In the format provided by the authors and unedited.

Morphological novelty emerges from pre-existing phenotypic plasticity

Nicholas A. Levis[®]*, Andrew J. Isdaner and David W. Pfennig

Department of Biology, University of North Carolina, Chapel Hill, NC, USA. *e-mail: nicholasalevis@gmail.com

1	Supplementary Information for
2	Morphological novelty emerges from pre-existing phenotypic plasticity
3	Nicholas A. Levis ^{1*} , Andrew J. Isdaner ¹ , and David W. Pfennig ¹
4	
5	¹ Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC 27599, USA
6	
7	*Corresponding author; E-mail: <u>nicholasalevis@gmail.com</u>
8	

9 Table S1. Trophic traits associated with carnivore-omnivore polyphenism and their functions.

Trait (abbreviation)	Function	Reference
Denticle rows (DR)	rasps food off surfaces; more DR favored for smaller prey	55,56
Keratinized mouthparts (MP)	grasps prey; larger, more serrated MP favored for larger prey	55,56
Orbitohyoideus muscle (OH)	opens mouth; larger OH favored for larger prey	56-58
Gut coils (GC)	used to digest food; more GC favored for more plants or bacteria in diet	12,29

11Table S2. Results from morphological experiment using *Sc. holbrookii* reared on alternative12diets. Values under 'Shrimp' and 'Detritus' indicate the mean $(\pm s.e.m.)$ of each trait on the13respective diet. Bolded rows indicate that there was a significant difference between diets14according to a likelihood ratio test.

Variable	Shrimp	Detritus	χ^2	<i>P</i> value
SVL (mm)	8.11 (0.16)	8.96 (0.11)	32.79	1.60×10 ⁻⁸
Gosner Stage	31.97 (0.35)	33.03 (0.21)	1.05	0.0810
GC	5.50 (0.07)	6.53 (0.13)	5.33	0.0082
DR	13.30 (0.31)	16.68 (0.35)	22.96	1.30×10 ⁻⁶
MP	1.23 (0.06)	1.78 (0.08)	6.05	0.0065
LMP	2.05 (0.13)	2.62 (0.13)	4.14	0.0131
Size-corrected OH	-0.002 (0.01)	0.002 (0.01)	0.05	0.1911

16 Table S3. Summary statistics from an ANOVA (with type III sum of squares) on various trophic

17 traits in *Sc. holbrookii* reared on alternative diets. Every trait had a significant difference between

18 families and/or a significant family*diet interaction (bolded values). Diet dependence of trait

19 expression (i.e., plasticity) corroborates our findings in Table S2.

	Snout-vent ler			Denticle rov	VS				
Variable	Sum of Squares	DF	F	P value	Variable	Sum of Squares	DF	F	P value
Family	22.95	1	41.2	0.000	Family	30.80	1	4.98	0.028
Diet	5.27	1	9.47	0.003	Diet	156.80	1	25.35	0.000
Family*Diet	1.87	1	3.36	0.069	Family*Diet	0.70	1	0.11	0.742
(Gosner developmer	ntal sta	age			Mouthpart sc	ore		
Variable	Sum of Squares	DF	F	P value	Variable	Sum of Squares	DF	F	P value
Family	96	1	68.54	0.000	Family	3.75	1	14.08	0.000
Diet	0	1	0	1.000	Diet	11.27	1	42.30	0.000
Family*Diet	34	1	24.3	0.000	Family*Diet	3.01	1	11.29	0.001
	Size-corrected	OH				Gut length	L		
Variable	Sum of Squares	DF	F	P value	Variable	Sum of Squares	DF	F	P value
Family	0.02	11	3.69	0.057	Family	29.40	1	76.78	0.000
Diet	0.01	1	1.95	0.165	Diet	1.67	1	4.34	0.039
Family*Diet	0.03	1	4.87	0.029	Family*Diet	14.70	1	38.29	0.000
20									

22 Table S4. The genes whose expression was examined in this study. 'Bias' indicates the biased

23 expression pattern described by 30 .

