
 
 

 

Supplementary Figure 1 

Quantile–quantile plots. 

Quantile–quantile plot for SNP-based P values (top) and gene-based P values (bottom). 
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Supplementary Figure 2 

Regional chromatin state plots for SNPs with P < 5 × 10
–8

 in four genomic loci. 

(a–d) Chromatin state plots are included for 4 of the 18 genome-wide significant loci. The 1p31.1 and 20q13.13 loci are not included 

because the lead SNPs in these regions (rs66495454 and rs113315451) are indels. In each picture, the top panel shows the lead SNP 
(purple) and all other SNPs reaching genome-wide significance in the region. The colors represent r

2
 with the lead SNP. The bottom 

panel shows chromatin states for 127 tissue types (y axis) across the whole region. Different colors represent the different states, 

varying from “active TSS” (state 1) to “quiescent/low” (state 15). This information can be used to determine which SNPs to study in a 
functional follow-up.  

Nature Genetics: doi:10.1038/ng.3869



 
 

a:	rs12744310	 b:	rs6746731	

c:	rs13010010	 d:	rs10191758	

e:	rs6779302	 f:	rs7646501	

 

Supplementary Figure 3 

Regional chromatin state plots for SNPs with P < 5 × 10
–8

 in six genomic loci. 

(a–f) Chromatin state plots are included for 6 of the 18 genome-wide significant loci. 
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a:	rs41352752	 b:	rs9320913	

c:	rs2490272	 d:	rs10236197	

e:	rs4728302	 f:	rs11138902	

 

Supplementary Figure 4 

Regional chromatin state plots for SNPs with P < 5 × 10
–8

 in six genomic loci.  

(a–f) Chromatin state plots are included for 6 of the 18 genome-wide significant loci. 
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Supplementary Figure 5 

Predictive power (R
2
) of the polygenic score based on different intelligence discovery GWAS studies in four independent 

hold-out samples. 

Comparisons of the explained variance (R
2
) in cognitive ability between polygenic scores based on the current meta-analysis and 

previous GWAS studies. The error bars represent the standard error. Cohorts: HIQ: High IQ sample; RS: Rotterdam Study; TEDS: 
Twins Early Development Study; ACPRC: Age and Cognitive Performance Research Centre; Discovery GWAS: Benyamin et al. 2014: 
childhood IQ; Davies et al. 2016: UK Biobank cognitive test (touchscreen). The R

2
 for HIQ is reported on the liability scale (assuming a 

population prevalence of 3x10
-4

). 
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Supplementary Figure 6 

Epigenetic states of genes. 
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Supplementary Text 

Results of chromatin state mapping for 16 lead SNPs 

The loci 1p31.1 and 20q13.13 were not included, because the lead SNPs in these regions 

(rs66495454 and rs113315451) are indels. For rs2251499 the consensus state is quiescent/low 

and the minimum state is weak transcription (Supplementary Fig. 2a). For rs12928404 the 

consensus state is strong transcription and the minimum state is transcr. at gene 5' and 3' 

(Supplementary Fig. 2b). For rs16954078 the consensus state is weak repressed PolyComb and 

the minimum state is strong transcription (Supplementary Fig. 2c). For rs36093924 the 

consensus state is weak transcription and the minimum state is strong transcription 

(Supplementary Fig. 2d). For rs12744310 the consensus state is quiescent/low and the 

minimum state is weak transcription (Supplementary Fig. 3a). For rs6746731 the consensus 

state is weak transcription and the minimum state is strong transcription (Supplementary Fig. 

3b). For rs13010010 the consensus state is quiescent/low and the minimum state is weak 

transcription (Supplementary Fig. 3c). For rs10191758 the consensus state is quiescent/low and 

the minimum state is strong transcription (Supplementary Fig. 3d). For rs6779302 the 

consensus state is quiescent/low and the minimum state is weak transcription (Supplementary 

Fig. 3e). For rs7646501 the consensus state is quiescent/low and the minimum state is enhancers 

(Supplementary Fig. 3f). For rs41352752 the consensus state is quiescent/low and the minimum 

state is transcribed (Supplementary Fig. 4a). For rs9320913 the consensus state is quiescent/low 

and the minimum state is weak transcription (Supplementary Fig. 4b). For rs2490272 the 

consensus state is weak transcription and the minimum state is strong transcription 

(Supplementary Fig. 4c). For rs10236197 the consensus state is quiescent/low and the 

minimum state is weak transcription (Supplementary Fig. 4d). For rs4728302 the consensus 

state is weak transcription and the minimum state is weak transcription (Supplementary Fig. 

4e). For rs11138902 the consensus state is quiescent/low and the minimum state is weak 

transcription. (Supplementary Fig. 4f).  

