Advertisement

Getting tipsy

Climate tipping points are conditions beyond which changes in a part of the climate system become self-perpetuating. These changes may lead to abrupt, irreversible, and dangerous impacts with serious implications for humanity. Armstrong McKay et al. present an updated assessment of the most important climate tipping elements and their potential tipping points, including their temperature thresholds, time scales, and impacts. Their analysis indicates that even global warming of 1°C, a threshold that we already have passed, puts us at risk by triggering some tipping points. This finding provides a compelling reason to limit additional warming as much as possible. —HJS

Structured Abstract

INTRODUCTION

Climate tipping points (CTPs) are a source of growing scientific, policy, and public concern. They occur when change in large parts of the climate system—known as tipping elements—become self-perpetuating beyond a warming threshold. Triggering CTPs leads to significant, policy-relevant impacts, including substantial sea level rise from collapsing ice sheets, dieback of biodiverse biomes such as the Amazon rainforest or warm-water corals, and carbon release from thawing permafrost. Nine policy-relevant tipping elements and their CTPs were originally identified by Lenton et al. (2008). We carry out the first comprehensive reassessment of all suggested tipping elements, their CTPs, and the timescales and impacts of tipping. We also highlight steps to further improve understanding of CTPs, including an expert elicitation, a model intercomparison project, and early warning systems leveraging deep learning and remotely sensed data.

RATIONALE

Since the original identification of tipping elements there have been substantial advances in scientific understanding from paleoclimate, observational, and model-based studies. Additional tipping elements have been proposed (e.g., parts of the East Antarctic ice sheet) and the status of others (e.g., Arctic summer sea ice) has been questioned. Observations have revealed that parts of the West Antarctic ice sheet may have already passed a tipping point. Potential early warning signals of the Greenland ice sheet, Atlantic Meridional Overturning Circulation, and Amazon rainforest destabilization have been detected. Multiple abrupt shifts have been found in climate models. Recent work has suggested that up to 15 tipping elements are now active (Lenton et al., 2019). Hence it is timely to synthesize this new knowledge to provide a revised shortlist of potential tipping elements and their CTP thresholds.

RESULTS

We identify nine global “core” tipping elements which contribute substantially to Earth system functioning and seven regional “impact” tipping elements which contribute substantially to human welfare or have great value as unique features of the Earth system (see figure). Their estimated CTP thresholds have significant implications for climate policy: Current global warming of ~1.1°C above pre-industrial already lies within the lower end of five CTP uncertainty ranges. Six CTPs become likely (with a further four possible) within the Paris Agreement range of 1.5 to <2°C warming, including collapse of the Greenland and West Antarctic ice sheets, die-off of low-latitude coral reefs, and widespread abrupt permafrost thaw. An additional CTP becomes likely and another three possible at the ~2.6°C of warming expected under current policies.

CONCLUSION

Our assessment provides strong scientific evidence for urgent action to mitigate climate change. We show that even the Paris Agreement goal of limiting warming to well below 2°C and preferably 1.5°C is not safe as 1.5°C and above risks crossing multiple tipping points. Crossing these CTPs can generate positive feedbacks that increase the likelihood of crossing other CTPs. Currently the world is heading toward ~2 to 3°C of global warming; at best, if all net-zero pledges and nationally determined contributions are implemented it could reach just below 2°C. This would lower tipping point risks somewhat but would still be dangerous as it could trigger multiple climate tipping points.
The location of climate tipping elements in the cryosphere (blue), biosphere (green), and ocean/atmosphere (orange), and global warming levels at which their tipping points will likely be triggered.
Pins are colored according to our central global warming threshold estimate being below 2°C, i.e., within the Paris Agreement range (light orange, circles); between 2 and 4°C, i.e., accessible with current policies (orange, diamonds); and 4°C and above (red, triangles).

