A Practical Attack on Broadcast RC4

Itsik Mantin and Adi Shamir

Computer Science Department, The Weizmann Institute, Rehovot 76100, Israel.
{itsik,shamir}@wisdom.weizmann.ac.il

Abstract. RC4 is the most widely deployed stream cipher in software
applications. In this paper we describe a major statistical weakness in
RC4, which makes it trivial to distinguish between short outputs of RC4
and random strings by analyzing their second bytes. This weakness can
be used to mount a practical ciphertext-only attack on RC4 in some
broadcast applications, in which the same plaintext is sent to multiple
recipients under different keys.

1 Introduction

A large number of stream ciphers were proposed and implemented over the last
twenty years. Most of these ciphers were based on various combinations of linear
feedback shift registers, which were easy to implement in hardware, but relatively
slow in software. In 1987 Ron Rivest designed the RC4 stream cipher, which was
based on a different and more software friendly paradigm. It was integrated
into Microsoft Windows, Lotus Notes, Apple AOCE, Oracle Secure SQL, and
many other applications, and has thus become the most widely used software-
based stream cipher. In addition, it was chosen to be part of the Cellular Digital
Packet Data specification. Its design was kept a trade secret until 1994, when
someone anonymously posted its source code to the Cypherpunks mailing list.
The correctness of this unofficial description was confirmed by comparing its
outputs to those produced by licensed implementations.

RC4 has a secret internal state which is a permutation of all the N = 2"
possible n bits words. The initial state is derived from a variable size key by
a key scheduling algorithm, and then RC4 alternately modifies the state (by
exchanging two out of the N values) and produces an output (by picking one of
the N values).

In practical applications n is typically chosen as 8, and thus RC4 has a huge
state of log2(28!) ~ 1684 bits. It is thus impractical to guess even a small part of
this state, or to use standard time/memory/data tradeoff attacks. In addition,
the state evolves in a complex non-linear way, and thus it is difficult to combine
partial information about states which are far away in time. Consequently, all
the techniques developed to attack stream ciphers based on linear feedback shift
registers seem to be inapplicable to RCA4.

Since RC4 is such a widely used stream cipher, it had attracted considerable
attention in the research community, but so far no one had found an attack on

M. Matsui (Ed.): FSE 2001, LNCS 2355, pp. 152-[164] 2002.
© Springer-Verlag Berlin Heidelberg 2002

A Practical Attack on Broadcast RC4 153

RC4 which is even close to being practical: For n = 8 and sufficiently long keys,
the best known attack requires more than 27%° time to find its initial state.

Our main result in this paper is the discovery of a trivial distinguisher be-
tween RC4 and random ciphers, which needs only two output words under several
hundred unknown and unrelated keys to make a reliable decision (the best pre-
viously published distinguisher requires more than a billion output words). This
is surprising, since the algorithm had been analyzed internally for more than
13 years and externally for more than 6 years, and this obviously nonrandom
behavior should have been discovered long ago. Since RC4 has such a unique “fin-
gerprint”, it is easy to recognize its use in given black box encryption devices.
In addition, the nonrandom behavior of RC4 makes it possible to deduce partial
information about the plaintext by analyzing a small number of ciphertexts pro-
duced from the same plaintext under unrelated and arbitrarily long keys. This
provides a practical ciphertext-only attack on RC4 in many applications which
allow data broadcasting, such as groupware and email.

The paper is organized in the following way: In section 2 we describe RC4 and
survey previous results about its security. In section [3] we show that some RC4
outputs are highly nonuniform, and analyze the number of outputs required to
turn this nonuniformity into a reliable distinguisher. In addition, we show how
to apply a practical ciphertext-only attack on RC4 in broadcast applications. In
section Ml we generalize our particular observation, and show that such biases are
created by predictive states, which are related to (but more general than) the
fortuitous states introduced in [FM00]. We end the section with several examples
of such states, along with a theoretical analysis of the size of biases they can
generate and the complexity of the distinguishers they give rise to.

