Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-r6qrq Total loading time: 0 Render date: 2024-04-27T20:34:41.005Z Has data issue: false hasContentIssue false

7 - Basal ganglia

Published online by Cambridge University Press:  25 August 2009

David L. Clark
Affiliation:
Ohio State University
Nashaat N. Boutros
Affiliation:
Yale University, Connecticut
Mario F. Mendez
Affiliation:
University of California, Los Angeles
Get access

Summary

The basal ganglia (basal nuclei) have been regarded traditionally as a motor control system. Lesions in the basal ganglia almost always result in movement disorders. Recently, these structures have been found to influence other emotionally related behaviors. Research on the behavioral influence of the basal ganglia was prompted by the repeated observation that emotional and cognitive dysfunctions frequently accompany movement disorders of basal ganglia origin. In some cases, psychiatric manifestations precede the onset of motor symptoms. With the advent of neuroimaging techniques, investigation into the anatomy and metabolic physiology of these structures in the awake behaving human has revealed intriguing behavioral relationships.

Motor activity is controlled by the intricate interaction of three major systems: the cerebral cortex, the cerebellum, and the basal ganglia. The few milliseconds that intervene between thought and action are crucial for our adjustment in modern society. Understanding the structures that influence those few milliseconds, such as the basal ganglia, will help unravel some of the mysteries of human behavior. It is interesting that the main input to the basal ganglia comes from the cerebral cortex and that its output returns (via the thalamus) to the frontal cortex (motor, premotor, and prefrontal cortex). The frontal cortex, including the prefrontal areas, thus mediates and plays a significant role in the various functions of the basal ganglia.

Originally the basal ganglia were described as a group of cerebral (telencephalic) nuclei. These classical basal ganglia included the caudate nucleus, putamen, globus pallidus, claustrum, and amygdala.

Type
Chapter
Information
The Brain and Behavior
An Introduction to Behavioral Neuroanatomy
, pp. 102 - 127
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldridge, J. W., and Berridge, K. C. 1998. Coding of serial order by neostriatal neurons: a “natural action” approach to movement sequence. J. Neurosci. 18(7):2777–2787.CrossRefGoogle ScholarPubMed
Alheid, G. F., and Heimer, L. 1996. Theories of basal forebrain organization and the “emotional motor system.”Prog. Brain Res. 107: pp. 461–484.CrossRefGoogle ScholarPubMed
Ames, D., Cummings, J. L., Wirshing, W. C., Quinn, B., and Mahler, M., 1994. Respective and compulsive behavior in frontal lobe degenerations. J. Neuropsychiatry Clin. Neurosci. 6(2): 100–113.Google Scholar
Baxter, L. R. Jr. 1992. Neuroimaging studies of obsessive compulsive disorder. Psychiatr. Clin. North Am. 15:871–884.Google ScholarPubMed
Baxter, L. R., Schwartz, J. M., Guze, B. H., Bergman, K., and Szuba, M. P. 1990. Neuroimaging in obsessive-compulsive disorder: seeking the mediating neuroanatomy. In: Jenike, M. A., Baer, L., and Minichiello, W. E. (eds.) Obsessive-Compulsive Disorders: Theory and Management. Littleton, Mass.: Year Book Medical Publishers.Google Scholar