Abstract

Climate tipping points occur when change in a part of the climate system becomes self-perpetuating beyond a warming threshold, leading to substantial Earth system impacts. Synthesizing paleoclimate, observational, and model-based studies, we provide a revised shortlist of global “core” tipping elements and regional “impact” tipping elements and their temperature thresholds. Current global warming of ~1.1°C above preindustrial temperatures already lies within the lower end of some tipping point uncertainty ranges. Several tipping points may be triggered in the Paris Agreement range of 1.5 to <2°C global warming, with many more likely at the 2 to 3°C of warming expected on current policy trajectories. This strengthens the evidence base for urgent action to mitigate climate change and to develop improved tipping point risk assessment, early warning capability, and adaptation strategies.
Climate tipping points (CTPs) have emerged as a growing research topic and source of public concern (13). Tipping points are defined as “a critical threshold at which a tiny perturbation can qualitatively alter the state or development of a system” (1). Several large-scale Earth system components, termed tipping elements, were identified with evidence for tipping points that could be triggered by human activities this century. The initial shortlist constituted Arctic summer sea ice, the Greenland ice sheet (GrIS), the West Antarctic ice sheet (WAIS), Atlantic Meridional Overturning Circulation (now AMOC, previously THC), the El Niño Southern Oscillation, the Indian Summer monsoon, the Sahara/Sahel and West African Monsoon, the Amazon rainforest (AMAZ), and boreal forest. A literature review (1) and corresponding expert elicitation (4) provided early estimates of the temperature thresholds and potential interactions of these tipping elements. Subsequent work showed how recognition of CTPs considerably affects risk analysis and supports measures to minimize global warming to the Paris target of 1.5°C (5, 6).
Since these early estimates (1), there have been considerable advances in our knowledge of CTPs including observations of nonlinear changes in the climate system, statistical early warning methods, paleoclimate evidence, upgraded Earth system models (ESMs), and improved offline models of particular elements (e.g., ice sheets and vegetation). Notably, observations and models suggest that parts of the WAIS may be approaching (7, 8) or have even passed a tipping point (9, 10). Early warning indicators have revealed potential destabilization of the GrIS, AMOC, and AMAZ (1113). However, many ESMs still lack processes important for resolving potential tipping behavior—e.g., bias toward AMOC stability (14)—or underestimating current tropical carbon sink declines (15). Potential causal interactions among tipping elements (4) are such that overall tipping of one element increases the likelihood of tipping others (16), possibly risking a “tipping cascade” of impacts that may further amplify global warming (2, 3). In the worst case scenario, interactions might produce a global CTP (3).
The list of tipping elements has evolved over time (13, 5) (table S1). Different studies have proposed potential additions including southwest North America, the Yedoma permafrost region, the North Atlantic subpolar gyre (17), low-latitude coral reefs, the East Antarctic Ice Sheet (EAIS), Arctic winter sea ice (AWSI), Alpine glaciers (5), the northern polar jet stream (3), the Congo rainforest (18), and the Wilkes and Aurora subglacial basins in East Antarctica (2). A range of abrupt shifts have been identified in CMIP5 models (19), some of which are not in elements on the original shortlist such as boreal tundra or Antarctic sea ice. Conversely, arguments have been made that Arctic summer sea ice (20, 21), El Niño–Southern Oscillation (ENSO) (22, 23), and monsoons (24) should not be classified as CTPs. Numerous temperature threshold estimates have been made since (1) with some being revised markedly downward—notably WAIS (2, 25). The recent the Intergovernmental Panel on Climate Change (IPCC) AR6 WG1 report identifies up to 15 candidates [table 4.10 in (23)] but was not explicit about their temperature thresholds (23).
Here we reassess the climate tipping elements based on the substantial literature published since (1), focusing on those triggerable by global warming. We clarify the definition of tipping elements and points and propose a new categorization separating global “core” and regional “impact” tipping elements. We then provide an updated list and assessment of the global mean surface temperature (GMST) range at which each candidate CTP could occur as well as their timescales and climate impacts. Finally we combine this information to assess the likelihood of triggering CTPs at successive global warming levels.

Defining tipping points and tipping elements

Given multiple inconsistent definitions of a CTP in the literature, we anchor on the technical definition provided by (1): A tipping point is a threshold in a (forcing) “control parameter” at which a small additional perturbation (within natural variability of ~0.2°C) causes a qualitative change [significantly larger than the standard deviation of natural variability in (1)] in the future state of a system [see (1) and SM for the full definition]. Here, our specific definition is as follows: Tipping points occur when change in part of the climate system becomes (i) self-perpetuating beyond (ii) a warming threshold as a result of asymmetry in the relevant feedbacks, leading to (iii) substantial and widespread Earth system impacts. We now explain key aspects of this definition in more detail.

