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1 Introduction

RC4 is one of the most popular and efficient stream ciphers. The basic idea of RC4 is
to start with the identity permutation and then use the secret key to produce a random
looking permutation. This is the Key Scheduling Algorithm (KSA). Based on this (secret
key dependent) pseudo-random permutation, the next stage of Pseudo-Random Generation
Algorithm (PRGA) generates keystream bytes which get XOR-ed with the plaintext bytes
to generate ciphertexts.

The KSA and the PRGA of RC4 are presented below. The data structure consists of an
array S of size N (typically, 256), which contains a permutation of the integers {0, . . . , N−1},
two indices i (deterministic) and j (pseudo-random) and a secret key array K. Given a secret
key key of l bytes (typically 5 to 32), the array K of size N is such that K[y] = key[y mod l]
for any y, 0 ≤ y ≤ N − 1. All additions in both the KSA and the PRGA are additions
modulo N .

⋆ This is an extended version of the paper with the same title which has been accepted for presentation in the 9th
International Conference on Cryptology in India (INDOCRYPT 2008), to be held at Indian Institute of Technology,
Kharagpur, during December 14-17, 2008.



KSA

Initialization:
For i = 0, . . . , N − 1

S[i] = i;
j = 0;

Scrambling :
For i = 0, . . . , N − 1

j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

PRGA

Initialization:
i = j = 0;

Keystream Generation Loop:
i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

Before proceeding further, we like to point out that there are standard procedures to
generate pseudo-random permutations, but the RC4 KSA is different from them.

1.1 Random Permutation vs RC4 KSA

Let us present one well known result from [13]. Given a permutation of N elements
∏

=
(π0, . . . , πN−1), a series of N − 1 transpositions can produce random permutation as follows:

RandPerm

From i = N − 1 down to 1
πi ↔ πrand(0,i);

Here, rand(0, i) produces uniformly distributed random integers in the range 0 through i.
One may refer to [30, Page 171] for the proof that after N − 1 many transpositions, the
permutation is indeed random. One may note the following issues where the algorithms
KSA and RandPerm are not similar (this has also been discussed in [19, Chapter 6]).

1. The index i increases from 0 to N − 1 in RC4 KSA (number of transpositions N), but
the index i decreases from N − 1 to 1 in RandPerm (number of transpositions N − 1).

2. The index j can take any value between 0 to N − 1 at any step and the pseudo-random
value of j is based on the secret key bytes in KSA. On the other hand, in RandPerm,
j = rand(0, i), that implies that it can take values only in the range 0 to i at the i-th
step.

It has been pointed out in [19, Chapter 6] that the RC4 KSA does not produce permutations
uniformly at random. On the other hand, the RandPerm algorithm cannot be used for key
scheduling using the secret key bytes instead of rand(0, i). In that case, the permutation
after the key scheduling algorithm would have revealed the secret key completely (e.g., πN−1

will contain the first accessed secret key byte, πN−2 will contain the second accessed secret
key byte, and so on). Thus there is a need to design a key scheduling algorithm that will
produce a random looking permutation with certain cryptographic properties.

1.2 Further Motivation for a New Design

Reconstruction of the permutation looking at the keystream output bytes is an approach to
attack RC4. In [12, Table 2], it has been estimated that this kind of attack would require



around 2779 to 2797 complexity. Later, in [35, Table 7], an improved idea has been presented
that estimates a complexity of 2731. A much improved result [21] in this area shows that the
permutation can be recovered in around 2241 complexity. This shows that RC4 is not secure
when the key length is more than 30 bytes (240 bits).

If the RC4 state information (i.e., the permutation S; the number of keystream bytes
generated after the KSA or the value of i; and the value of j) is given, then one can come
back (by running the PRGA in reverse direction) to the permutation after the KSA. Then
the problem is how to get back the secret key from the final permutation after the KSA.
Some biases of the permutation after the KSA towards the secret key have been exploited
first in [25], and subsequently in [2, 1], to recover the complete secret key from the RC4
permutation. If the complexity of “recovering the secret key from the permutation” is less
than that of “recovering RC4 permutation from the keystream output bytes in PRGA”, then
by cascading the techniques of the latter [12, 35, 21] with those of the former, “recovering
the secret key from the keystream output bytes” is possible at the same complexity as the
latter.

In many cryptographic applications, a secret key is combined with a known IV to form
a session key. For a single session, recovering the permutation is enough for cryptanalysis.
However, there are many applications (such as WEP [14]), where the key and the IV are
combined (to form the session key) in such a way that the secret key can be easily extracted
from the session key. For these applications, if one can recover the session key from the
permutation then it is possible to get back the secret key. In that case, for subsequent sessions
where the same secret key would be used with different known IV’s, the RC4 encryption
would be completely insecure. However, if the weaknesses of the KSA are removed then the
above methods of recovering the secret key or the session key from the keystream bytes or
from permutation would fail.