Bhatia, K. P., and Marsden, C. D. 1994. The behavioural and motor consequences of local lesions of the basal ganglia in man. Brain 117:859–876.CrossRefGoogle Scholar
Blum, K., Cull, J. G., Braverman, E. R., and Comings, D. E. 1996a. Reward deficiency syndrome. Am. Sci. 84:132–145.Google Scholar
Blum, K., Sheridan, P. J., Wood, R. C., Braverman, E. R., Chen, T. J. H., Cull, J. G., and Comings, D. E. 1996b. The D2 dopamine receptor gene as a determinant of reward deficiency syndrome. J. R. Soc. Med. 89:396–400.CrossRefGoogle Scholar
Bogerts, B., Hantsch, J., and Herzer, M. 1983. A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol. Psychiatry 18:951–969.Google ScholarPubMed
Buchsbaum, M. S. 1990. The frontal lobes, basal ganglia, and temporal lobes as sites for schizophrenia. Schizophr. Bull. 16:379–389.CrossRefGoogle Scholar
Burns, L. H., Annett, L., Kelley, A. E., Everitt, B. J., and Robbins, T. W. 1996. Effects of lesions to amygdala, ventral subiculum, medial prefrontal cortex, and nucleus accumbens on the reaction to novelty: implication for limbic-striatal interactions. Behav. Neurosci. 110:60–73.CrossRefGoogle ScholarPubMed
Carbon, M., Ma, Y., Barnes, A., Dhawan, V., Chaly, T., Ghilardi, M. F., and Eidelberg, D. 2004. Caudate nucleus: influence of dopaminergic input on sequence learning and brain activation in Parkinsonism. Neuroimage 21:1497–1507.CrossRefGoogle ScholarPubMed
Casanova, M. F., Crapanzano, K. A., Mannheim, G., and Kruesi, M. 1995. Sydenham's chorea and schizophrenia: a case report. Schizophr. Res. 16:73–76.CrossRefGoogle ScholarPubMed
Csernansky, J. G., and Bardgett, M. E. 1998. Limbic-cortical neuronal damage and the pathophysiology of schizophrenia. Schizophr. Bull. 24:231–248.CrossRefGoogle ScholarPubMed
Cummings, J. L. 1992. Depression and Parkinson's disease: a review. Am. J. Psychiatry 149:443–454.Google ScholarPubMed
Decker, M. W., and McGaugh, J. L. 1991. The role of interactions between the cholinergic system and other neuromodulatory systems in learning and memory. Synapse 7:151–168.CrossRefGoogle ScholarPubMed
DeLisi, L. E., Hoff, A. L., Schwartz, J. E., Shields, G. W., Halthore, S. N., Gupta, S. M., Henn, F. A., and Anand, A. K. 1991. Brain morphology in first-episode schizophrenic-like psychotic patients: a quantitative magnetic resonance imaging study. Biol. Psychiatry 29:159–175.CrossRefGoogle ScholarPubMed
deOlmos, J. S., and Heimer, L. 1999. The concepts of the ventral striatopallidal system and the extended amygdala. Ann. N.Y. Acad. Sci. 877:1–32.Google Scholar
Ehmann, T. S., Beninger, R. J., Gawel, M. J., and Riopelle, R. J. 1990. Depressive symptoms in Parkinson's disease: a comparison with disabled control subjects. J. Geriatr. Psychiatry Neurol. 1:3–9.CrossRefGoogle Scholar
Falkai, P., and Bogerts, B. 1993. Cytoarchitectonic and developmental studies in schizophrenia. In: Kerwin, R. W. (ed.) Cambridge Medical Reviews. Neurobiology and Psychiatry, vol. 2. Cambridge, UK: Cambridge University Press, pp. 43–52.Google Scholar
Folstein, S. E., Folstein, M. F., and Starkstein, S. E. 1990. Diseases of the caudate as a model for a manic depressive disorder. In: Franks, A. J. (ed.) Function and Dysfunction in the Basal Ganglia. Manchester: Manchester University Press, pp. 239–246.Google Scholar