Self-perpetuating change

Self-perpetuation mechanisms are critical to the existence of a tipping point in a system, beyond which they propel qualitative change such that even if forcing of the system ceases the qualitative change usually continues to unfold regardless (20). IPCC AR6 sometimes uses tipping point to refer to a class of abrupt change in which the subsequent rate of change is independent of the forcing [1.4.4.3 of (26)], although this is not part of AR6’s core CTP definition [4.7.2 of (23)]. Self-perpetuation is usually due to positive feedback within a system attaining sufficient strength to overcome stabilizing negative feedbacks and (temporarily) reach a “runaway” condition (in which an initial change propagating around a feedback loop gives rise to an additional change that is at least as large as the initial change and so on). Most positive feedbacks never attain this condition and instead simply amplify the original driver in a constrained way. Notably, Arctic summer sea ice loss involves the positive ice-albedo feedback, but unlike year-round sea ice loss, that feedback alone is not strong enough to produce a clear threshold beyond which loss would continue even if global warming stopped (20, 21). Consequently, we describe such feedbacks as “threshold-free”.

(Ir)reversibility

Tipping points usually lead to irreversible qualitative change but reversible tipping points are possible as a special case (1). Many tipping points result from crossing bifurcation points or attraction basin boundaries in bistable systems, with the resulting hysteresis making tipping effectively irreversible on human timescales. However, self-perpetuating change can also occur across noncatastrophic thresholds in unistable systems (27) (supplementary text S1). Other definitions of CTPs are more restrictive and require irreversibility, for example: “a system reorganizes… and does not return to the initial state even if the drivers of the change are abated” [6.1.1 of (22)]. The IPCC AR6 does not require irreversibility as this is difficult to prove for long timescales given model limitations: “A tipping point is a critical threshold beyond which a system reorganizes, often abruptly and/or irreversibly” [4.7.2 of (23)]. AR6 uses abruptness and irreversibility as proxies for tipping dynamics but does not specify criteria for system reorganization and sometimes does not clearly differentiate which abrupt and/or irreversible changes are considered tipping points (e.g., irreversible ocean temperature change is listed alongside potential tipping points in table 4.10 of (23) and box 12.1 in table 1 of (28) but has no clear critical threshold).

Timescale and abruptness

We allow for CTPs (e.g., in ice sheets) in which the resulting qualitative change is slower than the anthropogenic forcing causing it—i.e., not abrupt in the sense defined as faster than the cause (29). We only require that the transition to a new state occurs at a rate determined by the climate (sub)system itself (29). The resulting committed (often irreversible) qualitative changes can unfold over centuries to millennia [here we relax the ethical time horizon of (1) from ~1 thousand years (ky) to ~10 ky], but crucially they can increase short-term impacts (e.g., rate of sea level rise). Other authors require a tipping point to produce abrupt change (30) thereby excluding events such as ice sheet collapse. The IPCC defines abrupt change as “substantially faster than the rate of change in recent history” in AR6 [1.4.4.3 of (26)], which could allow for slower changes than anthropogenic forcing. However, AR6 also gave a more restrictive timescale-based definition for abrupt climate change as taking place over a few decades or less (i.e., as fast as anthropogenic forcing) and persisting for at least a few decades [4.7.2 of (23)]. More than a dozen abrupt changes have been found in CMIP5 model output (19) (table S2) but such changes could simply be the result of an abrupt change in forcing without involving CTPs. Below we assess which abrupt changes indicate potential tipping elements and which do not involve self-perpetuating feedback.