2 RC4 and Its Security

2.1 Description of RC4

The RC4 stream cipher is still considered a trade secret, and the following un-
official description is taken from Schneier’s book [Sch96]. It consists of a key
scheduling part (which turns a random key whose typical size is 40-256 bits into
an initial permutation S of {0,... , N — 1}, and is ignored in this paper) and an
output generation part which is described in figure [Il It initializes two indices
i and j to 0, and then loops over four simple operations which increment 7 as
a counter, increment j pseudo randomly, exchange the two values of S pointed
to by i and j, and output the value of S pointed to by S[i] + S[j[J. Note that
every entry of S is swapped at least once (possibly with itself) within any N
consecutive rounds, and thus the permutation S evolves fairly rapidly during the
output generation process.

! Here and in the rest of the paper all the additions are carried out modulu N

154 I. Mantin and A. Shamir

Initialization:
i=0
ji=0
Generation loop:
i=1+1
j=3+5[

Swap(S[i], S[5])
Output z = S[S[i] + S[j]]

Fig. 1. The Output Generation Algorithm

2.2 Previous Attacks on RC4

Interesting properties of RC4 were described in several papers. Finney specified
in [Fin94] a class of states that RC4 can never enter. This class contains all the
states for which j = i + 1 and S[j] = 1 (a fraction of approximately N~2 of
the RC4 states are in this class, which is closed under RC4 round operation).
These states are connected by short cycles of length N(IN — 1). Since the state
transition in RC4 is invertible and the initial state (i = j = 0) is not of this
type, RC4 can never enter these states for any key. Additional properties of the
state transition graph of RC4 were analyzed by Mister and Tavares in [MT98].

Jenkins identified in [Jen] a probabilistic correlation between the secret in-
formation (S, j) and the public information (7, z) (in known message attacks), in
which the events S[j] =i — z and j — S[i] = z occur with approximately twice
their expected probability.

Andrew Roos noted in [Ro095] that for keys for which K[0] + K[1] = 0, the
first output is equal to K[2] + 3 with probability 27285, The cryptanalyst can
use this fact to deduce two bytes of information about the key (K[0] + K[1] and
K2]) with probability 271085 instead of the trivial 2716, and thus reduce the
effective key length in exhaustive search by about five bits.

Grosul and Wallach show in [GWO00] that for large keys whose size is close
to 2" bytes, RC4 is vulnerable to a related key attack.

A branch and bound attack that is based on the “Guess on Demand”
paradigm is analyzed in [MT98] and [KMPT98|. The attack simulates the gen-
eration process, and keeps track of all the known values in S which had been
deduced so far. Whenever an unknown entry in S is needed in order to continue
the simulation, the attacker tries all the possible values (their number is typically
smaller than N since known values in the permutation S cannot be repeated).
Actual outputs are used by the simulation to either deduce additional values
in S (if the pointed value is unknown) or to backtrack (if the pointed value
is known and different from the actual output). This tree search is simple to
implement, and needs only O(NN) outputs. However, its enormous running time
(which was analyzed both analytically and experimentally in [KMPT98]) makes

A Practical Attack on Broadcast RC4 155

it worse than exhaustive search for typical key sizes, and completely impractical
for any value of n above 5.

A different research direction was to analyze the statistical properties of RC4
outputs, and in particular to construct distinguishers between RC4 and truly
random bit generators. Goli¢ described in [Gol97] a linear statistical weakness
of RC4, caused by a positive correlation between the second binary derivative of
the Isb and 1. This weakness implies that RC4 outputs of length 26n=7-8 (240-2 for
the typical n = 8) can be reliably distinguished from random strings. This result
was subsequently improved by Fluhrer and McGrew in [FMO00]. They analyzed
the distribution of triplets consisting of the two outputs produced at times ¢
and t + 1 and the known value of ¢ = ¢(modN), and found small biases in the
distribution of (7N — 8) of these N? triplets: some of these probabilities were
273"(1+27™) (with a small positive bias), and some of these probabilities were
273"(1 — 27") (with a small negative bias). They used information theoretic
methods to prove that these biases can be used to distinguish between RC'4 and
a truly random source by analyzing sequences of 23°-6 output words. They also
identified a special class of states, which they denoted as fortuitous states, that
are the source of most of these biases. These states can be used to extract part
of the internal state with non-trivial probability, but since RC4 states are huge
this does not lead to practical attacks on RC4 for n > 5.

3 The New Attack

Our main observation is that the second output word of RC4 has a very strong
bias: It takes on the value 0 with twice the expected probability (1/128 instead
of 1/256 for n = 8). Other values of the second output and all the values of other
outputs have almost uniform distributions.

