Skip to main content

Advertisement

Log in

Quantitative Proteomic Analysis of Human Substantia Nigra in Alzheimer’s Disease, Huntington’s Disease and Multiple Sclerosis

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The substantia nigra plays important roles in the brain function and is critical in the development of many diseases, particularly Parkinson’s disease. Pathological changes of the substantia nigra have also been reported in other neurodegenerative diseases. Using a quantitative proteomic approach, we investigated protein expressions in the substantia nigra of Alzheimer’s disease, Huntington’s disease, and Multiple sclerosis. The expression level of one hundred and four proteins that were identified in at least three samples of each group were compared with the control group, with nineteen, twenty-two and thirteen proteins differentially expressed in Alzheimer’s diseases, Huntington’s disease and Multiple sclerosis respectively. The result indicates that the substantia nigra also undergoes functional adaption or damage in these diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Basso M, Giraudo S, Corpillo D, Bergamasco B, Lopiano L, Fasano M (2004) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteomics 4(12):3943–3952

    Article  PubMed  CAS  Google Scholar 

  2. Beach TG, Walker R, McGeer EG (1989) Patterns of gliosis in Alzheimer’s disease and aging cerebrum. Glia 2(6):420–436

    Article  PubMed  CAS  Google Scholar 

  3. Becker J, Craig EA (1994) Heat-shock proteins as molecular chaperones. Eur J Biochem 219(1–2):11–23

    Article  PubMed  CAS  Google Scholar 

  4. Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17(3):121–127

    Article  PubMed  CAS  Google Scholar 

  5. Cerione RA (2004) Cdc42: new roads to travel. Trends Cell Biol 14(3):127–132

    Google Scholar 

  6. Chen S, Brown IR (2007) Neuronal expression of constitutive heat shock proteins: implications for neurodegenerative diseases. Cell Stress Chaperones 12(1):51–58

    Article  PubMed  CAS  Google Scholar 

  7. Dougherty MK, Morrison DK (2004) Unlocking the code of 14-3-3. J Cell Sci 117(Pt 10):1875–1884

    Article  PubMed  CAS  Google Scholar 

  8. Ferreira IL, Resende R, Ferreiro E, Rego AC, Pereira CF (2010) Multiple defects in energy metabolism in Alzheimer’s disease. Curr Drug Targets 11(10):1193–1206

    Article  PubMed  CAS  Google Scholar 

  9. Gibb WR, Mountjoy CQ, Mann DM, Lees AJ (1989) The substantia nigra and ventral tegmental area in Alzheimer’s disease and Down’s syndrome. J Neurol Neurosurg Psychiatry 52(2):193–200

    Article  PubMed  CAS  Google Scholar 

  10. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999

    Article  PubMed  CAS  Google Scholar 

  11. Haber SN, Fudge JL (1997) The primate substantia nigra and VTA: integrative circuitry and function. Crit Rev Neurobiol 11(4):323–342

    Article  PubMed  CAS  Google Scholar 

  12. Hamos JE, Oblas B, Pulaski-Salo D, Welch WJ, Bole DG, Drachman DA (1991) Expression of heat shock proteins in Alzheimer’s disease. Neurology 41(3):345–350

    Article  PubMed  CAS  Google Scholar 

  13. Kaneko K, Hachiya NS (2006) The alternative role of 14-3-3 zeta as a sweeper of misfolded proteins in disease conditions. Med Hypotheses 67(1):169–171

    Article  PubMed  CAS  Google Scholar 

  14. Kapogiannis D, Mattson MP (2011) Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 10(2):187–198

    Article  PubMed  CAS  Google Scholar 

  15. Kim J, Amante DJ, Moody JP, Edgerly CK, Bordiuk OL, Smith K, Matson SA, Matson WR, Scherzer CR, Rosas HD, Hersch SM, Ferrante RJ (2010) Reduced creatine kinase as a central and peripheral biomarker in Huntington’s disease. Biochim Biophys Acta 1802(7–8):673–681

    PubMed  CAS  Google Scholar 

  16. Layfield R, Fergusson J, Aitken A, Lowe J, Landon M, Mayer RJ (1996) Neurofibrillary tangles of Alzheimer’s disease brains contain 14-3-3 proteins. Neurosci Lett 209(1):57–60

    Article  PubMed  CAS  Google Scholar 

  17. Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL, Schneider LE, Mastroeni D, Caselli R, Kukull W, Morris JC, Hulette CM, Schmechel D, Rogers J, Stephan DA (2008) Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 105(11):4441–4446

    Article  PubMed  CAS  Google Scholar 

  18. Magrane J, Smith RC, Walsh K, Querfurth HW (2004) Heat shock protein 70 participates in the neuroprotective response to intracellularly expressed beta-amyloid in neurons. J Neurosci 24(7):1700–1706

    Article  PubMed  CAS  Google Scholar 

  19. Martin JB (1999) Molecular basis of the neurodegenerative disorders. N Engl J Med 340(25):1970–1980

    Article  PubMed  CAS  Google Scholar 

  20. Meng Y, Liu F, Pang C, Fan S, Song M, Wang D, Li W, Yu S (2011) Label-free quantitative proteomics analysis of cotton leaf response to nitric oxide. J Proteome Res 10(12):5416–5432

    Article  PubMed  CAS  Google Scholar 

  21. Moore GRW (1998) Neuropathology and pathophysiology of the multiple sclerosis lesion. In: Paty DW, Ebers GC (eds) Multiple sclerosis. F.A. Davis Company, Philadelphia, pp 257–327