Folstein, S. E., Peyser, C. E., Starkstein, S. E., and Folstein, M. F. 1991. The subcortical triad of Huntington's disease: a model for a neuropathology of depression, dementia and dyskinesia. In: Carroll, B. J. and Barrett, J. E., (eds.) Psychopathology and the brain. New York: Raven Press, pp. 65–75.Google Scholar
George, M. S., Ketter, T. A., and Post, R. M. 1993. SPECT and PET imaging in mood disorders. J. Clin. Psychiatry 54 (Suppl. 11):6–13.Google ScholarPubMed
Gironell, A., Kulisevsky, J., Rami, L., Fortuny, N., Garcia-Sanchez, C., and Pascual-Sedano, B. 2003. Effects of pallidotomy and bilateral subthalamic stimulation on cognitive function in Parkinson disease. A controlled comparative study. J. Neurol. 250 (8):917–923.CrossRefGoogle ScholarPubMed
Gray, J. A. 1998. Integrating schizophrenia. Schizophr. Bull. 24:249–266.CrossRefGoogle ScholarPubMed
Gray, J. A., Feldon, J., Rawlins, J. N. R., Hemsley, D. R., and Smith, A. D. 1991. The neuropsychology of schizophrenia. Behav. Brain Res. 14:1–20.Google Scholar
Graybiel, A. M. 1995. The basal ganglia. Trends Neurosci. 18:60–62.CrossRefGoogle ScholarPubMed
Graybiel, A. M. 1997. The basal ganglia and cognitive pattern generators. Schizophr. Bull. 23:459–469.CrossRefGoogle ScholarPubMed
Haber, S. N., and Fudge, J. L. 1997a. The primate substantia nigra and VTA: integrative circuitry and function. Crit. Rev. Neurobiol. 11:323–342.CrossRefGoogle Scholar
Haber, S. N., and Fudge, J. L. 1997b. The interface between dopamine neurons and the amygdala: implications for schizophrenia. Schizophr. Bull. 23:471–482.CrossRefGoogle Scholar
Heckers, S. 1998. Neuropathology of schizophrenia: cortex, thalamus, basal ganglia, and neurotransmitter-specific projection systems. Schizophr. Bull. 23:403–421.CrossRefGoogle Scholar
Heckers, S., Heinsen, H., Heinsen, Y. C., and Beckmann, H. 1991. Cortex, white matter, and basal ganglia in schizophrenia: a volumetric postmortem study. Biol. Psychiatry 29:556–566.CrossRefGoogle ScholarPubMed
Heimer, L., Alheid, G. F., Olmos, J. S., Groenewegen, H. J., Haber, S. N., Harlan, R. E., and Zahm, D. S. 1997. The accumbens: beyond the core-shell dichotomy. J. Neuropsychiatry Clin. Neurosci. 9:354–381.Google ScholarPubMed
Herholz, K., Weisenbach, S., Zündorf, G., Lenz, O., Schröder, H., Bauer, B., Kalbe, E., and Heiss, W.-D. 2004. In vivo study of acetylcholine esterase in basal forebrain, amygdala, and cortex in mild to moderate Alzheimer disease. Neuroimage 21:136–143.CrossRefGoogle ScholarPubMed
Higuchi, Y., and Iacono, R. P. 2003. Surgical complications in patients with Parkinson's disease after posterioventral pallidotomy. Neurosurgery 52(3):568–571.CrossRefGoogle Scholar
Houck, J., and Wise, S. P. 1995. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb. Cortex 5:95–110.CrossRefGoogle Scholar
Hua, Z., Guodong, G., Qinchuan, L., Yaqun, A., Qinfen, W., and Xuelian, W. 2003. Analysis of complications of radiofrequency pallidotomy. Neurosurgery 52(1):99–101.Google ScholarPubMed
Hyde, T. M., Stacey, M. E., Coppola, R. C., Handel, S. F., Rickler, K. C., and Weinberger, D. R. 1995. Cerebral morphometric abnormalities in Tourette's syndrome: a quantitative MRI study in monozygotic twins. Neurology 45:1176–1182.CrossRefGoogle ScholarPubMed