In addition to the permutation recovery attacks [12, 35, 21], there exist several other
works [7, 5, 24, 15–18, 28, 29] on the weaknesses of the RC4 PRGA. However, all of these
exploit the initial keystream bytes only. According to [22], if the first 512 keystream bytes
are thrown away, then RC4 is quite safe to use. Moreover, it is argued in [15, 27] that many
biases in the PRGA are due to the propagation of the biases in the KSA via Glimpse
Theorem [10, 17]. These biases in the keystream would disappear, if one could remove the
corresponding biases in the permutation during the KSA.

In this paper, we discuss several weaknesses of RC4 and suggest remedies to overcome
them. During last few years, there have been many efforts [40, 29, 8] on the modification of
RC4 towards further improvement and there also exist distinguishing attacks on them [20, 36,
37]. This shows that there is significant interest in the cryptographic community for analysis
and design of RC4 and its modifications. However, in all of these ciphers (VMPC [40],
RC4A [29], RC4(n,m) [8]), the design is modified to a great extent relative to RC4. We keep
the RC4 structure as it is and add a few more operations to strengthen the cipher. Thus, we
attempt to exploit the good points of RC4 and then provide some additional features for a
better security margin.



One may argue that concentrating on the eSTREAM candidates [4] is more practical
than modifying RC4. However, one should also note that RC4 is the most widely used stream
cipher due to its simplicity, ease of implementation, speed and efficiency. The algorithm can
be stated in less than ten lines, yet after two decades of analysis its strengths and weaknesses
are of great interest to the community. The eSTREAM candidates have much complicated
structure in general and they work on word (32 bit) oriented manner. Our goal is not to
compete with those ciphers, but to keep the simple structure of RC4 and just add a few steps
to it to have a byte oriented stream cipher with further strength. The existing literature on
RC4 reveals that in spite of having a very simple description, the cipher possesses nice
combinatorial structures in the shuffle-exchange paradigm. Our design retains this elegant
property of RC4 and at the same time removes the existing weaknesses of RC4.

1.3 Paper Outline

Let us now present the outline of the paper. In Section 2, we investigate into the roots
of the weaknesses of RC4 KSA and present new theoretical results on the non-uniformity
in the expected number of times each value of S is touched by the indices i, j during the
KSA. Section 3 focus on the design of the new key scheduling. We summarise the existing
weaknesses of the RC4 KSA in Section 3.1 and describe the modified KSA in Section 3.2.
In Section 3.3, we argue how the new algorithm avoids the weaknesses of the standard
RC4 KSA. Section 4 works on the modification of the RC4 PRGA, identifying the existing
weaknesses and justifying why the modified PRGA has better security margin. We present
logical arguments as well as empirical evidence to support our security conjectures of the
new design. Finally, in Section 5, we present some performance results comparing the speed
of RC4 and our new design, followed by concluding remarks in Section 6.

2 Movement Frequency of Permutation Values

Before we go into the technicalities, let us introduce a few notations. We denote the initial
identity permutation by S0 and the permutation at the end of the r-th round of the KSA
by Sr, 1 ≤ r ≤ N . Note that r = y + 1, when the deterministic index i takes the value y,
0 ≤ y ≤ N − 1. Thus, the permutation after the KSA will be denoted by SN . By jr, we

denote the value of the index j after it is updated in round r. Also, let fy = y(y+1)
2

+

y
∑

x=0

K[y],

that would be referred frequently in the subsequent discussions.
We observe that many values in the permutation are touched once with a very high

probability by the indices i, j during the KSA.

Theorem 1. The probability that a value v in the permutation is touched exactly once during

the KSA by the indices i, j, is given by 2v
N

· (N−1
N

)N−1, 0 ≤ v ≤ N − 1.

Proof. Initially, v is located at index v in the permutation. It is touched exactly once in one
of the following two ways.



1. v is not touched by any of {j1, j2, . . . , jv} in the first v rounds. This happens with prob-
ability (N−1

N
)v. In round v + 1, when i becomes v, v is moved to the left by jv+1 due

to the swap and remains there until the end of KSA. This happens with probability
P (jv+1 ∈ {0, . . . , v − 1}) · P (jt 6= jv+1, v + 1 ≤ t ≤ N) = v

N
· (N−1

N
)N−v−1. Thus, the

probability contribution of this part is (N−1
N

)v · v
N
· (N−1

N
)N−v−1 = v

N
· (N−1

N
)N−1.