 

 

Gene Summaries for implicated genes 

We included the gene summaries from GeneCards (http://www.genecards.org) for all genes that 

were significant in the GWGAS (ordered by P-value) or implicated by single SNP GWAS (the 

last five in this list): 

 

CSE1L 

Proteins that carry a nuclear localization signal (NLS) are transported into the nucleus by the 

importin-alpha/beta heterodimer. Importin-alpha binds the NLS, while importin-beta mediates 

translocation through the nuclear pore complex. After translocation, RanGTP binds importin-

beta and displaces importin-alpha. Importin-alpha must then be returned to the cytoplasm, 

leaving the NLS protein behind. The protein encoded by this gene binds strongly to NLS-free 

importin-alpha, and this binding is released in the cytoplasm by the combined action of RANBP1 

and RANGAP1. In addition, the encoded protein may play a role both in apoptosis and in cell 

proliferation. Alternatively spliced transcript variants have been found for this gene. [provided 

by RefSeq, Jan 2012] 

 

EXOC4 
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The protein encoded by this gene is a component of the exocyst complex, a multiple protein 

complex essential for targeting exocytic vesicles to specific docking sites on the plasma 

membrane. Though best characterized in yeast, the component proteins and functions of exocyst 

complex have been demonstrated to be highly conserved in higher eukaryotes. At least eight 

components of the exocyst complex, including this protein, are found to interact with the actin 

cytoskeletal remodeling and vesicle transport machinery. The complex is also essential for the 

biogenesis of epithelial cell surface polarity. Alternate transcriptional splice variants, encoding 

different isoforms, have been characterized. [provided by RefSeq, Jul 2008] 

 

CYP2D6 

This gene encodes a member of the cytochrome P450 superfamily of enzymes. The cytochrome 

P450 proteins are monooxygenases which catalyze many reactions involved in drug metabolism 

and synthesis of cholesterol, steroids and other lipids. This protein localizes to the endoplasmic 

reticulum and is known to metabolize as many as 25% of commonly prescribed drugs. Its 

substrates include antidepressants, antipsychotics, analgesics and antitussives, beta adrenergic 

blocking agents, antiarrythmics and antiemetics. The gene is highly polymorphic in the human 

population; certain alleles result in the poor metabolizer phenotype, characterized by a decreased 

ability to metabolize the enzyme's substrates. Some individuals with the poor metabolizer 

phenotype have no functional protein since they carry 2 null alleles whereas in other individuals 

the gene is absent. This gene can vary in copy number and individuals with the ultrarapid 

metabolizer phenotype can have 3 or more active copies of the gene. Alternatively spliced 

transcript variants encoding different isoforms have been found for this gene. [provided by 

RefSeq, Jul 2014] 

 

WBP2NL 

WBP2NL is a sperm-specific WW domain-binding protein that promotes meiotic resumption 

and pronuclear development during oocyte fertilization (Wu et al., 2007 [PubMed 

17289678]).[supplied by OMIM, Mar 2008] 

 

FOXO3 

This gene belongs to the forkhead family of transcription factors which are characterized by a 

distinct forkhead domain. This gene likely functions as a trigger for apoptosis through expression 

of genes necessary for cell death. Translocation of this gene with the MLL gene is associated 

with secondary acute leukemia. Alternatively spliced transcript variants encoding the same 

protein have been observed. [provided by RefSeq, Jul 2008] 

 

APBA1 

The protein encoded by this gene is a member of the X11 protein family. It is a neuronal adapter 

protein that interacts with the Alzheimer's disease amyloid precursor protein (APP). It stabilizes 

APP and inhibits production of proteolytic APP fragments including the A beta peptide that is 

deposited in the brains of Alzheimer's disease patients. This gene product is believed to be 

involved in signal transduction processes. It is also regarded as a putative vesicular trafficking 

protein in the brain that can form a complex with the potential to couple synaptic vesicle 

exocytosis to neuronal cell adhesion. [provided by RefSeq, Jul 2008] 

 

SEPT3 
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This gene belongs to the septin family of GTPases. Members of this family are required for 

cytokinesis. Expression is upregulated by retinoic acid in a human teratocarcinoma cell line. The 

specific function of this gene has not been determined. Alternative splicing of this gene results in 

two transcript variants encoding different isoforms. [provided by RefSeq, Jul 2008] 

 

NAGA 

NAGA encodes the lysosomal enzyme alpha-N-acetylgalactosaminidase, which cleaves alpha-N-

acetylgalactosaminyl moieties from glycoconjugates. Mutations in NAGA have been identified 

as the cause of Schindler disease types I and II (type II also known as Kanzaki disease). 