3.1 Distinguishing between Distinguishers

One interesting question is why hasn’t this strong bias been discovered long ago?
RC4 was subjected to rigorous statistical tests, but they typically consisted of
taking a single stream with billions of output words, and counting the number
of times each value occurred along it. Even if this experiment is repeated many
times with different keys, the strong bias of the second output word is not going
to be visible in such an experiment.

The difference between these types of statistical experiments is not new.
Goldreich described in [Gol99] two different notions of computational indistin-
guishability, indistinguishability in polynomial time and indistinguishability in
polynomial sampling. The first definition deals with a probabilistic polynomial
time machine (called a weak distinguisher) which is given a single output stream
produced by one of two possible sources, whereas the second definition deals with
a probabilistic polynomial time machine (called a strong distinguisher) which is
given as a black box one of the two sources, and can reset and rerun it with

156 I. Mantin and A. Shamir

new random keys polynomially many times. These notions of indistinguishabil-
ity are theoretically equivalent in the sense that if one of them can succeed with
probability % + ﬁ for some polynomial p, then the other can also succeed with

probability % + ﬁ for some other polynomial q. However, in practice there can
be a large difference between the two biases, and in particular one of them can
be a large constant whereas the other is a tiny polynomial fraction. This phe-
nomenon is wonderfully demonstrated in the case of RC4, since the analysis of a
single output stream makes the bias almost unnoticeable, whereas the analysis
of a single output word across many executions amplifies the bias and makes it
almost unmissable.

3.2 The Biased Second Output of RC4

Theorem 1 Assume that the initial permutation S is randomly chosen from the
set of all the possible permutations of {0,... ,N — 1}. Then the probability that
the second output word of RCY is 0 is approzimately 2/N.

Proof: Denote the permutation S after it has been updated in round t by S;
(S is the initial permutation) and the output of this round as z;. We show that
when Sp[2] = 0 and Sp[1] # 2, the second output is 0 with probability 1 (see
figure [2).

1

]

Y| o0 X —S[X +Y]

—
L —

|

>~<
=T
o

|

=)

<

Fig. 2. The first 2 rounds of RC4 when So[2] = 0 and Sy[1] # 2

Initially, < and j are 0. If we denote Sp[1] by X, then during the first round
i is updated to 1 and j is updated to 0+ Sp[1] = X, and the contents X and

A Practical Attack on Broadcast RC4 157

Y of locations 1 and X are exchanged. The first output is S;1[X + Y], which
can be any value with essentially uniform probability distribution. We now use
the assumption that Sp[2] = 0. During the second round, i is incremented to 2,
and j is incremented to X + 0 = X, and thus we exchange the values 0 and X
of locations 2 and X, and output S3[X + 0] = S3[X]| = 0 (we have to assume
that Sp[1] # 2 since otherwise 0 is swapped out before it is used as an output).
This lucky sequence of events proves that for about 1/N of the keys, the second
output is 0 with probability 1, whereas for the other 1 — 1/N of the keys, the
second output is 0 with probability 1/N (since it is uniformly distributed). As
a result, the total probability that the second output is 0 is

Plzy=0]=P[z = 0[50[2] =0] - P[So[2] = 0]+ P[22 = 0|S0[2] # 0] - P[So[2] # 0]

~1-1/N+(1-1/N)-1/N=1/N-(1+1—-1/N)=~2/N
which is twice its expected probability. a

One could expect to see a similar (but weaker) bias towards 0 at all the other
outputs z; with t =0 mod n), since in 1/N? of these cases S;[2] = 0 and j = 0,
which would give rise to the same situation. However, extensive experiments
have shown that this weaker bias at later rounds does not exist. By carefully
analyzing this situation one can show that for any j # 0 the output is zero with
a slight negative bias, and the total contribution of these negative biases exactly
cancels the positive bias derived from j = 0. The only time we don’t have this
cancellation effect is at the beginning of the execution, when j always starts as
0 rather than as a uniformly distributed random value.