Insel, T. R., and Winslow, J. T. 1992. Neurobiology of obsessive compulsive disorder. Psychiatr. Clin. North Am. 15:813–824.Google ScholarPubMed
Jellinger, K. 1988. The pedunculopontine nucleus in Parkinson's disease, progressive supranuclear palsy and Alzheimer's disease. J. Neurol. Neurosurg. Psychiatry 51:540–543.CrossRefGoogle ScholarPubMed
Jellinger, K. 1991. Pathology of Parkinson's disease: changes other than the nigrostriatal pathway. Mol. Chem. Neuropathol. 14:153–197.CrossRefGoogle Scholar
Jones, B. E. 1990. Immunohistochemical study of choline acetyltransferase-immunoreactive processes and cells innervating the pontomedullary reticular formation in the rat. J. Comp. Neurol. 295:485–491.CrossRefGoogle ScholarPubMed
Kalivas, P. W., and Duffy, P. 1998. Repeated cocaine administration alters extracellular glutamate in the ventral tegmental area. J. Neurochem. 70(4):1497–1502.CrossRefGoogle ScholarPubMed
Kartsounis, L. D., Poynton, A., Bridges, P. K., and Bartlett, J. R. 1991. Neuro-psychological correlates of stereotactic subcaudate tractotomy. Brain 114:2657–2673.CrossRefGoogle Scholar
Keshavan, M. S., Rosenberg, D., Sweeney, J. A., and Pettegrew, J. W. 1998. Decreased caudate volume in neuroleptic-naive psychotic patients. Am. J. Psychiatry 155:774–778.Google ScholarPubMed
Krishnan, K. R. R., McDonald, W. M., Escalona, P. R., Doraiswamy, P. M., Na, C., Husain, M. M., Figiel, G. S., Boyko, O. B., Ellinwood, E. H., and Nemeroff, C. B. 1992. Magnetic resonance imaging of the caudate nuclei in depression: preliminary observations. Arch. Gen. Psychiatry 49:553–557.CrossRefGoogle ScholarPubMed
Lafer, B., Renshaw, P. F., and Sachs, G. S. 1997. Major depression and the basal ganglia. Psychiatr. Clin. North Am. 20:885–896.CrossRefGoogle ScholarPubMed
Lauterbach, E. C. 1999. The external globus pallidus in depression. J. Neuropsychiatry Clin. Neurosci. 11(4):515–516.CrossRefGoogle ScholarPubMed
Lauterbach, E. C., Jackson, J. G., Price, S. T., Wilson, A. N., Kirsh, A. D., and Dever, G. E. A. 1997. Clinical, motor, and biological correlates of depressive disorders after focal subcortical lesions. J. Neuropsychiatry Clin. Neurosci. 9(2):259–266.Google ScholarPubMed
Leckman, J. F., Grice, D. E., Boardman, J., Zhang, H., Vitale, A., Bondi, C., Alsobrook, J., Peterson, B. S., Cohen, D. J., Rasmussen, S. A., Goodman, W. K., McDougle, C. J., and Pauls, D. L. 1997. Symptoms of obsessive-compulsive disorder. Am. J. Psychiatry 154:911–917.Google ScholarPubMed
Liddle, P. F., Friston, K. J., Frith, C. D., Hirsch, S. R., Jones, T., and Frackowiak, R. S. 1992. Patterns of cerebral blood flow in schizophrenia. Br. J. Psychiatry 160:179–186.CrossRefGoogle Scholar
Little, K. Y., Zhang, L., Desmond, T., Frey, K. A., Dalach, G. W., and Cassin, B. J. 1999. Striatal dopaminergic abnormalities in human cocaine users. Am. J. Psychiatry 156:238–245.Google ScholarPubMed
Lohr, J. B., and Wisniewski, A. A. 1987. Movement Disorders; A Neuropsychiatric Approach. New York: Guilford.Google Scholar
Luxenberg, J. S., Swedo, S. E., Flament, M. F., Friedland, R. P., Rapoport, J., and Rapoport, S. I. 1988. Neuroanatomical abnormalities in obsessive-compulsive disorder determined with quantitative x-ray computed tomography. Am. J. Psychiatry 145:1089–1093.Google Scholar