[provided by RefSeq, Jul 2008] 

 

STAU1 

Staufen is a member of the family of double-stranded RNA (dsRNA)-binding proteins involved 

in the transport and/or localization of mRNAs to different subcellular compartments and/or 

organelles. These proteins are characterized by the presence of multiple dsRNA-binding domains 

which are required to bind RNAs having double-stranded secondary structures. The human 

homologue of staufen encoded by STAU, in addition contains a microtubule- binding domain 

similar to that of microtubule-associated protein 1B, and binds tubulin. The STAU gene product 

has been shown to be present in the cytoplasm in association with the rough endoplasmic 

reticulum (RER), implicating this protein in the transport of mRNA via the microtubule network 

to the RER, the site of translation. Five transcript variants resulting from alternative splicing of 

STAU gene and encoding three isoforms have been described. Three of these variants encode the 

same isoform, however, differ in their 5'UTR. [provided by RefSeq, Jul 2008] 

 

NDUFA6 

No Entrez Gene Summary. GeneCards Summary: 

NDUFA6 (NADH:Ubiquinone Oxidoreductase Subunit A6) is a Protein Coding gene. Diseases 

associated with NDUFA6 include Korean Hemorrhagic Fever and Bird Fancier's Lung. Among 

its related pathways are Respiratory electron transport, ATP synthesis by chemiosmotic 

coupling, and heat production by uncoupling proteins. and Metabolism. GO annotations related 

to this gene include NADH dehydrogenase (ubiquinone) activity. 

 

DCAF5 

No Entrez Gene Summary. GeneCards Summary: 

DCAF5 (DDB1 And CUL4 Associated Factor 5) is a Protein Coding gene. Diseases associated 

with DCAF5 include Leiomyoma. An important paralog of this gene is DCAF6. 

 

EFTUD1 

No Entrez Gene Summary. GeneCards Summary: 

EFL1 (Elongation Factor Like GTPase 1) is a Protein Coding gene. Diseases associated with 

EFL1 include Shwachman-Diamond Syndrome. Among its related pathways are Ribosome 

biogenesis in eukaryotes. 

 

DDN 

No Entrez Gene Summary. GeneCards Summary: 
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DDN (Dendrin) is a Protein Coding gene. GO annotations related to this gene include RNA 

polymerase II core promoter proximal region sequence-specific DNA binding and transcription 

factor activity, RNA polymerase II core promoter proximal region sequence-specific binding. 

 

ZNF407 

This gene encodes a zinc finger protein whose exact function is not known. It may be involved in 

transcriptional regulation. Several alternatively spliced transcript variants encoding different 

isoforms have been found for this gene. [provided by RefSeq, Sep 2009] 

 

ZNF638 

The protein encoded by this gene is a nucleoplasmic protein. It binds cytidine-rich sequences in 

double-stranded DNA. This protein has three types of domains: MH1, MH2 (repeated three 

times) and MH3. It is associated with packaging, transferring, or processing transcripts. Multiple 

alternatively spliced transcript variants have been found for this gene, but the biological validity 

of some variants has not been determined. [provided by RefSeq, Jul 2008] 

 

PDE1C 

This gene encodes an enzyme that belongs to the 3'5'-cyclic nucleotide phosphodiesterase family. 

Members of this family catalyze hydrolysis of the cyclic nucleotides, cyclic adenosine 

monophosphate and cyclic guanosine monophosphate, to the corresponding nucleoside 5'-

monophosphates. The enzyme encoded by this gene regulates proliferation and migration of 

vascular smooth muscle cells, and neointimal hyperplasia. This enzyme also plays a role in 

pathological vascular remodeling by regulating the stability of growth factor receptors, such as 

PDGF-receptor-beta. [provided by RefSeq, Jul 2016] 

 

RPL15 

Ribosomes, the organelles that catalyze protein synthesis, consist of a small 40S subunit and a 

large 60S subunit. Together these subunits are composed of 4 RNA species and approximately 

80 structurally distinct proteins. This gene encodes a ribosomal protein that is a component of the 

60S subunit. The protein belongs to the L15E family of ribosomal proteins. It is located in the 

cytoplasm. This gene shares sequence similarity with the yeast ribosomal protein YL10 gene. 

Although this gene has been referred to as RPL10, its official symbol is RPL15. This gene has 

been shown to be overexpressed in some esophageal tumors compared to normal matched 

tissues. Alternate splicing results in multiple transcript variants. As is typical for genes encoding 

ribosomal proteins, there are multiple processed pseudogenes of this gene dispersed through the 

genome. [provided by RefSeq, Nov 2011] 

 

ATXN2L 

This gene encodes an ataxin type 2 related protein of unknown function. This protein is a 

member of the spinocerebellar ataxia (SCAs) family, which is associated with a complex group 

of neurodegenerative disorders. Several alternatively spliced transcripts encoding different 

isoforms have been found for this gene. [provided by RefSeq, Jul 2008] 

 

SH2B1 

This gene encodes a member of the SH2-domain containing mediators family. The encoded 

protein mediates activation of various kinases and may function in cytokine and growth factor 
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receptor signaling and cellular transformation. Alternatively spliced transcript variants have been 

described. [provided by RefSeq, Mar 2009] 

 

NKIRAS1 

No Entrez Gene Summary. GeneCards Summary: 

NKIRAS1 (NFKB Inhibitor Interacting Ras Like 1) is a Protein Coding gene. Among its related 

pathways are NF-KappaB Family Pathway and TNF-alpha/NF-kB Signaling Pathway. GO 

annotations related to this gene include GTP binding and GTPase activity. An important paralog 

of this gene is NKIRAS2. 