Spatial scale

Tipping elements are defined as components of the Earth system that are at least subcontinental in scale (of the order of 1000 km, i.e., ~1 M km2) and could pass a tipping point as a result of actions this century (1). If self-perpetuating change (and a corresponding tipping point) occurs at a subcontinental scale then this qualifies as a global core tipping element. However, there are many examples of runaway feedback and associated tipping points at smaller spatial scales. Where a change in forcing (e.g., temperature) is fairly uniform across a large spatial scale, such that a smaller-scale tipping point is crossed near-synchronously in many locations that span a subcontinental scale (e.g., coral bleaching across the Great Barrier Reef or committed loss of Himalayan glaciers), then these are considered potential regional impact tipping elements. However, where systems exhibit localized tipping points (1 m to 1 km) at different forcing levels such that change does not self-perpetuate beyond a clear shared threshold (e.g., methane hydrates), these are classed as threshold-free feedbacks because the accumulated global consequences of multiple localized tipping events remain roughly proportional to the forcing.

Impacts

Climate tipping elements in (1) either (i) contribute significantly to the overall mode of operation of the Earth system (such that tipping them modifies the overall state of the whole system), (ii) contribute significantly to human welfare (such that tipping them affects >~100 million people), or (iii) have great value in themselves as a unique feature of the Earth system [expanded from the biosphere used in (1)]. Global core tipping elements must meet criterion (i) whereas regional impact tipping elements must meet criterion (ii) or (iii) but not (i). Regarding (i), crossing a tipping point need not involve feedback to global atmospheric composition or temperature—self-perpetuating feedback can exist entirely within a tipping element (1)—but there is usually causal coupling to other tipping elements such as through heat, salt, water, carbon, or momentum fluxes (4). Often there is feedback to global warming and where this exceeds ±0.1°C (i.e., natural variability and the triggering perturbation) we consider this to meet criterion (i). Thus, near-synchronous, large-scale crossing of smaller-scale tipping points can qualify as a global core tipping element if it changes warming by >0.1°C.

The climate tipping elements

Based on current observations, paleorecords, and model runs subsequent to (1), we draw up a longlist of proposed climate tipping elements. Together with expert judgment for each proposed element, we summarize the evidence and confidence levels for self-perpetuation, temperature thresholds, hysteresis or irreversibility, transition timescales, and global or regional impacts on climate (Materials and Methods, table S3, and supplementary text S2). Based on this evidence and the definitions in the preceding section, we shortlist global core and regional impact climate tipping elements (Table 1 and Fig. 1). Other candidate tipping elements that we consider uncertain, unlikely, or that have threshold-free feedbacks are discussed in the supplementary text along with differences with past assessments (table S4).
 
Table 1. Table showing our literature-based threshold, timescale, and impact estimates for the tipping elements we categorize as global core or regional impact.
Element acronym colors indicate Earth system domain (blue, cryosphere; green, biosphere; orange, ocean-atmosphere), and element name and estimate colors indicate subjective confidence levels (green, high; yellow, medium; red, low). Bolded element names indicate elements featured in previous climate tipping element characterizations.

*Feedback strength in °C per °C for abrupt permafrost thaw is calculated relative to preindustrial and declines with further degrees of warming (by ~21% per °C).

Fig. 1. Maps showing the global core (A) and regional impact (B) climate tipping elements identified in this study. Blue, green, and orange areas represent cryosphere, biosphere, and ocean-atmosphere elements, respectively.

Cryosphere

Arctic sea ice (AWSI/BARI)

An abrupt collapse in AWSI (31) is observed in some CMIP5 models beyond ~4.5°C (19, 32), which arises either from asymmetry in ice formation and loss timescales creating a threshold response or from local positive feedback cycles. Hence we class AWSI as a global core tipping element (medium confidence), with a best estimate threshold of ~6.3°C (4.5 to 8.7°C, based on CMIP5) (high confidence), timescales of 20 years (10 to 100 years) (high confidence), and GMST feedback of ~+0.6°C (high confidence) [~+0.25°C when free of summer ice; regional ~+0.6 to 1.2°C (low confidence)]. A subcase is abrupt loss of Barents Sea winter ice (BARI), which occurs at ~1.6°C in two CMIP5 models (19), is self-reinforced by an increased inflow of warm Atlantic waters (33), and has substantial impacts on atmospheric circulation, European climate, and potentially the AMOC (34). We consider BARI a probable regional impact tipping element (medium confidence) with a threshold of 1.6°C (1.5 to 1.7°C) (low confidence), a timescale of ~25 years (low confidence), and regional warming (high confidence). By contrast Arctic summer sea ice (ASSI)—despite declining rapidly since the 1970s and outpacing previous IPCC projections since the 1990s—is responding linearly to cumulative emissions (35). This decline is amplified by the ice-albedo feedback and possibly feedbacks to cloud cover but damped by negative heat loss feedbacks (20). CMIP6 models better capture historical ASSI decline and project that ice-free Septembers will occur occasionally above 1.5°C GMST, become common beyond 2°C, and remain permanent at ~3°C (36). However, the linear modeled and observed responses suggest that ASSI is unlikely to feature a tipping point beyond which loss would self-perpetuate (21, 36). Hence, we recategorize ASSI as a threshold-free feedback.