Ma, T. P. 1997. The basal ganglia. In: Haines, D. E. (ed.) Fundamental Neuroscience. New York: Churchill Livingstone, pp. 363–378.Google Scholar
Mayberg, H. S. 1993. Neuroimaging studies of depression in neurologic disease. In: Starkstein, S. E. and Robinson, R. G. (eds.) Depression in Neurologic Disease. Baltimore, Md.: Johns Hopkins Press, pp. 186–216.Google Scholar
Mayberg, H. S., Starkstein, S. E., Sadzot, B., Preziosi, T., Andrezejewski, P. L., Dannals, R. F., Wagner, H. N. Jr., and Robinson, R. G. 1990. Selective hypometabolism in the inferior frontal lobe in depressed patients with Parkinson's disease. Ann. Neurol. 28:57–64.CrossRefGoogle ScholarPubMed
McHugh, P. R. 1990. The basal ganglia: the region, the integration of its systems and implications for psychiatry and neurology. In: Franks, A. J. (ed.) Function and Dysfunction in the Basal Ganglia. Manchester, UK: Manchester University Press, pp. 259–269.Google Scholar
Mendez, M. F., Adams, N. L., and Skoog, K. M. 1989. Neurobehavioral changes associated with caudate lesions. Neurology 39:349–354.CrossRefGoogle ScholarPubMed
Mendez, M. F., O'Connor, S. M., and Gerald, T. H. 2004. Hypersexuality after right pallidotomy for Parkinson's disease. J. Neuropsychiatry Clin. Neurosci. 16(1):37–40.CrossRefGoogle ScholarPubMed
Menza, M. A., and Mark, M. H. 1994. Parkinson's disease and depression: the relationship to disability and personality. J. Neuropsychiatry Clin. Neurosci. 6:165–169.Google Scholar
Mufson, E. J., Mash, D. C., and Hersh, L. B. 1988. Neurofibrillary tangles in cholinergic pedunculopontine neurons in Alzheimer's disease. Ann. Neurol. 24:623–629.CrossRefGoogle ScholarPubMed
Nakamura, T., Ghilardi, M. F., Mentis, M., Dhawan, V., Fukuda, M., Hacking, A., Moeller, J. R., Ghez, C., and Eidelberg, D. 2001. Functional networks in motor sequence learning: abnormal topographies in Parkinson's disease. Hum. Brain Mapp. 12:42–60.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Nauta, W. J. H. 1958. Hippocampal projections and related neural pathways to the midbrain in the cat. Brain 81:319–340.CrossRefGoogle ScholarPubMed
Okubo, Y., Suhara, T., Suzuki, K., Kobayashi, K., Inoue, O., Terasaki, O., Someya, Y., Sassa, T., Sudo, Y., Matsushima, E., Iyo, M., Tateno, Y., and Toru, M. 1997. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385:634–636.CrossRefGoogle ScholarPubMed
Okun, M. S., Bakay, R. A. E., DeLong, M. R., and Vitek, J. L. 2003. Transient manic behavior after pallidotomy. Brain Cogn. 52(2):281–283.CrossRefGoogle ScholarPubMed
O'Sullivan, R. L., Rauch, S. L., Breitr, H. C., Grachev, I. D., Baer, L., Kennedy, D. N., Keuthen, N. J., Savage, C. R., Manzo, P. W., Caviness, V. S., and Jenike, M. A. 1997. Reduced basal ganglia volumes in trichotillomania measured via morphometric magnetic resonance imaging. Biol. Psychiatry 42:39–45.CrossRefGoogle ScholarPubMed
Pazos, A., and Palacios, J. M. 1985. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I: Serotonin-1 receptors. Brain Res. 346:205–230.CrossRefGoogle Scholar
Pazos, A., Cortes, R., and Palacios, J. M. 1985. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II: Serotonin-2 receptors. Brain Res. 346:231–249.CrossRefGoogle ScholarPubMed