 

TUFM 

This gene encodes a protein which participates in protein translation in mitochondria. Mutations 

in this gene have been associated with combined oxidative phosphorylation deficiency resulting 

in lactic acidosis and fatal encephalopathy. A pseudogene has been identified on chromosome 

17. [provided by RefSeq, Jul 2008] 

 

BMPR2 

This gene encodes a member of the bone morphogenetic protein (BMP) receptor family of 

transmembrane serine/threonine kinases. The ligands of this receptor are BMPs, which are 

members of the TGF-beta superfamily. BMPs are involved in endochondral bone formation and 

embryogenesis. These proteins transduce their signals through the formation of heteromeric 

complexes of two different types of serine (threonine) kinase receptors: type I receptors of about 

50-55 kD and type II receptors of about 70-80 kD. Type II receptors bind ligands in the absence 

of type I receptors, but they require their respective type I receptors for signaling, whereas type I 

receptors require their respective type II receptors for ligand binding. Mutations in this gene have 

been associated with primary pulmonary hypertension, both familial and fenfluramine-

associated, and with pulmonary venoocclusive disease. [provided by RefSeq, Jul 2008] 

 

ATP2A1 

This gene encodes one of the SERCA Ca(2+)-ATPases, which are intracellular pumps located in 

the sarcoplasmic or endoplasmic reticula of muscle cells. This enzyme catalyzes the hydrolysis 

of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum 

lumen, and is involved in muscular excitation and contraction. Mutations in this gene cause some 

autosomal recessive forms of Brody disease, characterized by increasing impairment of muscular 

relaxation during exercise. Alternative splicing results in three transcript variants encoding 

different isoforms. [provided by RefSeq, Oct 2013] 

 

JMJD1C 

The protein encoded by this gene interacts with thyroid hormone receptors and contains a 

jumonji domain. It is a candidate histone demethylase and is thought to be a coactivator for key 

transcription factors. It plays a role in the DNA-damage response pathway by demethylating the 

mediator of DNA damage checkpoint 1 (MDC1) protein, and is required for the survival of acute 

myeloid leukemia. Mutations in this gene are associated with Rett syndrome and intellectual 

disability. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Dec 

2015] 
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SHANK3 

This gene is a member of the Shank gene family. Shank proteins are multidomain scaffold 

proteins of the postsynaptic density that connect neurotransmitter receptors, ion channels, and 

other membrane proteins to the actin cytoskeleton and G-protein-coupled signaling pathways. 

Shank proteins also play a role in synapse formation and dendritic spine maturation. Mutations in 

this gene are a cause of autism spectrum disorder (ASD), which is characterized by impairments 

in social interaction and communication, and restricted behavioral patterns and interests. 

Mutations in this gene also cause schizophrenia type 15, and are a major causative factor in the 

neurological symptoms of 22q13.3 deletion syndrome, which is also known as Phelan-

McDermid syndrome. Additional isoforms have been described for this gene but they have not 

yet been experimentally verified. [provided by RefSeq, Mar 2012] 

 

ARFGEF2 

ADP-ribosylation factors (ARFs) play an important role in intracellular vesicular trafficking. The 

protein encoded by this gene is involved in the activation of ARFs by accelerating replacement 

of bound GDP with GTP and is involved in Golgi transport. It contains a Sec7 domain, which 

may be responsible for its guanine-nucleotide exchange activity and also brefeldin A inhibition. 

[provided by RefSeq, Jul 2008] 

 

GRK6 

This gene encodes a member of the guanine nucleotide-binding protein (G protein)-coupled 

receptor kinase subfamily of the Ser/Thr protein kinase family. The protein phosphorylates the 

activated forms of G protein-coupled receptors thus initiating their deactivation. Several 

transcript variants encoding different isoforms have been described for this gene. [provided by 

RefSeq, Jul 2008] 

 

RNF123 

The protein encoded by this gene contains a C-terminal RING finger domain, a motif present in a 

variety of functionally distinct proteins and known to be involved in protein-protein and protein-

DNA interactions, and an N-terminal SPRY domain. This protein displays E3 ubiquitin ligase 

activity toward the cyclin-dependent kinase inhibitor 1B which is also known as p27 or KIP1. 

Alternative splicing results in multiple transcript variants. [provided by RefSeq, Feb 2016] 

 

RNF185 

No Entrez Gene Summary. GeneCards Summary: 

RNF185 (Ring Finger Protein 185) is a Protein Coding gene. Among its related pathways are 

Protein processing in endoplasmic reticulum. GO annotations related to this gene include ligase 

activity. An important paralog of this gene is RNF5. 