Gene	Symbol	Bias	Functional Group
basic transcription factor 3 ^{ap}	btf3	Carnivore	Gene regulation
T-box transcription factor TBX15-like ^{ap}	tbx15	Carnivore	Gene regulation
peptidase M20 domain containing ^{ap,wc}	pm20d2	Carnivore	Metabolism
collagen, type II, alpha 1 ^{ap}	col2a1	Carnivore	Structural
pancreatic triacylglycerol lipase-like ^{ap,wc}	pnlip	Omnivore	Metabolism
amylase, alpha 2A (pancreatic) ^{ap,wc}	amy2a	Omnivore	Metabolism
peptidoglycan recognition protein 1 ^{ap}	pglyrp1	Omnivore	Immunity
transferrin ^{ap}	tf	Omnivore	Immunity
beta (β)-actin ^{ap}	actb	Control	Structural
glyceraldehyde-3-phosphate dehydrogenase ^{wc}	gapdh	Control	Metabolism

24 ap = genes used in the ancestral plasticity experiment; wc = genes used the wild-caught *Spea* experiment

- 25 Table S5. Summary statistics from analysis of diet-dependent gene expression plasticity in Sc. holbrookii. Five genes had diet-
- 26 dependent expression plasticity 'Bias' refers to morph-biased expression in *Spea*. Values below 'RQ_{Shrimp}' and 'RQ_{Detritus}' are the
- 27 mean expression levels (± s.e.m.) of tadpoles reared on each diet. logRatio refers to our measure of plasticity (see Methods). We called
- 28 the expression of a gene as plastic (Y) if its RQ between diets was significantly different (P value < 0.05) and if its logRatio (\pm 99%
- 29 CI) did not overlap with 0, otherwise it was called non-plastic (N).

Gene	Bias	$RQ_{Shrimp} (\pm s.e.m.)$	$RQ_{Detritus} (\pm s.e.m.)$	χ^2	P value	logRatio	Lower 99% CI	Upper 99% CI	Plasticity
btf3	Carnivore	0.019 (0.005)	0.354 (0.124)	13.6013	0.0004	-2.949	-3.991	-1.951	Y
col2a1	Carnivore	0.051 (0.015)	0.537 (0.171)	10.2575	0.0025	-2.346	-3.402	-1.309	Y
tbx15	Carnivore	0.043 (0.012)	0.746 (0.337)	6.0612	0.0244	-2.848	-4.227	-1.607	Y
pm20d2	Carnivore	0.008 (0.002)	0.389 (0.140)	17.3107	0.0003	-3.843	-5.011	-2.736	Y
tf	Omnivore	0.037 (0.011)	0.372 (0.105)	15.9796	0.0003	-2.316	-3.108	-1.505	Y
pnlip	Omnivore	0.314 (0.222)	0.244 (0.103)	0.4017	0.4884	0.251	-1.959	3.014	Ν
pglyrp1	Omnivore	0.349 (0.202)	0.320 (0.120)	0.1785	0.5497	0.088	-1.960	2.478	Ν
amy2a	Omnivore	0.281 (0.157)	0.254 (0.114)	0.048	0.6000	0.099	-2.330	2.682	Ν
actb						-2.619	-5.230	0.154	Ν
30									

- 31 Table S6. Results from morphological experiment using *Sp. multiplicata* reared on alternative
- 32 diets. Values under 'Shrimp' and 'Detritus' indicate the mean (\pm s.e.m.) of each trait on the
- 33 respective diet. Bolded rows indicate that there was a significant difference between diets

Variable	Shrimp	Detritus	χ^2	<i>P</i> value
SVL (mm)	14.04 (0.11)	14.08 (0.07)	0.046	0.398
Gosner Stage	38.62 (0.16)	38.65 (0.10)	0.001	0.427
Mass	322.91 (7.45)	324.68 (5.03)	0.006	0.437
Size-corrected OH	0.01 (0.009)	-0.01 (0.006)	5.63	0.016
MP	1.40 (0.05)	1.08 (0.02)	4.98	0.020
DR	12.15 (0.27)	15.41 (0.26)	56.87	7.21×10 ⁻¹⁴
GC	7.61 (0.19)	10.76 (0.16)	81.44	6.82×10 ⁻¹⁶

34 according to a likelihood ratio test.