2. For some t, 1 ≤ t ≤ v, it is not touched by any of {j1, j2, . . . , jt−1}; then it is touched for
the first time by jt = v in round t and hence is moved to index t−1; and it is not touched
by any one of the subsequent (N − t) many j values. The probability contribution of this

part is
v

∑

t=1

(N−1
N

)t−1 · 1
N
· (N−1

N
)N−t = v

N
· (N−1

N
)N−1.

Adding the above two contributions, we get the result. ⊓⊔

Using similar arguments one could compute the probability that a value is touched exactly
twice, thrice and in general x times, during the KSA. However, the computation would be
tedious and complicated for x > 1. A more natural measure of this asymmetric behaviour
would be the expected number of times each value in the permutation is touched during the
KSA. This is computed in the next theorem.

Theorem 2. The expected number of times a value v in the permutation is touched by the

indices i, j during the KSA is given by Ev = 1 + (2N−v
N

) · (N−1
N

)v, 0 ≤ v ≤ N − 1.

Proof. Let xv,y = 1, if the value v is touched by the indices i, j in round y + 1 of the KSA
(i.e., when i = y); otherwise, let xv,y = 0, 0 ≤ v ≤ N − 1, 0 ≤ y ≤ N − 1. Then the number

of times v is touched by i, j during the KSA is given by Xv =
N−1
∑

y=0

xv,y. In any round y + 1,

any value v is touched by j with a probability 1
N

. To this, we need to add the probability of
v being touched by i, in order to find P (xv,y = 1). Now, v is touched by the index i in round
y + 1, iff Sy[y] = v. We consider three possible cases.

1. Case y < v. Initially, the value v was situated in index v. In order for v to move from
index v to index y < v, either v has to be touched by i and y has to be touched by j, or
vice versa, during the first y rounds. But this is not possible, since neither the index y

nor the index v has been touched by the index i so far. Thus, P (Sy[y] = v) = 0.

2. Case y = v. We would have Sv[v] = v, if v is not touched by any of {j1, j2, . . . , jv} in the
first v rounds, the probability of which is (N−1

N
)v.

3. Case y > v. Once Sv[v] = v, the swap in the next round moves the value v to a random
location jv+1. Thus, P (Sv+1[y] = v) = P (Sv[v] = v) · P (jv+1 = y) = (N−1

N
)v · 1

N
. For all

y > v, until y is touched by the deterministic index i, i.e., until round y+1, v will remain
randomly distributed. Hence, for all y > v, P (Sy[y] = v) = P (Sv+1[y] = v) = 1

N
(N−1

N
)v.



Noting that E(xv,y) = P (xv,y = 1) = 1
N

+ P (Sy[y] = v), we have Ev = E(Xv) =
N−1
∑

y=0

E(xv,y)

= 1 +
N−1
∑

y=0

P (Sy[y] = v) = 1 +
v−1
∑

y=0

P (Sy[y] = v) + P (Sv[v] = v) +
N−1
∑

y=v+1

P (Sy[y] = v)

= 1 + 0 + (N−1
N

)v + (N − v) · 1
N

(N−1
N

)v = 1 + (2N−v
N

) · (N−1
N

)v. ⊓⊔

We find that Ev decreases from 3.0 to 1.37, as v increases from 0 to 255. To demonstrate
how close the experimental values of the expectations match with our theoretical values, we
perform 100 million runs the KSA, with random key of 16 bytes in each run. The experimental
results correspond to the theoretical formula, as summarised in the first two rows of Table 1
in Section 3.3. One may also refer to Figure 1 for graphical representations.
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Fig. 1. Ev versus v, 0 ≤ v ≤ 255. Left: Experimental data, Right: Theoretical data.

In [26, 1], it is shown that the probabilities P (jy+1 = S−1
N [y]) increase with increasing y.

This is connected to the above decreasing pattern in the expectations. In the first half of
the KSA, i.e., when y is small, the values v = S[y] are thrown more to the right with high
probability by the index jy+1 due to the swap and hence are touched again either by the
deterministic index i or by the pseudo-random index j in the subsequent rounds. On the
other hand, in the second half of the KSA, i.e., when y ≥ 128, the values v = S[y] are thrown
more to the left by the index jy+1 due to the swap and hence are never touched by i in the
subsequent rounds, and may be touched by j with a small probability.

Towards designing a key scheduling algorithm in shuffle-exchange paradigm, it is impor-
tant that each value in the permutation is touched (and therefore moved with probability
almost one) sufficient number of times. In such a case, it will be harder to guess the values
of j for which a permutation byte is swapped. In RC4 KSA, there are many permutation
bytes which are swapped only once with a high probability, leading to information leakage



from SN regarding the secret key bytes. We keep this in mind while designing the modified
KSA in the next section.