Pearlson, G. D., Wong, D. F., Tune, L. E., Ross, C. A., Chase, G. A., Links, J. M., Dannals, R. F., Wilson, A. A., Ravert, H. T., Wagner, H. N., and DePaulo, J. R. 1995. In vivo D2 dopamine receptor density in psychotic and nonpsychotic patients with bipolar disorder. Arch. Gen. Psychiatry 52:471–477.CrossRefGoogle ScholarPubMed
Peterson, B. S., Thomas, P., Kane, M. J., Scahill, L., Zhang, H., Bronen, R., King, R. A., Leckman, J. F., and Staib, L. 2003. Basal ganglia volumes in patients with Gilles de la Tourette syndrome. Arch. Gen. Psychiatry 60(4):15–24.CrossRefGoogle ScholarPubMed
Peyser, C. E., and Folstein, S. E. 1993. Depression in Huntington disease. In: Starkstein, S. E. and Robinson, R. G. (eds.) Depression in Neurologic Disease. Baltimore, Md.: Johns Hopkins Press, pp. 117–138.Google Scholar
Price, D. L., Whitehouse, P. J., Struble, R. G., Clark, A. W., Coyle, J. T., DeLong, M. R., and Hedreen, J. C. 1982. Basal forebrain cholinergic systems in Alzheimer's disease and related dementia. Neurosciences 1:84–92.Google Scholar
Price, L. H., Spencer, D. D., Marek, K. L., Robbins, R. J., Leranth, C., Farhi, A., Naftolin, F., Roth, R. H., Bunney, B. S., Hoffer, P. B., Makuch, R., and Redmond, D. E. Jr. 1995. Psychiatric status after human fetal mesencephalic tissue transplantation in Parkinson's disease. Biol. Psychiatry 38:498–505.CrossRefGoogle ScholarPubMed
Rapoport, J. L. 1991. Basal ganglia dysfunction as a proposed cause of obsessive-compulsive disorder. In: Carroll, B. J. and Barrett, J. E. (eds.) Psychopathology and the Brain. New York: Raven Press, pp. 77–95.Google Scholar
Rapoport, J. L., and Fiske, A. 1998. The new biology of obsessive-compulsive disorder: implications for evolutionary psychology. Perspect Biol. Med. 41:159–175.CrossRefGoogle ScholarPubMed
Roane, D. M., Yu, M., Feinberg, T. E., and Rogers, J. D. 2002. Hypersexuality after pallidal surgery in Parkinson disease. Neuropsychiatry Neuropsychol. Behav. Neurol. 15(4):247–251.Google ScholarPubMed
Robinson, D., Wu, H., Munne, R. A., Ashtari, M., Alvir, J., Ma, J., Lerner, G., Koreen, A., Cole, K., and Bogerts, B. 1995. Reduced caudate nucleus volume in obsessive-compulsive disorder. Arch. Gen. Psychiatry 52:393–398.CrossRefGoogle ScholarPubMed
Ryan, L., Martone, M., Linder, J., and Groves, P. 1990. Histological and ultrastructural evidence that d-amphetamine causes degeneration in neostriatum and frontal cortex of man. Brain Res. 518:67–77.CrossRefGoogle Scholar
Salloway, S., and Cummings, J. 1994. Subcortical disease and neuro-psychiatric illness. J. Neuropsychiatry Clin. Neurosci. 6:93–97.Google Scholar
Savage, C. 1997. Neuropsychology of subcortical dementias. Psychiatr. Clin. North Am. 20:911–933.CrossRefGoogle ScholarPubMed
Saxena, S., Brody, A. L., Schwartz, J. M., and Baxter, L. R. 1998. Neuroimaging and frontal-subcortical circuitry in obsessive-compulsive disorder. Br. J. Psychiatry 173(Suppl. 35):26–37.Google Scholar
Schultz, S. K., Miller, D. D., Arndt, S., Ziebell, S., Gupta, S., and Andreasen, N. C. 1995. Withdrawal-emergent dyskinesia in patients with schizophrenia during antipsychotic discontinuation. Biol. Psychiatry 38:713–719.CrossRefGoogle ScholarPubMed