 

YIPF7 

No Entrez Gene Summary. GeneCards Summary: 

YIPF7 (Yip1 Domain Family Member 7) is a Protein Coding gene. An important paralog of this 

gene is YIPF5. 

 

GBF1 
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This gene encodes a member of the Sec7 domain family. The encoded protein is a guanine 

nucleotide exchange factor that regulates the recruitment of proteins to membranes by mediating 

GDP to GTP exchange. The encoded protein is localized to the Golgi apparatus and plays a role 

in vesicular trafficking by activating ADP ribosylation factor 1. The encoded protein has also 

been identified as an important host factor for viral replication. Multiple transcript variants have 

been observed for this gene. [provided by RefSeq, Dec 2010] 

 

PEF1 

This gene encodes a calcium-binding protein belonging to the penta-EF-hand protein family. The 

encoded protein has been shown to form a heterodimer with the programmed cell death 6 gene 

product and may modulate its function in Ca(2+) signaling. Alternative splicing results in 

multiple transcript variants and a pseudogene has been identified on chromosome 1.[provided by 

RefSeq, May 2010] 

 

COL16A1 

This gene encodes the alpha chain of type XVI collagen, a member of the FACIT collagen 

family (fibril-associated collagens with interrupted helices). Members of this collagen family are 

found in association with fibril-forming collagens such as type I and II, and serve to maintain the 

integrity of the extracellular matrix. High levels of type XVI collagen have been found in 

fibroblasts and keratinocytes, and in smooth muscle and amnion. [provided by RefSeq, Jul 2008] 

 

DCC 

This gene encodes a netrin 1 receptor. The transmembrane protein is a member of the 

immunoglobulin superfamily of cell adhesion molecules, and mediates axon guidance of 

neuronal growth cones towards sources of netrin 1 ligand. The cytoplasmic tail interacts with the 

tyrosine kinases Src and focal adhesion kinase (FAK, also known as PTK2) to mediate axon 

attraction. The protein partially localizes to lipid rafts, and induces apoptosis in the absence of 

ligand. The protein functions as a tumor suppressor, and is frequently mutated or downregulated 

in colorectal cancer and esophageal carcinoma. [provided by RefSeq, Oct 2009] 

 

PRR7 

No Entrez Gene Summary. GeneCards Summary: 

PRR7 (Proline Rich 7 (Synaptic)) is a Protein Coding gene. 

 

CCDC101 

CCDC101 is a subunit of 2 histone acetyltransferase complexes: the ADA2A (TADA2A; MIM 

602276)-containing (ATAC) complex and the SPT3 (SUPT3H; MIM 602947)-TAF9 (MIM 

600822)-GCN5 (KAT2A; MIM 602301)/PCAF (KAT2B; MIM 602303) acetylase (STAGA) 

complex. Both of these complexes contain either GCN5 or PCAF, which are paralogous 

acetyltransferases
1
. [supplied by OMIM, Apr 2010] 

 

ARHGAP15 

RHO GTPases (see ARHA; MIM 165390) regulate diverse biologic processes, and their activity 

is regulated by RHO GTPase-activating proteins (GAPs), such as ARHGAP15
2
. [supplied by 

OMIM, Mar 2008] 
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SEPT4 

This gene is a member of the septin family of nucleotide binding proteins, originally described in 

yeast as cell division cycle regulatory proteins. Septins are highly conserved in yeast, 

Drosophila, and mouse, and appear to regulate cytoskeletal organization. Disruption of septin 

function disturbs cytokinesis and results in large multinucleate or polyploid cells. This gene is 

highly expressed in brain and heart. Alternatively spliced transcript variants encoding different 

isoforms have been described for this gene. One of the isoforms (known as ARTS) is distinct; it 

is localized to the mitochondria, and has a role in apoptosis and cancer. [provided by RefSeq, 

Nov 2010] 

 

ZFHX3 

This gene encodes a transcription factor with multiple homeodomains and zinc finger motifs, and 

regulates myogenic and neuronal differentiation. The encoded protein suppresses expression of 

the alpha-fetoprotein gene by binding to an AT-rich enhancer motif. The protein has also been 

shown to negatively regulate c-Myb, and transactivate the cell cycle inhibitor cyclin-dependent 

kinase inhibitor 1A (also known as p21CIP1). This gene is reported to function as a tumor 

suppressor in several cancers, and sequence variants of this gene are also associated with atrial 

fibrillation. Multiple transcript variants expressed from alternate promoters and encoding 

different isoforms have been found for this gene. [provided by RefSeq, Sep 2009] 

 

EEA1 

No Entrez Gene Summary. GeneCards Summary: 

EEA1 (Early Endosome Antigen 1) is a Protein Coding gene. Diseases associated with EEA1 

include Subacute Cutaneous Lupus Erythematosus and Cat-Scratch Disease. Among its related 

pathways are Tuberculosis and Cytoskeletal Signaling. GO annotations related to this gene 

include protein homodimerization activity and 1-phosphatidylinositol binding. An important 

paralog of this gene is FYCO1. 