An interesting observation based on this bias, is that by applying Bayes rule
to the equation P[ze = 0[Sp[2] = 0] = 2/N, we get

P[So[2] = 0]

PISs[2] =012 =0) = =52 =

Consequently, whenever the second output byte is 0 we can extract an entry
of S with probability 1/2, which significantly exceeds the trivial probability of
1/N. This fact can be used to accelerate most of the known attacks by a factor
of N/2, but this improvement does not suffice to mount a practical attack on
RC4,,>5.

3.3 Cryptanalytic Applications

The strong bias described in section has several practical cryptanalytic ap-
plications.

Distinguishing RC4 from Random Sources. The best distinguisher men-
tioned in the literature ([FMO00]), distinguishes RC4 from a random source by
analyzing 23°-6 output words. This distinguisher is weak (since it analyzes a sin-
gle output stream), and is based on 7N — 8 independent biases of events that

158 I. Mantin and A. Shamir

happens with probability of 273"(1 4 27") instead of the expected 273". Our
new observation can be used to construct a strong distinguisher for RC4 which
requires only O(N) output words.

Theorem 2 Let X,Y be distributions, and suppose that the event e happens in
X with probability p and in 'Y with probability p(1 + q). Then for small p and
q, O(ﬁ) samples suffice to distinguish X from'Y with a constant probability of
success.

Proof: Let X, Y, be the random variables specifying the number of occurrences
of e in ¢t samples. Then X, and Y. have binomial distributions with parameters
(t,p) and (t,p(14q)), and their expectations, variances and standard deviations
are:

E[X.] = tp, E[Ye] = tp(1 + q)

V(Xe) =tp(1 —p) =tp,V(Ye) = tp(1 +q)(1 — p(1 +¢q)) = tp(1 +q)

0(Xe) = VV(Xe) = Vip,o(Ye) = VV(Ye) = Vip(1 +q) = Vip

We'll analyze the size of ¢ that implies a difference of at least one standard
deviation between the expectations of the two distributions:

1
E[Ye]_E[Xe] EU(Xe)@tPﬂ*—Q)—tPE \/Fp@tpqzx/@@tz W

Consequently, O(#) samples (The constant depends on the desired success
probability) suffice for the distinguishing,. O

Let X be the probability distribution of the second output in uniformly
distributed streams, and let Y be the probability distribution of the second
output in streams produced by RC4 for randomly chosen keys. The event e
denotes an output value of 0, which happens with probability of 1/N in X
and 2/N in Y. By using the previous theorem with p = 1/N and ¢ = 1, we
can conclude that we need about -1y = N outputs to reliably distinguish the
two distributions. To find the exact number, we carried out actual experiments,
and found out that by analyzing just 200 streams we can correctly distinguish
between RC4 outputs and random streams with probability of success which
exceeds 0.64.

A Ciphertext-Only Attack on Broadcast RC4. A classical problem in
distributed computing is to allow N Byzantine generals to coordinate their ac-
tions when up to one third of them can be traitors. The problem is solved by a
multiround protocol in which each general broadcasts the same message (which
initially consists of either “Attack” or “Retreat”) to all the other generals, where
each copy is encrypted under a different key agreed in advance between any two

A Practical Attack on Broadcast RC4 159

generals. By using RC4, the generals will succeed in reaching a coordinated de-
cision, but will probably fail in implementing it, since an enemy that collects all
the ciphertexts can easily deduce which one of the two possible messages was
broadcast by each general, regardless of the length of their keys. More formally,
we show:

Theorem 3 Let M be a plaintext, and let C1,Cs, ..., Cy be the RCY encryp-
tions of M under k uniformly distributed keys. Then if k = 2(N), the second
byte of M can be reliably extracted from Cy,Co, ..., Cl.

Proof: For every encryption key, M[2] has probability % to be XORed with 0,
and probability % to be XORed with each of the other possible bytes. Thus,
a fraction of % of the second ciphertext bytes are expected to have the same
value as the second plaintext byte, and thus the most frequent character in
2], ... ,Ck[2] is likely to be M|2] itself.

O

The Byzantine empire no longer exists (did they use RC47), but there are
many other broadcasting protocols which are used today in a variety of ap-
plications. For example, many users send the same email message to multiple
recipients (encrypted under different keys), and many groupware applications
enable multiple users to synchronize their documents by broadcasting encrypted
modification lists to all the other group members. All these applications are
vulnerable to this attack.