35

37 Table S7. Results from Fisher's exact test on the number of individuals with ('Yes') and without

	pm20d2		pnlip		amy2a	
	Yes	No	Yes	No	Yes	No
Carnivores	11	1	0	12	1	11
Omnivores	2	8	8	2	9	1
P value	0.0015		0.0001		0.0003	

38 ('No') detectable levels of gene product for each gene.

41 Table S8. Results from our likelihood ratio test to evaluate if morph influences the expression of

42 each gene in wild-caught *Sp. multiplicata*.

amy2a	Model	AIC value	χ^2	Df	P value
	Morph	101.66	37.263	1.00	< 0.001
	Null	136.92			
pm20d2	Model	AIC value	χ^2	Df	P value
	Morph	100.45	4.909	1.00	0.0267
	Null	103.36			
pnlip	Model	AIC value	χ^2	Df	P value
	Morph	96.898	40.313	1.00	< 0.001
	Null	135.212			

Table S9. Summary statistics from our comparison of the palate spike among wild-caught *Spea*and *Scaphiopus*. Overall, there was a significant effect of lineage on extent of spike formation
(top), but not all groups significantly differed from each other (bottom). On the bottom, effect

Model	AIC value	χ^2	Df	P value
Null	710.73			
Full	657.51	41.219	3	< 0.0001
	Sb-S	Sc	Sm-C	Sm-O
Sb-S		14.77	11.3	15.69
Sc	0.0001		3.49	-0.67
Sm-C	0.0001	0.0034		3.29
Sm-O	0.0001	0.6969	0.01	

48 sizes (Z scores) are above the diagonal and P values are below the diagonal.

Sb-S = Sympatric *Sp. bombifrons*; Sc = *Sc. couchii*; Sm-C = *Sp. multiplicata* carnivores; Sm-O = *Sp. multiplicata* omnivores

50	Table S10. Estimated family variance (V_{AF}) and total estimated variance (V_{total}) for fitness and
51	morphological parameters. The 95% confidence intervals (CI) for broad-sense heritabilities (H^2)
52	were calculated using 500 bootstrap replicates of the original data. If H^2 confidence intervals of
53	alternative diets were not overlapping for a particular trait, the H^2 of that trait was considered to
54	be significantly diet-dependent. Greater H^2 on a shrimp diet is indicate of the release of cryptic
55	genetic variation when fed that diet.

Species	Trait	Diet	V_{AF}	V _{total}	H^2	CI	H^2 diet dependent?
Sc. couchii	log(SVL)	Detritus	0.001	0.025	0.05	(-0.12,0.09)	Y
		Shrimp	0.005	0.022	0.50	(0.34, 0.65)	
	Gosner Stage	Detritus	0.000	1.888	0.00	(-0.13, 0.00)	Y
		Shrimp	0.486	2.857	0.33	(0.20, 0.49)	
	Gut length	Detritus	0.003	0.046	0.12	(-0.04, 0.25)	Y
		Shrimp	0.006	0.043	0.28	(0.13, 0.40)	
	log(OH)	Detritus	0.001	0.009	0.19	(0.02, 0.33)	Ν
		Shrimp	0.002	0.018	0.19	(0.03, 0.33)	
Sp. multiplicata	log(SVL)	Detritus	0.001	0.004	0.46	(-0.05, 0.57)	Ν
		Shrimp	0.002	0.012	0.26	(-0.28, 0.48)	
	Gosner stage	Detritus	0.113	1.468	0.14	(-0.62, 0.36)	Ν
		Shrimp	0.931	2.976	0.48	(-0.05, 0.71)	
	Gut length	Detritus	0.005	4.124	0.00	(-0.50, 0.03)	Ν
		Shrimp	1.208	4.031	0.46	(0.03, 0.56)	
	log(OH)	Detritus	0.001	0.008	0.27	(-0.21, 0.36)	Ν
		Shrimp	0.003	0.028	0.19	(-0.38, 0.36)	
	Denticle rows	Detritus	0.563	9.772	0.11	(-0.34, 0.17)	Ν
		Shrimp	2.559	8.268	0.47	(0.01, 0.59)	
	Mouthpart score	Detritus	0.000	0.078	0.00	(-0.54, 0.11)	Ν
		Shrimp	0.000	0.343	0.00	(-0.46, 0.11)	