 

WNT4 

The WNT gene family consists of structurally related genes which encode secreted signaling 

proteins. These proteins have been implicated in oncogenesis and in several developmental 

processes, including regulation of cell fate and patterning during embryogenesis. This gene is a 

member of the WNT gene family, and is the first signaling molecule shown to influence the sex-

determination cascade. It encodes a protein which shows 98% amino acid identity to the Wnt4 

protein of mouse and rat. This gene and a nuclear receptor known to antagonize the testis-

determining factor play a concerted role in both the control of female development and the 

prevention of testes formation. This gene and another two family members, WNT2 and WNT7B, 

may be associated with abnormal proliferation in breast tissue. Mutations in this gene can result 

in Rokitansky-Kuster-Hauser syndrome and in SERKAL syndrome. [provided by RefSeq, Jul 

2008] 

 

DRG1 

No Entrez Gene Summary. GeneCards Summary: 

DRG1 (Developmentally Regulated GTP Binding Protein 1) is a Protein Coding gene. GO 

annotations related to this gene include identical protein binding and transcription factor binding. 
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IP6K1 

This gene encodes a member of the inositol phosphokinase family. The encoded protein may be 

responsible for the conversion of inositol hexakisphosphate (InsP6) to diphosphoinositol 

pentakisphosphate (InsP7/PP-InsP5). It may also convert 1,3,4,5,6-pentakisphosphate (InsP5) to 

PP-InsP4. Alternatively spliced transcript variants have been described. [provided by RefSeq, 

Jun 2011] 

 

APOBR 

Apolipoprotein B48 receptor is a macrophage receptor that binds to the apolipoprotein B48 of 

dietary triglyceride (TG)-rich lipoproteins. This receptor may provide essential lipids, lipid-

soluble vitamins and other nutrients to reticuloendothelial cells. If overwhelmed with elevated 

plasma triglyceride, the apolipoprotein B48 receptor may contribute to foam cell formation, 

endothelial dysfunction, and atherothrombogenesis. [provided by RefSeq, Jul 2008] 

 

HCRTR1 

The protein encoded by this gene is a G-protein coupled receptor involved in the regulation of 

feeding behavior. The encoded protein selectively binds the hypothalamic neuropeptide orexin 

A. A related gene (HCRTR2) encodes a G-protein coupled receptor that binds orexin A and 

orexin B. [provided by RefSeq, Jan 2009] 

 

PIK3IP1 

No Entrez Gene Summary. GeneCards Summary: 

PIK3IP1 (Phosphoinositide-3-Kinase Interacting Protein 1) is a Protein Coding gene. GO 

annotations related to this gene include phosphatidylinositol 3-kinase catalytic subunit binding. 

 

TCF20 

This gene encodes a transcription factor that recognizes the platelet-derived growth factor-

responsive element in the matrix metalloproteinase 3 promoter. The encoded protein is thought 

to be a transcriptional coactivator, enhancing the activity of transcription factors such as JUN 

and SP1. Mutations in this gene are associated with autism spectrum disorders. Alternative 

splicing results in multiple transcript variants. [provided by RefSeq, Sep 2015] 

 

SKAP1 

This gene encodes a T cell adaptor protein, a class of intracellular molecules with modular 

domains capable of recruiting additional proteins but that exhibit no intrinsic enzymatic activity. 

The encoded protein contains a unique N-terminal region followed by a PH domain and C-

terminal SH3 domain. Along with the adhesion and degranulation-promoting adaptor protein, the 

encoded protein plays a critical role in inside-out signaling by coupling T-cell antigen receptor 

stimulation to the activation of integrins. [provided by RefSeq, Jul 2008] 

 

FAM109B 

No Entrez Gene Summary. GeneCards Summary: 

FAM109B (Family With Sequence Similarity 109 Member B) is a Protein Coding gene. GO 

annotations related to this gene include protein homodimerization activity. An important paralog 

of this gene is FAM109A. 
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MEF2C 

This locus encodes a member of the MADS box transcription enhancer factor 2 (MEF2) family 

of proteins, which play a role in myogenesis. The encoded protein, MEF2 polypeptide C, has 

both trans-activating and DNA binding activities. This protein may play a role in maintaining the 

differentiated state of muscle cells. Mutations and deletions at this locus have been associated 

with severe mental retardation, stereotypic movements, epilepsy, and cerebral malformation. 

Alternatively spliced transcript variants have been described. [provided by RefSeq, Jul 2010] 

 

NEGR1 

No Entrez Gene Summary. GeneCards Summary: 

NEGR1 (Neuronal Growth Regulator 1) is a Protein Coding gene. Diseases associated with 

NEGR1 include Podoconiosis and Obesity. Among its related pathways are Cell adhesion 

molecules (CAMs). An important paralog of this gene is LSAMP. 