Greenland ice sheet (GrIS)

The GrIS is shrinking at an accelerated rate as a result of both net surface melt and accelerated calving (37, 38) and shows early warning signals consistent with approaching a tipping point in west Greenland (11). Both ice sheet modeling and paleoclimate data indicate that a GrIS tipping point can occur when the melt-elevation feedback gets strong enough to support self-propelling melt (as an ice sheet surface loses height, it enters warmer air and thus melts faster) (1). Different models give a critical threshold of ~1.6°C (0.8 to 3.2°C) (39), ~1.5°C (40), or 2.7±0.2°C (41). Paleoclimate and model evidence shows that ice only reaches full coverage below ~0.3 to 0.5°C [~300 parts per million (ppm) CO2] (39, 42). Hysteresis allows GrIS to exist above this growth threshold once formed (39) but paleorecords indicate that GrIS partially retreats above this threshold (42) and likely collapsed during the long MIS-11 interglacial which was considerably warmer (>1.5°C) (43). A coupled ice sheet–atmosphere model found no collapse threshold (44), leading AR6 to state that there is limited evidence for irreversible GrIS loss below 3°C (21). However, some irreversible loss occurs beyond 3.5 m sea level equivalent (equivalent to ~2 to 2.5°C) (44), indicating self-perpetuating feedback. GrIS collapse would shift the Earth system to a unipolar icehouse state and affect other tipping elements (particularly the AMOC), hence qualifying as a global core tipping element (high confidence). Our best estimates for GrIS include a threshold of ~1.5°C (0.8 to 3°C) (high confidence), timescales of 10 ky (1 to 15 ky) (medium confidence), and GMST feedback of ~+0.13°C (regional ~+0.5 to 3°C) (low confidence). The timescale of ice sheet meltdown gets shorter the greater the temperature threshold is exceeded (40), with a minimum of ~1000 years.

West Antarctic ice sheet (WAIS)

Large parts of the WAIS are grounded below sea level; if the grounding line in these marine ice sheet basins reaches retrograde slopes, this may lead to the onset of marine ice sheet instability (MISI) and crossing of a tipping point (7, 8, 45). MISI is based on a feedback between the grounding line retreat and ice flux across the grounding line as it reaches thicker ice. This can lead to self-sustaining retreat and is hypothesized to have driven past collapses of the WAIS during previous warmer interglacial periods with high sea levels (21, 46). Some glaciers in the Amundsen Sea Embayment are already close to this threshold and experiencing substantial grounding line retreat (9). The grounding line of Thwaites glacier is only ~30 km away from the subglacial ridge and retreating at ~1 km per year (47); eventual collapse may already be inevitable (10, 45). Models support irreversible retreat being underway for present levels of ocean warming (25, 48) and suggest that losing Thwaites glacier may destabilize much of WAIS (7). Under sustained 1°C warming one model shows partial WAIS collapse with mass loss peaking at ~2°C warming (25). Hence we retain WAIS as a core global tipping element (high confidence) with a best estimate threshold of ~1.5°C [1 to 3°C, down from 3.5 to 5.5°C in (1)] (high confidence), timescales of 2 ky (500 years to 13 ky) (medium confidence), and GMST feedback of ~+0.05°C (regional ~+1°C) (low confidence). Higher threshold exceedance reduces the transition timescale to a minimum of ~500 years (40).