 $5\overline{6}$ Sc. couchii data are from ²⁶

- 57 Table S11. Concentration and purity values from RNA extractions of Sc. holbrookii (left) and
- 58 wild-caught Sp. multiplicata (right). For Sc. holbrookii, the sample ID denotes family-individual-
- 59 diet. For *Sp. multiplicata*, the sample ID denotes population-morph-individual.
- 60

Sample	Mean concentration (ng/µL)	260/280	260/230	Sample	Mean concentration (ng/ μ L)	260/280	260/230
1.1s	881.5	2.11	2.21	SC1	724.8	1.96	2.00
1.2s	1171.4	2.06	1.82	SC2	652.9	1.99	2.00
1.3s	1303.9	2.07	1.96	SC3	766.9	1.98	2.00
1.4s	1339.5	2.07	2.06	SC4	1168.8	2.00	1.94
1.5s	966.5	2.07	2.04	SC5	871	2.05	1.99
1.6s	1147.8	2.09	2.08	SO1	532.1	1.58	1.41
1.7s	1073.9	2.06	1.96	SO2	399.9	1.68	1.55
1.1d	501	2.05	1.24	SO3	627.6	1.65	1.54
1.2d	434.4	2.06	1.83	SO4	468.4	1.71	1.51
1.3d	315.2	2.07	1.44	SO5	486.1	1.66	1.48
1.4d	414.9	2.10	2.01	PC1	742.9	1.91	1.75
1.5d	377.03	2.06	1.67	PC2	943.5	1.98	1.85
1.6d	808	2.07	2.05	PC3	1149.2	2.01	2.00
1.7d	499.9	2.06	1.64	PC4	1148.9	1.99	1.87
2.1s	1177.8	2.08	2.01	PC5	729.3	2.10	2.12
2.2s	918.6	2.06	2.07	PO1	555.6	1.84	1.54
2.3s	1091.6	2.08	2.11	PO2	827.8	1.89	1.50
2.4s	1217.9	2.06	2.04	PO3	671.4	1.80	1.73
2.5s	968.1	2.08	2.07	PO4	683.5	1.84	1.68
2.6s	989	2.06	2.04	PO5	946.4	2.02	2.05
2.7s	1227	2.06	2.00	BC1	894.8	2.00	2.03
2.1d	746.1	2.07	2.12	BC2	715.6	1.98	2.01
2.2d	791.8	2.06	1.88	BO1	907.6	1.81	1.57
2.3d	899.2	2.08	1.62	BO2	504.1	1.70	1.52
2.4d	949.2	2.08	2.06				
2.5d	370.9	2.04	1.49				
2.6d	849.7	2.08	1.94				
2.7d	619.2	2.07	2.10				

s = shrimp diet; d = detritus diet; S =Silver Creek; P = Peach Orchard Rd.; B = Observatory; C = carnivore; O =

61 s = shrimp 62 omnivore

65 Table S12. Reaction components for qPCR.

	Volume	Final
Component	(µL)	Concentration
iTaq TM universal SYBR® Green supermix		
(2x)	10	1X
Forward and reverse primers	1 (each)	500 nm
cDNA template	2	300 pg
H ₂ O	6	