4 Analysis

In this section we introduce the notion of predictive states, and show that it
generalizes both our observation and the notion of fortuitous states which were
defined in [EMO00]. Each predictive state can give rise to some biased outputs,
and we analyze the size of such biases as a function of certain parameters of
these states. Finally, we show that such states can be used to improve the time
and data complexities of branch and bound attacks on the internal state of RC4.

4.1 a-States and b-Predictiveness

Definition 1 An a-state is a partially specified RCY state, that includes i, j,
and a (not necessarily consecutive) elements of S.

Definition 2 Let A be an a-state for some a. Suppose that allB the RCY states
that are compatible with A produce the same output word after v rounds. Then
A is said to predict its rth output.

2 We can generalize the definition without affecting the analysis by allowing some
exceptions due to rare coincidences.

160 I. Mantin and A. Shamir

Definition 3 Let A be an a-state, and suppose that for some ri,... 1y < 2N,
A predicts the outputs of rounds r1, ... ,ry. Then A is said to be b—predictiv

Intuitively, a b-predictive a-state can be associated with a sequence of b spe-
cific (round, output) pairs. Many experiments (and strong intuition) indicate
that an a-state can be b- predictive only when a > b, but formalizing a proof for
this conjecture seems to be non-trivial.

4.2 Distinguishers Based on Predictive States

In general, any a-state that is b-predictive can induce some bias in the output
distribution. Consider the events E4 (that the current state is compatible with
the a-state A), and Ep (that the outputs in rounds 71, ... , 7} are those predicted
by A). E4 includes a + 2 constraints (¢, j and a elements of S) and thus has
a probability of ﬁ(NL—;)' ~ N—(@+2) Whenever E4 occurs, Ep occurs with
probability 1, and whenever E4 does not occur, Fp typically happens with the
trivial probability of N—(b+1) (based on the choice of i and the b outputs). Thus

the probability of Ep is computed as follows

P[Ep] = P[Eg|Ea| - P[E4] + P[Eg|=Ea] - P[-Ea] =
~1. N—(a+2) + N—(b+1) . (1 _ N—(a+2)) _

_ N—(b-‘rl)(l _ N—(CL+2) +Nb+1—(a+2)) ~ N—(b+1)(1 +Nb—a—1)

Applying the result of Theorem [2] to these probabilities yields the following
corollary

Corollary 1 An a-state that is b-predictive implies the existence of a distin-
guisher for RCY which requires O(N23=+3) output words.

Proof: In terms of Theorem @ p = N~(*1Y and ¢ = N*~*~!. Thus, the number
of output words required to reliably distinguish RC4 from random sources is
O(-1;) = O(N?a—b+3) O

pq?

Our major observation in this paper was caused by a 1-predictive 1-state,
ia=0,54 =0,54[2] = 0 which predicted an output of zero in the second round.
Since at the beginning of the generation process ¢ (which is part of the definition
of p) and j (which is part of the definition of ¢) are fixed, we actually get a
better distinguisher than the one implied by the general corollary: both p and
q (from Theorem [)) increase by a factor of N, and thus the distinguisher needs
only O(N) output words.

3 without the bound on the 7;’s, this definition might include degenerate cases since
the output of RC4 eventually cycles.

A Practical Attack on Broadcast RC4 161

4.3 An Attack Based on Predictive States

Assuming the uniformity of RC4 internal state and outputs (their slight biases
are negligible in the current context), a b-predictive a-state can be used to extract
some partial information on the internal state with non-trivial probability. By
applying Bayes Rule to the probabilities of the events £ 4 and Ep from section
H2) we can calculate

P[EA] Nf(a+2)

~ 1 = b—a—1
PlEg | EElBAl > ey L= N

PlEA|EB] =

Since E4 is internal and Ep is external, we can use the external event Ep as
an indicator for the internal event F4 with a success probability of N®=¢~1 In
other words, if we see N*t1=0 occurrences of Fg, one of them is likely to be a
real occurrence of F4. Having j and a values of S, we can apply the branch and
bound attack from [KMPT98] to reveal the rest of the secret state of RC4.