3 Removing the Weaknesses of KSA

In this section, we first look into what are the existing weaknesses of the RC4 KSA, followed
by suggestions to remove them. We propose a new version of the KSA and study its security
issues.

3.1 Existing Weaknesses

Many works have explored the RC4 KSA and discovered different weaknesses. Here we
present an overview of these results.

1. In [31], it was empirically shown that the probabilities P (SN [y] = fy) decrease from 0.37
for y = 0 to 0.006 for y = 48 (with N = 256) and beyond that settle down to 0.0039
(≈ 1

256
). Later, in [25], explicit formula for these probabilities for all y ∈ [0, . . . , N − 1]

were theoretically derived. This result was further used in [25] to recover the secret key
from the final permutation SN after the KSA. Subsequent to the work in [25], other
researchers also have shown interest in the problem of recovering the secret key from
RC4 permutation and achieved better efficiency [2, 1].

2. In [25], a generalization of the RC4 KSA is also considered where the index j can be
updated in different manners. In RC4 KSA, the update rule is j = (j + S[i] + K[i]). The
work [25] showed that for a certain class of update functions which update j as a function
of “the permutation S and j in the previous round” and “the secret key K”, it is always
possible to construct explicit functions of the key bytes which the permutation at every
stage of the KSA will be biased to.

3. It has been shown in [15] that the bytes SN [y], SN [SN [y]], SN [SN [SN [y]]], and so on, are
biased to fy. In particular, they showed that P (SN [SN [y]] = fy) decreases from 0.137 for
y = 0 to 0.018 for y = 31 and then slowly settles down to 0.0039 (beyond y = 48).

4. Analysis in [26, 1] shows that the the inverse permutations S−1
N [y], S−1

N [S−1
N [y]], and so on

are biased to jy+1, and in turn, to fy.
5. The work [19, Chapter 6] showed for the first time that each permutation byte after the

KSA is significantly biased (either positive or negative) towards many values in the range
0, . . . , N − 1. These biases are independent of the secret key. This problem was further
studied in [22, 27]. For each y, 0 ≤ y ≤ N − 2, P (SN [y] = v) is maximum at v = y + 1
and this maximum probability ranges approximately between 1

N
(1 + 1

3
) and 1

N
(1 + 1

5
) for

different values of y, with N = 256.
6. The work [6] showed for the first time that RC4 can be attacked when used in the IV

mode (e.g. WEP [14]). Subsequently, there have been series of improvements [17, 11, 34,
38] in this direction, exploiting the propagation of weak key patterns to the keystream
output bytes.



3.2 Proposal for KSA+ : A Revised KSA

In this section, we present a modified design (called KSA+) that removes the weaknesses
of RC4 KSA discussed in Section 3.1. The evaluation for such a design is presented in
Section 3.3. In this case, we will name the permutation after the KSA+ as SN+ . We have the
following motivations in our mind in the new design.

1. Removing the existing weaknesses.
2. Producing a Random-looking SN+ after the key scheduling so that it will be hard to

identify any non-uniformity in the permutation after the KSA+.
3. Secret key extraction from SN+ should be of the same order as exhaustive search.
4. It should be hard to get two secret keys k, k′ and two initialization vectors iv, iv′ (given

that at least one of the events k 6= k′ and iv 6= iv′ should hold) that can produce the
same SN+ after KSA+.

We propose a three-layer key scheduling followed by the initialization. The initialization
and basic scrambling in the first layer are the same as the original RC4 KSA.

Initialization

For i = 0, . . . , N − 1
S[i] = i;

j = 0;

Layer 1: Basic Scrambling

For i = 0, . . . , N − 1
j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

In the second layer, we scramble the permutation further using IV’s. According to [9],
for stream ciphers using IV’s, if the IV is shorter than the key, then the algorithm may be
vulnerable against the Time Memory Trade-Off attack. Thus, in this effort, we choose the
IV size as the same as the secret key length. The deterministic index i moves first from the
middle down to the left end and then from the middle upto the right end. In our scheme,
an l-byte IV, denoted by an array iv[0, . . . , l − 1], is used from index N

2
− 1 down to N

2
− l

during the left-ward movement and the same IV is repeated from index N
2

up to N
2

+ l − 1
during the right-ward movement. Here, we assume that N is even, which is usually the case
in standard RC4. For ease of description, we use an array IV of length N with IV [y] = 0
for those indices which are not used with IV’s.