 

ATP2A1-AS1 

No Entrez Gene Summary. GeneCards Summary: 

ATP2A1-AS1 (ATP2A1 Antisense RNA 1) is an RNA Gene, and is affiliated with the non-

coding RNA class. 

 

Genetic correlation with Alzheimer’s disease for different age groups 

Since Alzheimer’s variants could be affecting cognitive abilities through cognitive decline in 

older subjects, we calculated the genetic correlation between intelligence and Alzheimer’s 

disease for three different age groups: 

 

1. UKB group (aged 40-77.5): rg=-0.33, SE=0.10, P=1.7x10
-3

 

2. Adults (aged 18-78): rg=-0.35, SE=0.11, P=1.1x10
-3

 

3. Children (aged < 18): rg=-0.30, SE=0.11, P=6.2x10
-3

. 

As can be seen, the rg’s are very similar across age (which we would expect given the high 

genetic correlation between intelligence in children and adults that we found), suggesting that the 

observed genetic correlation between Alzheimer’s disease and intelligence based on the full 

sample is not influenced by one particular age group.  

 

Independent datasets available for PRS 

1. Manchester and Newcastle Longitudinal Studies of Cognitive Ageing Cohorts 

The University of Manchester Age and Cognitive Performance Research Centre (ACPRC) 

programme was established in 1983 and this study has documented longitudinal trajectories in 

cognitive function in a large sample of older adults in the North of England, UK
3
. Recruitment 

took place in Newcastle and Greater Manchester between 1983 and 1992. At the outset of the 

study, 6063 volunteers were available (1825 men and 4238 women), with a median age of 65 

years (range 44 to 93 years). Over the period 1983 to 2003, two alternating batteries of cognitive 

tasks applied biennially were designed to measure fluid and crystallized aspects of intelligence. 

These included: the Alice Heim 4 (AH4) parts 1 and 2 tests of general intelligence, Mill Hill 

Vocabulary A and B Tests, the Cattell and Cattell Culture Fair intelligence tests, and the 

Wechsler Adult Intelligence Scale Vocabulary test. Detailed task descriptions were provided 
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previously
3
. Following informed consent, venesected whole blood was collected for DNA 

extraction in approximately 1600 volunteers who had continued to participate in the longitudinal 

study in 1999-2004 which constitutes the Dyne-Steel DNA bank for the genetics of ageing and 

cognition. Ethical approval for all projects was obtained from the University of Manchester. 

To represent crystallized intelligence (gc), we used the Mill Hill Vocabulary A and B Tests in the 

Manchester and Newcastle samples. For fluid-type intelligence (gf) in the Manchester and 

Newcastle samples empirical Bayes estimates for each individual were obtained from a random 

effects model fitted by maximum likelihood (ML) to the standardized age-regressed residuals 

obtained for each sex from the Alice Heim 4 test and the Cattell Culture Fair test scores. The 

phenotypes for gc were corrected for age and gender and the phenotypes for gf were corrected for 

age and derived separately for males and females. The standardized residuals were used for all 

subsequent analyses. 

Participants had DNA extracted and were genotyped for 599,011 common single nucleotide 

polymorphisms (SNPs) using the Illumina610-Quadv1 chip. Stringent quality control analyses of 

the genotype data were applied, after which 549,692 of the 599,011 SNPs on the Illumina 610 

chip in 1,558 individuals were retained.  Individuals were excluded from this study based on 

unresolved gender discrepancy, relatedness, call rate (≤ 0.95), and evidence of non-Caucasian 

descent. SNPs were included in the analyses if they met the following conditions: call rate ≥ 

0.98, minor allele frequency ≥ 0.01, and Hardy-Weinberg equilibrium test with P≥10
-3

. Each 

cohort was tested for population stratification and any outliers were excluded. More details can 

be found in ref. 4.   

 

2. Twins Early Development Study 

The Twins Early Development Study (TEDS) is a multivariate longitudinal study that recruited 

over 11,000 twin pairs born in England and Wales in 1994, 1995 and 1996. Both the overall 

TEDS sample and the genotyped subsample have been shown to be representative of the UK 

population
5–7

. The project received approval from the Institute of Psychiatry ethics committee 

(05/Q0706/228) and parental consent was obtained before data collection. For the current study, 

we selected individuals that were not included in ref. 8, which resulted in a sample of N=1,173 

available for PRS analyses. DNA was extracted from saliva and buccal cheek swab samples and 

hybridized to HumanOmniExpressExome-8v1.2 genotyping arrays at the Institute of Psychiatry, 

Psychology and Neuroscience Genomics & Biomarker Core Facility. The raw image data from 

the array were normalized, pre-processed, and filtered in GenomeStudio according to Illumina 

Exome Chip SOP v1.4. 

(http://confluence.brc.iop.kcl.ac.uk:8090/display/PUB/Production+Version%3A+Illumina+Exo

me+Chip+SOP+v1.4). In addition, prior to genotype calling, 869 multi-mapping SNPs and 353 

samples with call rate < 0.95 were removed. The ZCALL program was used to augment the 

genotype calling for samples and SNPs that passed the initial QC.  