Intuitively, a determines the quantity of the revealed information, but in-
creasing a reduces the probability for £4 and increases the required number of
outputs. Consequently, the attack is limited to small values of a. The value of
b — a determines the number of false candidates that have to be examined, and
reducing it is essential to reducing the time complexity. Under the conjecture
that b < a, the best states for this attack are a-predictive a-states. In order to
reduce the required number of outputs, the attack can use a database of many
a-predictive a-states sorted by outputs, and lookup all the output sequences in
it.

The attack requires an efficient way to find in a preprocessing stage all the
a-predictive a-states of RC4 for small values of a. This is a non-trivial problem
whose complexity is not well understood at the moment. A subset of predictive
states that is easier to enumerate is the class of fortuitous states mentioned
in [EM00], which includes all the a-predictive a-states in which the predicted
outputs appear as a contiguous prefix of the output sequence (note that our
1-predictive 1-state with its strong bias is not a fortuitous state, since we can
predict the second output but not the first one). In fortuitous states, all the j’s
and (S[i]+.5[j])’s in the first @ rounds must be inside an interval of a consecutive
known values (otherwise, these outputs can’t be specified) and thus we can find
these states via an exhaustive search on all the possible values of short segments
in S.

Fluhrer and McGrew correctly stated that such an attack (see figure B,
based on fortuitous states, is impractical for the full version of RC4 with n = 8.
However, they ignored the fact that it can lead to significant improvements in
attacks on versions of RC4 with smaller values of n.

There are two possible benchmarks for the efficiency of such an attack: the
time complexity and the number of required outputs. Denote the number of
fortuitous states of order a by F(a,N), and the probability that a (specific)
fortuitous state happens as pf(a, N) =~ N —(a+2) The attack requires one fortu-
itous state to happen and thus the number of outputs needed for this attack is
m. The time complexity of this attack is N (false candidates) times

162 I. Mantin and A. Shamir

FortAttack(41, F D HY)
For each a-tuple (z1,... ,2q) of Z
FList = Lookup({z1,...,zq), FDB)
If FList # NULL
For each state f € FList
Let S be the partially guessed permutation according to f
Let Z be the next N words of Z
S = Completh(Z, S)
If S+ NULL
Return S

¢ the output stream

b table of fortuitous states

¢ Branch and Bound attack with apriori informa-
tion

Fig. 3. A Fortuitous State Attack

the recursive function complex (defined in [KMPT98]), that describes the time
complexity of the Branch and Bound attack with apriori information about a
elements in S.

For small values of a the revealed part of S is insignificant, whereas for
large values of a the output size increases dramatically. However, for RC4 with
n = 5 this attack is feasible, and for other values of n it leads to considerable
improvements in the time complexities of the best known attacks (see table [I)

S
i |4 |—2|—-1/0] 1|2 [3|S[&]|S[4]|S[i] + S[j]|Output
=3|=1] 1| 2 %=1 = |*| / | / / /
=210 | x| 2 |1]|—1| * || * 1 * *
=1 2 | % |« |1|—1| 2 |*| * | 2 * *
O3 x| * %=1 21| = | 1 * *
112 *|*[x]2][-111] 2 | -1 1 2
201 | = |« [x[—=1| 2|1 2 |—1 1 —1
312 x| *x[*—1]1(2] 2|1 3 2

Fig. 4. A non-fortuitous 3-predictive 3-state

This attack can be further improved by finding predictive rather than fortu-
itous states. Every fortuitous state is predictive but the converse is clearly false,
and thus we can get a better attack. However, we do not know how to estimate
the approximate number of predictive states of various orders, and thus we can-
not quantify the expected improvement. Small computational experiments had

A Practical Attack on Broadcast RC4

163

Table 1. Performance of the fortuitous state attack (app. stands for approximation)

Nla |F(a,N) |pf(a,N)|Data|fp ratio/Time |Complex(0)
5 [oT22 535 5228 915 SATT
6 o148 9—40 925.2 |94.3 938.6
32 |7 918 9—45 927 |94.0 935.4 953
g |921:5 9—50 928.5 |93.6 932.3
9 |(app.) 2243[2-% 930.5 |93.2 929.2
5 [21Z9 512 529 T (558 STTS®
6 2152 9—48 932.8 95.65 [114.65
7 |(app.)2'7 |2~ 937|955 9110.7
64 |8 |(app.)22t [276° 939 [95.35 |105.85 9132
9 |(app.)22t |27 942 |95.2 9103
10| (app.)227 |2~ 915 |95 999.2
7 [T 512 5303 |57 53178
128[8 |(app.) 224 |27 916 |97 9287.5 9324
256(6 |(app.) 27°°|2— 2 AT T [58 57552 5779

yielded several interesting predictive states which are not fortuitous , such as
the 3-state 3-predictive state described in figure [d] in which the predicted values

appear surprisingly late in the generated sequence (at steps 4, 5, and 6).