IV [y] =







iv[N
2
− 1 − y] for N

2
− l ≤ y ≤ N

2
− 1;

iv[y − N
2
] for N

2
≤ y ≤ N

2
+ l − 1;

0 otherwise.

For N = 256 and l = 16, this gives a placement of 16 × 2 = 32 many bytes in the
middle of the IV array spanning from index 112 to 143. This is to note that repeating the
IV bytes will create a dependency so that one cannot choose all the 32 bytes freely to find
some weakness in the system as one byte at the left corresponds to one byte at the right
(when viewed symmetrically from the middle of an N -byte array). Further, in two different
directions, the key bytes are added with the IV bytes in an opposite order. Apart from the
2l many operations involving the IV , the rest of N − 2l many operations are without the



involvement of IV in Layer 2. This helps in covering the IV values and chosen IV kind of
attacks will be hard to mount.

Layer 2: Scrambling with IV

For i = N
2
− 1 down to 0

j = (j + S[i]) ⊕ (K[i] + IV [i]);
Swap(S[i], S[j]);

For i = N
2
, . . . , N − 1

j = (j + S[i]) ⊕ (K[i] + IV [i]);
Swap(S[i], S[j]);

Layer 3: Zigzag Scrambling

For y = 0, . . . , N − 1
If y ≡ 0 mod 2 then

i = y

2
;

Else
i = N − y+1

2
;

j = (j + S[i] + K[i]);
Swap(S[i], S[j]);

In the third and final layer, we perform more scrambling in a zig-zag fashion, where the
deterministic index i takes values in the following order: 0, 255, 1, 254, 2, 253, . . ., 125, 130,
126, 129, 127, 128. In general, if y varies from 0 to N − 1 in steps of 1, then

i =

{

y

2
if y ≡ 0 mod 2;

N − y+1
2

if y ≡ 1 mod 2.

Introducing more scrambling steps definitely increases the cost of the cipher. The running
time of the KSA+ is around three times that of RC4 KSA, because there are three similar
scrambling layers instead of one, each having N iterations. As the key scheduling is run only
once, this will not affect the performance of the cipher much.

3.3 How KSA+ removes the Weaknesses of RC4 KSA

In this section, we discuss how the new design avoids many weaknesses of the original RC4
KSA. We performed extensive experiments to verify that KSA+ is indeed free from the
weaknesses of the RC4 KSA. In all our experiments that are presented in this section, we
use null IV, i.e., iv[y] = 0 for all y. We could not find any weakness with such null IV as well
as with randomly chosen IV’s.

Removal of secret key correlation with the permutation bytes Let us first discuss
on Layer 2 of the KSA+. The deterministic index i is moved from the middle to the left
end so that the values in the first quarter of the permutation, which were biased to linear
combination of the secret key bytes, are swapped. This helps in removing the biases in the
initial values of Item (1) described in Section 3.1. This is followed by a similar operation
in the second half of the permutation to get rid of the biases of the inverse permutation as
described in Item (4). Next, the XOR operation helps further to wipe out these biases. The
biases considering the nested indexing mentioned in Item (3) and Item (4) arise due to the
biases of direct indexing. So, the removal of the biases at the direct indices of SN and S−1

N

gets rid of those at the nested indices also.
The bias of Item (2), which is a generalization of the bias of Item (1), originates from the

incremental update of j which helps to form a recursive equation connecting the key bytes.



In the new design, the bit-by-bit XOR operation as well as the zig-zag scrambling in Layer 3
prevents in forming such recursive equations connecting the key bytes and the permutation
bytes.

We could not find any correlation between SN+ [y] (also, SN+ [SN+ [y]], SN+ [SN+ [SN+ [y]]],
. . .) with fy. We believe that with our design, it is not possible to get correlation of the
permutation bytes with any function combining the secret key bytes.

In Section 2, the relation between the biases of the inverse permutation and the movement
frequency of the permutation values has been discussed in detail. The following experimental
results show that, such weaknesses of RC4 KSA are absent in our design. Averaging over
100 million runs of KSA+ with 16 bytes key in each run, we find that as v increases from 0
to 255, Ev decreases from 4.99 to 3.31 after the end of Layer 2 and from 6.99 to 5.31 after
the end of Layer 3. Table 1 shows the individual as well as the incremental effect of each of
Layer 2 and Layer 3, when they act upon the identity permutation S0 and the permutation
SN obtained after Layer 1. The data illustrate that the effect of Layer 2 or Layer 3 over
identity permutation S0 is similar as Layer 1. However, after Layer 1 is over (when we have
somewhat random permutation SN coming out of RC4 KSA), each of Layer 2 and Layer 3
individually enforces each value in the permutation to be touched uniformly (approximately
twice) when the average is considered over many runs. Thus, each layer incrementally shifts
the graph of Ev versus v in the positive Y-direction approximately by an amount of 2, as is
illustrated in Figure 2.