Samples were removed from subsequent analyses on the basis of call rate (< 0.99), suspected 

non-European ancestry, heterozygosity, array signal intensity, and relatedness. SNPs were 
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excluded if the minor allele frequency was < 5%, if more than 1% of genotype data were 

missing, or if the Hardy Weinberg P-value was lower than 10
-5

. Non-autosomal markers and 

indels were removed. Association between the SNP and the platform, batch, or plate on which 

samples were genotyped was calculated and SNPs with an effect P-value smaller than 10
-3

 were 

excluded. After alignment to the 1000 Genomes (phase 3) reference data, 3,617 individuals and 

515,536 SNPs remained. A principal component analysis was performed on a subset of 42,859 

common (MAF > 5%) autosomal HapMap3 SNPs
9
, after stringent pruning to remove markers in 

linkage disequilibrium (r
2
 > 0.1) and excluding high linkage disequilibrium genomic regions so 

as to ensure that only genome-wide effects were detected. Thirty PCs were used in the present 

analyses. 

Individuals were tested on two verbal tests at the age of 12, the WISC-III-PI Multiple Choice 

Information (General Knowledge) and Vocabulary Multiple Choice subtests
10

, and on two 

nonverbal reasoning tests, the WISC-III-UK Picture Completion
10

 and Raven's Standard and 

Advanced Progressive Matrices
11,12

, which were all administered online
13,14

. g-scores were 

derived as the arithmetic mean of the four standardized test scores. The residuals after regressing 

the measure on sex and age at assessment were used. These were obtained using the 

rstandard function of the lm package in R (version 3.2.2), which produces standardized residuals 

via normalization to unit variance using the overall error variance of the residuals. 

 

3. High IQ Sample  

Individuals with extremely high intelligence were recruited from the top 1% of the Duke 

University Talent Identification Program
15

 (TIP), which recruits from the top 3% of the 

intelligence distribution. DNA was collected using buccal swabs. Illumina Omni Express 

genotypes were available for 1,236 white European Caucasian individuals following quality 

control. A population comparison cohort was obtained from The University of Michigan Health 

and Retirement Study (HRS). Details about the HRS can be found on 

(http://hrsonline.isr.umich.edu/). DNA was extracted from saliva. Genotypes were available from 

the Illumina Human Omni-2.5 Quad Beadchip, with a coverage of 2.5 million SNPs. Genotype 

data were obtained through dbGaP (accession: phs000428.v2.p2). After quality control and 

ancestry-matching to the TIP participants, genotypes were available for 8,168 white Caucasian 

individuals. All individuals were imputed to the Haplotype Reference Consortium reference 

panel (rv1.1), using PBWT
16

 as implemented in the Sanger Imputation Server 

(imputation.sanger.ac.uk). SNPs taken forward to analyses had INFO > 0.9, MAF ≥ 0.01, call 

rate > 99.9% and Hardy-Weinberg P<10
-8

. Samples had call rate > 98%, heterozygosity < 4 

standard deviations from the mean, and one of each pair of related samples was removed (r > 

0.025). For the analyses performed in LDpred high IQ individuals were treated as "cases" and 

population comparisons as controls. All analyses were controlled for gender and 10 principal 

components. 

 

4. Rotterdam Study 
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The Rotterdam Study is a large population-based cohort study in the Netherlands among 

individuals aged ≥ 45 years and residing in the Ommoord area, a suburb of Rotterdam
17

. The 

current study includes all participants under 60 years of age for whom genotypic information was 

available, who underwent cognitive testing at the study centre from 2002 onwards, and have 

been approved by the medical ethics committee according to the Population Study Act 

Rotterdam Study, executed by the Ministry of Health, Welfare and Sports of the Netherlands. 

Written informed consent was obtained from all participants.  Genotype data were collected on 

Illumina 550, Illumina 550duo and Illumina 610 quad SNP arrays. Variants were filtered on 

MAF < 0.01, call rate < 95% and Hardy-Weinberg P<10
-6

. Individuals were filtered based on 

genotype missingness rate > 0.05, gender mismatch and relatedness (one of each pair of 

individuals with IBD > 0.185). Analyses were restricted to individuals from Northern European 

ancestry, resulting in a sample size of 2,015. 

Participants underwent detailed cognitive assessment with a neuropsychological test battery 

comprising of the letter-digit substitution task (number of correct digits in one  minute), the 

verbal fluency test (animal categories), the Stroop test (error-adjusted time in seconds for Stroop 

reading and interference tasks), and a 15-word learning test (delayed recall). To obtain a measure 

of global cognitive function, a compound score (g-factor) was computed based on the 

aforementioned tests using principal component analysis. The g-factor explained 56.0% of the 

variance in cognitive test scores in the population. 
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