S
i |7 (1]2|3| 4 |5] 6 [7] 8 | 9 |10
0 |—1|3[*[2|—=1|%| * |*| * | * | *x
1] 2 |%|3|2|—=1|*| * [*] * | x| %
215 [*[%|2|—1|3] * [*x| * | * | *
317 |*x[*[x|—=1[3] * |2] * | * |
41 6 [*x|*x|*x| % [3[=1|2| % | * | *
519 [*[x|x| * [x[—1]|2] = | 3| *
6| 8 |x[x[x| x [x| x |2|—1| 3 |
7110 |*|x|*| % |%| * [x|]—1| 3|2
819 |*[*|*x| * [x| x [x| 3 |—1|2
9| 8 [*[x[x| x [*| x |x|—1| 3 |2
10] 10 [*|*|*| * [*]| * [%|—1| 3 |2

Fig. 5. A 3-state that determines j for 10 rounds

Intuitively, a state that does not determine the values of j during the next r
rounds, cannot predict the output word of the last of these rounds. In case j is
“lost”, it seems that it cannot be recovered because of the dependency of j on
its former value. Thus, a predictive state must determine the values of j from its
occurrence up to the last predicted round. A possible weakening of the notion

164 I. Mantin and A. Shamir

of predictive states is thus to require only that a prefix of j values should be
uniquely determined by the a-state, without insisting on any predicted outputs.
Despite the loss of our ability to filter false candidates, we earn the ability to
track j values for d rounds conditioned by a constraints, where in some instances
d >> a (e.g., see figure[H).

5 Discussion

In sections [l we described a significant statistical weakness of RC4, which had
some interesting cryptanalytic consequences. However, we would like to stress
that RC4 should not be considered as being completely broken, since our attack
does not recover the key, and in many applications the ability to predict a single
plaintext byte is of little importance. However, we believe that as a result of our
observation, all future implementations of RC4 should skip at least the first two
(and preferably the first N) output words.

References

[Fin94] H. Finney. an RC4 cycle that can’t happen. September 1994.

[FMOO] Fluhrer and McGrew. Statistical analysis of the alleged RC4 keystream
generator. In FSE: Fast Software Encryption, 2000.

[Gol97] Goli¢. Linear statistical weakness of alleged RC4 keystream generator.
In EUROCRYPT: Advances in Cryptology: Proceedings of EUROCRYPT,
1997.

[Gol99] O. Goldreich. Foundations of Cryptogtaphy. 1 edition, 1999.

[GWO00] A. L. Grosul and D. S. Wallach. a related-key cryptanalysis of RC4. June
2000.

[Jen] Robert J. Jenkins. ISAAC and RC4. Published on the internet at

http://burtleburtle.net /bob/rand /isaac.html.

[KMP*98] Knudsen, Meier, Preneel, Rijmen, and Verdoolaege. Analysis methods for
(alleged) RC4. In ASIACRYPT: Advances in Cryptology — ASIACRYPT:
International Conference on the Theory and Application of Cryptology.
LNCS, Springer-Verlag, 1998.

[MT98] Mister and Tavares. Cryptanalysis of RC4-like ciphers. In SAC: Annual
International Workshop on Selected Areas in Cryptography. LNCS, 1998.

[Roo95] A. Roos. A class of weak keys in the RC4 stream cipher. September 1995.

[Sch96] B. Schneier. Applied Cryptography. John Wiley & Sons, Inc, Toronto,
Canada, 2 edition, 1996.

	Introduction
	RC4 and Its Security
	Description of RC4
	Previous Attacks on RC4

	The New Attack
	Distinguishing between Distinguishers
	The Biased Second Output of RC4
	Cryptanalytic Applications

	Analysis
	a-States and b-Predictiveness
	Distinguishers Based on Predictive States
	An Attack Based on Predictive States

	Discussion