Schwartz, J. M., Stoessel, P. W., Baxter, L. R. Jr., Martin, K. M., and Phelps, M. E. 1996. Systematic changes in cerebral glucose metabolic rate after successful behavior modification treatment of obsessive-compulsive disorder. Arch. Gen. Psychiatry 53:109–113.CrossRefGoogle ScholarPubMed
Singer, H. S. 1997. Neurobiology of Tourette syndrome. Neurol. Clin. 15:357–379.CrossRefGoogle ScholarPubMed
Singer, H. S., Reiss, A. L., Brown, J. E., Aylwar, E. H., Shih, B., Chee, B., Harris, E. L., Reader, M., Chase, G. A., and Bryan, R. N. 1993. Volumetric MRI changes in basal ganglia of children with Tourette's syndrome. Neurology 43:950–956.CrossRefGoogle ScholarPubMed
Sofroniew, M. V., Pearson, R. C., Eckenstein, F., Cuello, A. C., and Powell, T. P. 1983. Retrograde changes in cholinergic neurons in the basal forebrain of the rat following cortical damage. Brain Res. 289:370–374.CrossRefGoogle ScholarPubMed
Starkstein, S. E., and Mayberg, H. S. 1993. Depression in Parkinson disease. In: Starkstein, S. E. and Robinson, R. G. (eds.) Depression in Neurologic Disease. Baltimore, Md.: Johns Hopkins Press, pp. 97–116.Google Scholar
Starkstein, S. E., Robinson, R. G., and Price, T. R. 1987. Comparison of cortical and subcortical lesions in the production of post-stroke mood disorders. Brain 110:1045–1059.CrossRefGoogle Scholar
Steckler, T., Inglis, W., Winn, P., and Sahgal, A. 1994. The pedunculopontine tegmental nucleus: a role in cognitive processes?Brain Res. Brain Res. Rev. 19:298–318.Google ScholarPubMed
Swedo, S. E., and Leonard, H. L. 1992. Trichotillomania: an obsessive compulsive spectrum disorder?Psychiatr. Clin. North Am. 151:777–790.Google Scholar
Torack, R. M., and Morris, J. C. 1988. The association of ventral tegmental area histopathology with adult dementia. Arch. Neurol. 45:497–501.CrossRefGoogle ScholarPubMed
Wainer, B. H., and Mesulam, M. M. 1990. Ascending cholinergic pathways in the rat brain. In: Steriade, M. and Biesold, D. (eds.) Brain Cholinergic Systems. Oxford, UK: Oxford University Press, pp. 65–199.Google Scholar
Weinberger, D. R. 1987. Implications of normal brain development for the pathogenesis of schizophrenia. Arch. Gen. Psychiatry 44:660–669.CrossRefGoogle ScholarPubMed
Williams, S. M., and Goldman-Rakic, P. S. 1998. Widespread origin of primate mesofrontal dopamine system. Cerebr. Cortex 8:321–345.CrossRefGoogle ScholarPubMed
Winn, P., Brown, V. J., and Inglis, W. L. 1997. On the relationships between the striatum and the pedunculopontine nucleus. Crit. Rev. Neurobiol. 11:241–261.CrossRefGoogle Scholar
Wolf, S. S., Jones, D. W., Knable, M. B., Gorey, J. G., Lee, K. S., Hyde, T. M., Coppola, R., and Weinberger, D. R. 1996. Tourette syndrome: prediction of phenotypic variation in monozygotic twins by caudate nucleus D2 receptor binding. Science 273:1225–1227.CrossRefGoogle ScholarPubMed
Yank, M., Yazgan, B. P., Wexler, B. E., and Leckman, J. F. 1994. Behavioral laterality in individual with Gilles de la Tourette's syndrome and basal ganglia alterations: a preliminary report. Biol. Psychiatry 38:386–390.Google Scholar
Zhao, M., Momma, S., Delfani, K., Carlén, M., Cassidy, R. M., Johansson, C. B., Brismar, H., Shupliakov, O., Frisén, J., and Janson, A. M. 2003. Evidence for neurogenesis in the adult mammalian substantia nigra. Proc. Natl. Acad. Sci. U.S.A. 100(13):7925–793.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×