East Antarctic subglacial basins (EASB)

Recent data and models have shown that several subglacial basins of the EAIS—particularly the Wilkes, Aurora, and Recovery Basins—are also affected by MISI (21, 25, 4951). These basins may also be subject to marine ice cliff instability in which the collapse of floating ice shelves creates unstable ice cliffs at the marine edge of the ice sheet which can retreat faster, but the importance of this process is disputed (49, 51). One model indicates that Wilkes collapse may be committed by 3 to 4°C (25). Paleoclimate evidence for a higher mid-Pliocene sea level (+5 to 25 m) indicates that parts of the EASB (together with the GrIS and WAIS) were likely absent when the world was ~2.5 to 4°C warmer (21, 42, 52). By contrast sea levels of +6 to 13 m at 1.1 to 2.1°C in MIS-11 do not require substantial EASB contribution (assuming WAIS and GrIS were lost) (50). Hence we class EASB as a core global tipping element (high confidence) with best estimates for a tipping threshold of 3°C (2 to 6°C) (medium confidence), timescales of 2 ky (500 y to 10 ky) (medium confidence), and an uncertain GMST feedback provisionally assumed to be similar to WAIS (i.e., ~+0.05°C) (low confidence).

East Antarctic ice sheet (EAIS)

The land-grounded bulk of the EAIS is the world’s largest ice sheet, containing the equivalent of ~50 m of sea level potential (25). Paleorecords indicate that growth occurred once atmospheric CO2 fell below ~650 to 1000 ppm (~6 to 9°C) (42). Modeled ice sheets often exhibit alternative ice-covered or ice-free stable states for a range of global boundary conditions (53). As a result of this hysteresis the EAIS is expected to remain stable at CO2 levels well beyond 650 ppm, helping it to survive through the warm mid-Miocene Climatic Optimum ~16 Mya (~2 to 4°C) (42). However, long-term stabilization at >1000 ppm CO2 and ~8 to 10°C warming could cause total disintegration (25). Once past this threshold, self-perpetuating feedbacks amplify ice loss (39). The loss of EAIS would have global effects and hence is categorized as a global core tipping element (medium confidence). Although unlikely, under high emissions [e.g., Representative Concentration Pathway (RCP) 8.5] and high climate sensitivity it might conceivably be committed to during this century or thereafter. Our best estimates for the EAIS are a tipping threshold of ~7.5°C (5 to 10°C) (medium confidence), timescales of >10 ky (medium confidence), and GMST feedback of ~+0.6°C (regional ~+2°C) (low confidence).

Boreal permafrost (PFTP/PFAT)

Permanently frozen soils and sediments in boreal regions contain ~1035 gigatonnes of carbon (GtC) that can be partly released as CO2 and methane upon thawing (54). Although initially lacking evidence for a synchronous large-scale threshold (1), subsequent assessments recognized that part(s) of the permafrost could be considered a tipping element (3, 17). Here we separate permafrost into three components with different dynamics: gradual thaw [PFGT; a threshold-free feedback (high confidence)] (5456) (see SM); abrupt thaw [PFAT; a regional impact tipping element (medium confidence)], and collapse [PFTP: a global core tipping element (low confidence)]. Abrupt thaw processes (PFAT) such as slope slumping and thermokarst lake formation (54) could increase emissions by 50 to 100% relative to gradual thaw (57), involve localized tipping dynamics (e.g., continued thaw subsidence after initiation) and could occur near-synchronously on a subcontinental scale. Our best estimates for PFAT include a tipping threshold of 1.5°C (1 to 2.3°C) (medium confidence), a timescale of 200 years (100 to 300<years) (medium confidence), and an additional ~50% emissions beyond gradual thaw (~10 to 25 GtC per °C) (medium confidence). Finally, abrupt permafrost drying at ~4°C (58) and/or sufficiently rapid regional warming (>9°C) corresponding to ~5°C globally (17, 59) could act as a trigger for permafrost collapse (PFTP) driven by internal heat production in carbon-rich permafrost—“the compost bomb” instability (60, 61). The Yedoma deep ice- and carbon-rich permafrost (containing ~115 GtC in Yedoma deposits, ~400 GtC across the Yedoma domain) is particularly vulnerable as fast thaw processes can expose previously isolated deep deposits (54, 59). This and other carbon-rich regions vulnerable to abrupt drying at >4°C (58) could have considerable feedback to global temperatures. Our best estimates for PFTP include a threshold of 4°C (3 to 6°C) (low confidence), a timescale of 50 years (10 to 300 years) (medium confidence), and emissions on the order of ~125 to 250 GtC (∆GMST ~+0.2 to 0.4°C) (low confidence).