avg sd max min

RC4 KSA (KSA+ L1)
Theory 2.0025 0.4664 3.0000 1.3700
Experiment 2.0000 0.4655 2.9959 1.3686

KSA+ L2 (Experiment)
L2 on S0 2.0000 0.4658 2.9965 1.3683
L2 on SN 2.0000 0.0231 2.0401 1.9418
L1 + L2 4.0000 0.4716 4.9962 3.3103

KSA+ L3 (Experiment)
L3 on S0 2.0000 0.4660 3.0000 1.3676
L3 on SN 2.0000 0.0006 2.0016 1.9988
L1 + L2 + L3 6.0000 0.4715 6.9962 5.3116

Table 1. Average, Standard Deviation, Maximum and Minimum of the expectations Ev over all v between 0 and
255. Here Lr means Layer r, r = 1, 2, 3.

To arrive at uniform values of the expectations can be done easily with normal RC4,
by keeping a count of how many times each element is touched and performing additional
swaps involving the elements that have been touched less number of times. However, this will
require additional space and time. In normal RC4, many permutation elements are touched
only once (especially those towards the right end of the permutation), leaking information
on j in the inverse permutation. Our target is to prevent this by increasing the number of
times each element is touched, without keeping any additional space such as a counter. The
data in Table 1 as well as Figure 2 show that this purpose is served using our strategy.
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Fig. 2. KSA+: Ev versus v, 0 ≤ v ≤ 255.

How random is SN+ Now we present experimental evidences to show how the biases of
Item (5) in RC4 KSA are removed. We compare the probabilities P (S[u] = v) for 0 ≤ u, v ≤
255 from standard KSA and our KSA+. All the experiments are performed with 100 million
runs, each with a randomly chosen secret key of length 16 bytes and null IV.

One may refer to the graphs in Figure 3 to note that P (S[u] = v) is flattened after
Layer 2 of KSA+. However, some non-uniformities are still there. After Layer 3, the graph
becomes completely flat, indicating that there is no bias in the probabilities P (S[u] = v).
The maximum and minimum values of the probabilities as well as the standard deviations
summarised in Table 2 elaborate this fact further.

avg sd max min

RC4 KSA
Theory [27, Theorem 1] 0.003901 0.000445 0.005325 0.002878

Experiment 0.003906 0.000448 0.005347 0.002444

KSA+ (Experiment)
After Layer 2 0.003906 0.000023 0.003983 0.003803
After Layer 3 0.003906 0.000006 0.003934 0.003879

Table 2. Average, Standard Deviation, Maximum and Minimum of the Probabilities P (S[u] = v) over all u and v

between 0 and 255. Note that 1

N
= 0.003906 for N = 256.



In [19, Page 67], it was mentioned that the RC4 KSA need to be executed approximately 6
times in order to get rid of these biases. Whereas, in our case, we need to run KSA effectively
3 times.

On introducing the IV’s The IV-mode attacks, mentioned in Item (6) of Section 3.1,
succeed because in the original RC4, IV’s are either prepended or appended with the secret
key. As the Layer 2 shows, in KSA+, we use the IV’s in the middle and also the corresponding
key bytes are added in the updation of j. In Layer 2, 2l many operations involve IV values,
but N − 2l many operations do not. Moreover, after the use of IV, we perform a third layer
of zig-zag scrambling where no use of IV is made. This almost eliminates the possibility of
chosen IV attack once the key scheduling is complete.

SSL protocol bypasses the WEP attack [6, 33] by generating the encryption keys used
for RC4 by hashing (using both MD5 and SHA-1) the secret key and the IV together, so
that different sessions have unrelated keys [32]. Since our KSA+ is believed to be free from
the IV-weaknesses, it can be used without employing hashing. Thus, the cost of hashing
can be utilized in the extra operations in Layer 2 and Layer 3. This conforms to our design
motivation to keep the basic structure of RC4 KSA and still avoid the weaknesses.

On retaining the standard KSA in Layer 1 One may argue that Layer 1 is not necessary
and Layer 2, 3 would have taken care of all the existing weaknesses of RC4. While this may
be true, these two layers, when operated on identity permutation, might introduce some
new weaknesses not yet known. It is a fact that RC4 KSA has some weaknesses, but it also
reduces the key correlation with the permutation bytes and other biases at least to some
extent compared to the beginning of the KSA. In the process, it randomizes the permutation
to a certain extent. The structure of RC4 KSA is simple and elegant and easy to analyze.
We first let this KSA run over the identity permutation, so that we can target the exact
biases that are to be removed in the subsequent layers. In summary, we wanted to keep the
good features of RC4 KSA, and remove only the bad ones.