    Google Scholar 

  22. Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6(1):11–22

    Article  PubMed  CAS  Google Scholar 

  23. Omi K, Hachiya NS, Tanaka M, Tokunaga K, Kaneko K (2008) 14-3-3 zeta is indispensable for aggregate formation of polyglutamine-expanded huntingtin protein. Neurosci Lett 431(1):45–50

    Article  PubMed  CAS  Google Scholar 

  24. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386

    Article  PubMed  CAS  Google Scholar 

  25. Ong SE, Pandey A (2001) An evaluation of the use of two-dimensional gel electrophoresis in proteomics. Biomol Eng 18(5):195–205

    Article  PubMed  CAS  Google Scholar 

  26. Oyanagi K, Takeda S, Takahashi H, Ohama E, Ikuta F (1989) A quantitative investigation of the substantia nigra in Huntington’s disease. Ann Neurol 26(1):13–19

    Article  PubMed  CAS  Google Scholar 

  27. Panchaud A, Affolter M, Moreillon P, Kussmann M (2008) Experimental and computational approaches to quantitative proteomics: status quo and outlook. J Proteomics 71(1):19–33

    Article  PubMed  CAS  Google Scholar 

  28. Perez N, Sugar J, Charya S, Johnson G, Merril C, Bierer L, Perl D, Haroutunian V, Wallace W (1991) Increased synthesis and accumulation of heat shock 70 proteins in Alzheimer’s disease. Brain Res Mol Brain Res 11(3–4):249–254

    Article  PubMed  CAS  Google Scholar 

  29. Perluigi M, Poon HF, Maragos W, Pierce WM, Klein JB, Calabrese V, Cini C, De Marco C, Butterfield DA (2005) Proteomic analysis of protein expression and oxidative modification in r6/2 transgenic mice: a model of Huntington disease. Mol Cell Proteomics 4(12):1849–1861

    Article  PubMed  CAS  Google Scholar 

  30. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169

    Article  PubMed  CAS  Google Scholar 

  31. Schapira AH, Olanow CW (2004) Neuroprotection in Parkinson disease: mysteries, myths, and misconceptions. JAMA 291(3):358–364

    Article  PubMed  CAS  Google Scholar 

  32. Silva JC, Gorenstein MV, Li GZ, Vissers JP, Geromanos SJ (2006) Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol Cell Proteomics 5(1):144–156

    PubMed  CAS  Google Scholar 

  33. Tepper JM, Lee CR (2007) GABAergic control of substantia nigra dopaminergic neurons. Prog Brain Res 160:189–208

    Article  PubMed  CAS  Google Scholar 

  34. Trapp BD, Nave KA (2008) Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci 31:247–269

    Article  PubMed  CAS  Google Scholar 

  35. Vissers JP, Langridge JI, Aerts JM (2007) Analysis and quantification of diagnostic serum markers and protein signatures for Gaucher disease. Mol Cell Proteomics 6(5):755–766

    Article  PubMed  CAS  Google Scholar 

  36. Walker FO (2007) Huntington’s disease. Lancet 369(9557):218–228

    Article  PubMed  CAS  Google Scholar 

  37. Walker FO, Raymond LA (2004) Targeting energy metabolism in Huntington’s disease. Lancet 364(9431):312–313

    Article  PubMed  Google Scholar 

  38. Walter U, Wagner S, Horowski S, Benecke R, Zettl UK (2009) Transcranial brain sonography findings predict disease progression in multiple sclerosis. Neurology 73(13):1010–1017

    Article  PubMed  CAS  Google Scholar 

  39. Washburn MP, Wolters D, Yates JR 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19(3):242–247

    Article  PubMed  CAS  Google Scholar 

  40. Werner CJ, Heyny-von Haussen R, Mall G, Wolf S (2008) Proteome analysis of human substantia nigra in Parkinson’s disease. Proteome Sci 6:8

    Article  PubMed  Google Scholar 

  41. Werner P, Pitt D, Raine CS (2001) Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 50(2):169–180

    Article  PubMed  CAS  Google Scholar 

  42. Yao X, Freas A, Ramirez J, Demirev PA, Fenselau C (2001) Proteolytic 18O labeling for comparative proteomics: model studies with two serotypes of adenovirus. Anal Chem 73(13):2836–2842

    Article  PubMed  CAS  Google Scholar 

  43. Zhang C, Liu Y, Hu Z, An L, He Y, Hang H (2011) Targeted deletion of mouse Rad1 leads to deficient cellular DNA damage responses. Protein Cell 2(5):410–422

    Article  PubMed  CAS  Google Scholar 

  44. Zhao X, Li Q, Zhao L, Pu X (2007) Proteome analysis of substantia nigra and striatal tissue in the mouse MPTP model of Parkinson’s disease. Proteomics Clin Appl 1(12):1559–1569

    Article  PubMed  CAS  Google Scholar 

  45. Zhu X, Raina AK, Boux H, Simmons ZL, Takeda A, Smith MA (2000) Activation of oncogenic pathways in degenerating neurons in Alzheimer disease. Int J Dev Neurosci 18(4–5):433–437

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., Lu, F.F., Seeman, P. et al. Quantitative Proteomic Analysis of Human Substantia Nigra in Alzheimer’s Disease, Huntington’s Disease and Multiple Sclerosis. Neurochem Res 37, 2805–2813 (2012). https://doi.org/10.1007/s11064-012-0874-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0874-2

Keywords

Navigation