Mountain glaciers (GLCR)

Alpine glaciers outside Greenland and Antarctica have individual mass balance thresholds and elevation feedbacks yet large-scale synchronous losses are projected in several key regions at specific global warming levels. In transient simulations, peak water from European glacier melt is expected at ~1°C (62) with near-total loss expected to be committed at ~2°C (20). Global peak water occurs at ~2°C but committed eventual loss is expected at lower temperatures (63). Long model integrations show that global warming of 1.5 to 2°C is sufficient to lead to the eventual loss of most extra-polar glaciers (and possibly even polar glaciers) (40, 64). RCP4.5 (>2°C by 2100) puts most lower-latitude glaciers on a path to significant losses beyond 2100 (21). Glaciers in High Mountain Asia last longer than elsewhere but reach peak water at ~2°C with significant social impacts for South Asia (62). Given the considerable human impacts of glacier loss (63) we categorize mountain glaciers as a regional impact tipping element (medium confidence). Our best estimate includes a threshold of ~2°C (1.5 to 3°C) (medium confidence), a timescale of 200 years (50 years to 1 ky) (medium confidence), and GMST feedback of ~+0.08°C (regionally greater) (low confidence).
Southern Ocean sea ice features abrupt events in some climate models (19) but because of uncertain dynamics and low confidence in projections it is classed as an uncertain tipping element (see SM). Marine methane hydrates are classed as a threshold-free feedback and Tibetan plateau snow is classed as uncertain (see SM).

Ocean-Atmosphere (circulation)

North Atlantic subpolar gyre / Labrador-Irminger Sea convection (LABC)

Convection in the Labrador and Irminger Seas in the North Atlantic—part of the subpolar gyre (SPG)—abruptly collapses in some models as a result of warming-induced stratification, a state which is then maintained by self-reinforcing convection feedbacks (19, 65) giving two alternative stable states with or without deep convection. Abrupt future SPG collapse occurs in nine runs across five CMIP5 models at 1.1 to 2.0°C, in one additional model run at 3.8°C (19, 65), and in four CMIP6 models in the 2040s (~1 to 2°C) (66). In some models SPG collapse affects AMOC strength but SPG and AMOC have distinct feedback dynamics and patterns of impacts, and SPG collapse can occur much faster than AMOC collapse. The North Atlantic cooling trend (i.e., the “warming hole”) is centered over the SPG and in models is often closely linked to SPG weakening (65, 66), although others have associated it with AMOC slowdown (67). SPG collapse causes a concentrated North Atlantic regional cooling of ~2 to 3°C, potential global cooling of up to ~0.5°C, a northward-shifted jet stream, weather extremes in Europe, and southward shift of the intertropical convergence zone (ITCZ) (65, 66). Given clear tipping dynamics and global impact we class SPG as a global core tipping element (medium confidence), with a best estimate threshold of ~1.8°C (1.1 to 3.8°C) (high confidence), a timescale of 10 years (5 to 50 years) (high confidence), and GMST feedback of ~0.5°C (regional ~−3°C) (low confidence).

Atlantic meridional overturning circulation (AMOC)