4 PRGA+: Modifications to RC4 PRGA

There are a number of important works related to the analysis of the RC4 PRGA. The main
directions of cryptanalysis in this area are

1. finding correlations between the keystream output bytes and the secret key [31, 39, 24, 15]
and key recovery in the IV mode [6, 17, 11, 34, 38] (these exploit the weaknesses of both
the KSA and the PRGA),

2. recovering the RC4 permutation from the keystream output bytes [12, 35, 21] and
3. identifying distinguishers [16, 29, 18].

In Section 3.2, we proposed KSA+ in such a manner that one cannot get secret key correla-
tions from the permutation bytes. This guarantees that the keystream output bytes, which
are some combination of the permutation bytes, cannot have any correlation with the secret



key. As argued in Section 3.3, IV’s are used in such a way, that they cannot be easily ex-
ploited to mount an attack. So we target the other two weaknesses, enlisted in Item (2) and
(3) above, in our design of PRGA+.

As we have discussed earlier, a very recent and improved result [21] shows that the
permutation can be recovered in around 2241 complexity. This shows that RC4 is not secured
for secret key size greater than 30 bytes. Given this situation, use of RC4 with secret key
size of 16 bytes seems quite secure, but at the same time we need to revisit the RC4 PRGA
for a better design with minimum changes and keeping the structure more or less same.

For any byte b, bn
R (respectively bn

L) denotes the byte after right (respectively left) shifting
b by n bits. For r ≥ 1, we denote the permutation, the indices i, j and the keystream output
byte after round r of the PRGA (or PRGA+) by SG

r , iGr , jG
r and zr respectively.

The main idea behind this design of PRGA+ is masking the output byte such that it is not
directly coming out from any permutation byte. Two bytes from the permutation are added
modulo 256 (a nonlinear operation) and then the outcome is XOR-ed with a third byte (for
masking non-uniformity). Introducing additional S[t′], S[t′′], over the existing S[t] in RC4,
makes the running time of PRGA+ little more than that of RC4 PRGA (see Section 5 for
details). Note that the evolution of the permutation S in PRGA+ stays exactly the same as
in RC4 PRGA. We introduce a constant value 0xAA (equivalent to 10101010 in binary) in
t′, as without this, if jG becomes 0 in rounds 256, 512, . . . (i.e., when iG = 0), then t and t′

in such a round become equal with probability 1, giving an internal bias.

RC4 PRGA

Initialization:
i = j = 0;

Keystream Generation Loop:
i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
Output z = S[t];

PRGA+

Initialization:
i = j = 0;

Keystream Generation Loop:
i = i + 1;
j = j + S[i];
Swap(S[i], S[j]);
t = S[i] + S[j];
t′ = (S[i3R ⊕ j5

L] + S[i5L ⊕ j3
R]) ⊕ 0xAA;

t′′ = j + S[j];
Output z = (S[t] + S[t′]) ⊕ S[t′′];

4.1 Resisting permutation recovery attacks

The basic idea of cryptanalysis in [21] is as follows. Corresponding to a window of w + 1
keystream output bytes, one may assume that all the j’s are known, i.e., jG

r , jG
r+1, . . . , j

G
r+w

are known. Thus w many SG
r [iGr ] will be available from jG

r+1 − jG
r . Then w many equations

of the form SG−1

r [zr] = SG
r [iGr ] + SG

r [jG
r ] will be found where each equation contains only two

unknowns. The idea of [12] (having complexity around 2779 to 2797) actually considered four
unknowns jG, SG[iG], SG[jG], SG−1

[z].
Our design does not allow the strategy of [21] as SG[SG[iG] + SG[jG]] is not exposed

directly, but it is masked by several other quantities. To form the equations as given in [21],



one first needs to guess SG[t], SG[t′], SG[t′′] and looking at the value of z, there is no other
option than to go for all the possible choices. The same permutation structure of S in RC4+

can be similarly exploited to get the good patterns [21, Section 3], but introducing additional
t′, t′′, we ensure the non-detectability of such a pattern in the keystream and thus the idea
of [21, Section 4] will not work.

Information on permutation bytes is also leaked in the keystream via the Glimpse Main
Theorem [10, 17], which states that during any PRGA round, P (S[j] = i − z) = P (S[i] =
j − z) ≈ 2

N
. The assumption i = S[i] + S[j] holds with a probability 1

N
, leading to the bias

P (S[j] = i− z) = 1
N
· 1 + (1− 1

N
) · 1

N
= 2

N
− 1

N2 ≈ 2
N

. To obtain such biases in PRGA+, one
need to have more assumptions of the above form. Thus, Glimpse like biases of PRGA+, if
at all exist, would be much weaker.