		An	nplification		
	Polymerase Activation and DNA Denaturation at	Denaturation at 95°C,	Annealing/Extension and Plate read at		
Setting	95°C, sec	sec	60°C, sec	Cycles	Melt Curve Analysis
					Instrument default
Standard	30	15	60	40	setting
69					
70					

68 Table S13. Reaction conditions for qPCR.

Gene	Accession	Left Primer Sequence (5'-3')	Right Primer Sequence (5'-3')
$btf3^h$	JN639644	ACAGCCACTGCTGATGACAA	CAGCCAAGGAAGCCTGTACT
$tbx15^h$	JN639816	GACTCTGGAAGGAACCGGAC	CTGCCACCTTGCTGTTTCTG
$pm20d2^h$	JN639773	GGTGCATTTCAGGGGATGGA	TGGATATGCAGCAGCATGAGA
$pm20d2^m$	JN639770	AATCTGCAGCTGAGGCAACT	AACCGCAAAGCTCACATTTC
$col2a1^h$	JN639671	TGGTGGACAAGCAAGAGCAA	TGGGATGCATCAGTGGACAG
$pnlip^h$	JN639778	TGGACTTCTTCCCCAATGGC	GGTGTTGGCGTAGTGATGC
$pnlip^m$	JN639775	TCCCCAGTTTAGGTTTTGGA	AGAACAGGGGTAGCTGACGA
amy2a ^h	JN639636	TGGACGTGGAAACAAAGGGT	GAGTGCCTTCTTTCTGCCCA
amy2a ^m	JN639633.1	TGGGTCAACCAAATCTGTCA	GAGTGGCGTCCATATTCCAT
tf^h	JN639821	GACCATGCCAAAGCAGGCAAA	TTAGCAATCAGGCCGACAGG
$actb^h$	NM_213719.1	TGCTCTGGACTTTGAGCAGG	GCTGGAAGAGTGCTTCTGGA
$gapdh^m$	BC075438.1	CTGTGAAAGCGTGGACAGTG	GTTGGTGTGAACCACGAGAA
72 h 73	= primers for Sc. hol	<i>brookii</i> ; m = primers for <i>Sp. multiplicata</i>	

71 Table S14. Genbank accessions and qPCR primer sequences for each gene.

- 74 Table S15. Results for comparison of control gene expression between diets (for *Sc. holbrookii*)
- 75 and morphs (for *Sp. multiplicata*). A Wilcoxon test was performed to assess if expression varied

76 by treatment. Neither *actb* nor *gapdh* significantly differed between treatments.

Gene	Species	Z	P value
actb	Sc. holbrookii	1.63114	0.1029
gapdh	Sp. multiplicata	1.94517	0.0518

Fig. S1. Relationship (Pearson correlation) between palate spike score and morphological index
in wild-caught *Sp. multiplicata* and *Sp. bombifrons* carnivores (n = 127). A more extensive palate
spike was significantly positively associated with more carnivore-like tadpoles. Regression line
is for visualization purposes only.

85 Fig. S2. Diet-induced morphological plasticity in Sc. holbrookii reared on detritus or shrimp (left

86 panels) and Sp. multiplicata reared on detritus or shrimp (right panels). Points: values for

87 individual tadpoles (for mean \pm s.e.m. plots, see Fig. 2).

89

90 Fig. S3. A, Differences in magnitude of expression of trophic traits of carnivores in a lineage in 91 which carnivores are produced at low-intermediate frequencies as part of a polyphenism 92 (allopatric Sp. multiplicata) versus a lineage in which carnivores are produced at high 93 frequencies (sympatric Sp. bombifrons). **B**, Differences in magnitude of expression of a novel 94 palate spike in lineages/morphs that differ in likelihood of expressing carnivore features. 95 Diamonds: mean values. In all panels, points are values for individual tadpoles (for mean \pm 96 s.e.m. plots, see Fig. 5).