  Google Scholar 

  • Wickenden, A. D., Yu, W., Zou, A., Jegla, T., and Wagoner, P. K. (2000). Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels. Mol. Pharmacol. 58:591–600.

    PubMed  CAS  Google Scholar 

  • Wickman, K., Karschin, C., Karschin, A., Picciotto, M. R., and Clapham, D. E. (2000). Brain localization and behavioral impact of the G-protein-gated K+ channel subunit GIRK4. J. Neurosci. 20:5608–5615.

    PubMed  CAS  Google Scholar 

  • Wischmeyer, E., Döring, F., Wischmeyer, E., Spauschus, A., Thomzig, A., Veh, R. W., and Karschin, A. (1997). Subunit interactions in the assembly of neuronal Kir3.0 inwardly rectifying K+ channels. Mol. Cell. Neurosci. 9:194–206.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, K., Ji, J. J., Yuan, H., Miki, T., Sato, S., Horimoto, N., Shimizu, T., Seino, S., and Inagaki, N. (2001). Protective role of ATP-sensitive potassium channels in hypoxia-induced generalized seizure. Science 292:1543–1546.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

We are indebted to Prof. Andreas Karschin for providing Kir3.1–3.4 cDNAs. The excellent technical assistance of Dr. Mareike Wenzel and Petra Loge is gratefully acknowledged. In addition, we would like to thank Annett Kaphahn for editorial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger W. Veh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eulitz, D., Prüss, H., Derst, C. et al. Heterogeneous Distribution of Kir3 Potassium Channel Proteins Within Dopaminergic Neurons in the Mesencephalon of the Rat Brain. Cell Mol Neurobiol 27, 285–302 (2007). https://doi.org/10.1007/s10571-006-9118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9118-9

Key Words

Navigation