4.2 Resisting distinguishing attacks

In [16], it was proved that P (z2 = 0) = 2
N

instead of the uniformly random case of 1
N

. This
originates from the fact that when SN [2] = 0 and SN [1] 6= 2 after the KSA, the second
keystream output byte z2 takes the value 0. Based on this, they showed a distinguishing
attack and a ciphertext-only attack in broadcast mode. We avoid this kind of situation in
our design. As a passing remark, we like to present an experimental result. Hundred million
secret keys of length 16 byte are generated and 1024 rounds of PRGA are executed for each
such key. The empirical evidences indicate that P (zr = v) = 1

N
, 1 ≤ r ≤ 1024, 0 ≤ v ≤ N−1.

In the work [29], it was observed that P (z1 = z2) = 1
N

− 1
N2 , which leads to a distin-

guishing attack. Even after extensive experimentation, we could not observe such bias in the
keystream. The same experiment described above supported that P (zr = zr+1) is uniformly
distributed for 1 ≤ r ≤ 1023.

In [18], it has been shown that getting strings of pattern ABTAB (A,B are bytes and
T is a string of bytes of small length G, say G ≤ 16) are more probable in RC4 keystream
than in random stream. In uniformly random keystream, the probability of getting such
pattern irrespective of the length of T is 1

N2 . It has been shown in [18, Theorem 1] that for

RC4, the probability of such an event is 1
N2 (1 + e

−4−8G

N

N
), which is above 1

N2 , but less than
1

N2 + 1
N3 . This result is based on the fact that the permutation values in locations that affect

the swaps and the selection of output bytes in both pairs of rounds that are G-round apart,
remain unchanged with high probability during the intermediate rounds. The permutation
in PRGA+ evolves in the same way as RC4 PRGA, but the keystream output generation in
PRGA+ is different, which does not allow the pattern AB to propagate down the keystream
with higher probability for smaller interval lengths (G). In [18], 216 keystreams of size 224

each were used to observe these biases effectively. The simulation on PRGA+ reveals that it
is free from these biases.

5 Performance Evaluation

We evaluated the performance of our new design using the eSTREAM testing framework [3].
The C-implementation of the testing framework was installed in a machine with Intel(R)



Pentium(R) 4 CPU, 2.8 GHz Processor Clock, 512 MB DDR RAM on Ubuntu 7.10 (Linux
2.6.22-15-generic) OS. A benchmark implementation of RC4 is available within the test suite.
We implemented our modified RC4, which we call RC4+, that incorporates both KSA+ and
PRGA+, maintaining the API compliance of the suite. Test vectors were generated in the
NESSIE [23] format.

The results presented below correspond to tests with 16 bytes secret key and null IV using
the gcc default O3-ual-ofp compiler. As per the test, RC4 KSA took 16944.70 cycles/setup,
whereas the KSA+ of RC4+ took 49823.69 cycles/setup. The stream encryption speed for
RC4 and RC4+ turned out to be 14.39 cycles/byte and 24.51 cycles/byte respectively1. Thus,
we can claim that the running time of our KSA+ is approximately 49823.69

16944.70
= 2.94 times than

that of RC4 KSA and the running time of one round of our PRGA+ is approximately
24.51
14.39

= 1.70 times than that of RC4 PRGA.

6 Conclusion

Though RC4 can be stated in less than ten lines, newer weaknesses are being discovered every
now and then even after twenty years of its discovery. This raises the need for a new design of
a stream cipher, which would be as simple as the description of RC4, yet devoid of the existing
weaknesses of RC4. This is the target of this paper. We present a three-layer architecture of
the scrambling phase after the initialization, which removes many weaknesses of the KSA.
We also add a few extra steps in the PRGA to strengthen the cipher. Experimental results
also supports our claim.

Even after our arguments and empirical evidences, the security claim of RC4+ is a con-
jecture, as is the case with many of the existing stream ciphers. We could not observe any
immediate weakness of the new design and the cipher is subject to further analysis.

Acknowledgments: The authors like to thank Dr. Alexander Maximov for discussion and
valuable comments and Mr. Snehasis Mukherjee, Indian Statistical Institute, Kolkata for his
support in the preparation of the graphs.
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Fig. 3. P (S[u] = v) versus 0 ≤ u, v ≤ 255. Top: after RC4 KSA; Middle: KSA+, after Layer 2; Bottom: KSA+, after
Layer 3.