The AMOC is self-sustaining due to salt-advection feedback (northward movement of warm water increases its density as a result of cooling and evaporation supporting the deep convection that drives the circulation). Import of salt at the southern boundary of the Atlantic also supports alternative strong and weak AMOC stable states with multiple abrupt switches between them observed in the past (68). Global warming increases Arctic precipitation, freshwater runoff from Greenland, and sea surface temperatures, which together slow down the AMOC by inhibiting deep convection. The AMOC is inferred from some reconstructions to have weakened by ~15% over the past ~50 years (67) and early warning signals in indirect AMOC footprints are consistent with the current AMOC “strong” state losing stability (12). However, the IPCC gives low confidence on historical AMOC trends (21). The Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) (22) assessed AMOC collapse occurring during the 21st century to be very unlikely but physically plausible; however, this was increased to unlikely (medium confidence) in AR6 (21). AMOC collapse is triggered in three runs of one CMIP5 model at 1.4 to 1.9°C and in two runs of an additional model at 2.2 to 2.5°C (19, 65) in contrast to gradual declines in other CMIP5 and CMIP6 models (21). However, AR6 assessed CMIP models as generally tending toward “unrealistic stability” with respect to observational constraints (14, 21). They also neglect meltwater forcing from rapid GrIS melt (21, 69). Both factors make the AMOC more vulnerable to collapse. AMOC collapse would have global impacts on temperature and precipitation patterns including North Atlantic cooling, Southern Hemisphere warming, southward-shifted ITCZ, monsoon weakening in Africa and Asia, monsoon strengthening in the Southern Hemisphere leading to drying in the Sahel and parts of Amazonia, and reduced natural carbon sinks (7073). Hence AMOC is retained as a core global tipping element (medium confidence) with a best estimate threshold of ~4°C [1.4 to 8°C versus 3.5 to 5.5°C in (1)] (low confidence), timescales of ~50 years (15 to 300 years) (medium confidence), and a GMST feedback of −0.5°C (low confidence) [regional −4 to −10°C, highly heterogeneous global pattern (medium confidence)].
The Indian summer monsoon (and other monsoon systems) have been reclassified as uncertain climate tipping elements because of a lack of evidence for a warming-related threshold behavior. Equatorial stratocumulus cloud breakup and Indian Ocean upwelling are uncertain as a result of limited evidence. Global ocean anoxia is uncertain because the global warming level required for weathering-induced anoxia is unclear. ENSO is reclassified as an unlikely tipping element as it lacks a clear self-perpetuation threshold. Arctic ozone hole expansion is reclassified as unlikely as it is now improbable that it would be triggerable as a result of climate change. The Northern Polar Jet stream is classed unlikely because instability as a result of climate change remains uncertain and no threshold has been proposed. (All of the above elements are discussed in more detail in the supplementary materials.)

Biosphere

Amazon rainforest (AMAZ)

The Amazon forest biome stores ~150 to 200 GtC (3, 74, 75) and historically has been a important sink for human CO2 emissions (15). However, in intact forests this sink has declined since the 1990s (15) and ~17% of the Amazon forest has been lost to deforestation since the 1970s, a rate that has accelerated since 2019 (75). A combination of a climate change-induced drying trend, unprecedented droughts, and anthropogenic degradation in the south and east has led to the biome as a whole becoming a net carbon source (74). It has also lost resilience across ~76% of its area (13). Rainfall is projected to further decline and the dry season is expected to lengthen in southern and eastern areas of the forest in response to further warming, likely worsening this trend (75). The Amazon forest recycles around a third of the Amazon basin’s rainfall on average (76) and up to ~70% in parts of the basin (77), particularly during the critical dry season as the forest maintains transpiration fluxes (76). This and localized fire feedbacks mean that ~40% of the Amazon forest is estimated to currently be in a bistable state, increasing to ~66% on an RCP8.5 trajectory (18, 77), and rainforest loss could initiate self-reinforcing drying that tips this portion into a degraded or savanna-like state. Widespread Amazon dieback was originally projected at either 3 to 4°C of warming or ~40% deforestation (78) but uncertain synergistic interaction might lower the deforestation threshold to only ~20 to 25% (79). More recent ESMs tend not to simulate climate-induced Amazon dieback and emergent constraints indicate lower rainforest sensitivity to warming (80). However, two CMIP5 models exhibit dieback at 2.5 and 6.2°C (19). Additionally, CMIP5 ESMs underestimate observed tree mortality (15) and likely overestimate CO2 fertilization (81), potentially making these models undersensitive to dieback. Given the size of the region affected by even partial dieback and its global impacts we categorize the Amazon forest as a global core tipping element (medium confidence). Our best estimates for AMAZ are a threshold of ~3.5°C (2 to 6°C) independent of deforestation (likely lower with deforestation) (low confidence), timescales of 100 years (50 to 200 years) (low confidence), and partial dieback of 40% (i.e., current bistable area) leading to emissions of ~30 GtC along with biogeophysical feedbacks (see SM) to a GMST feedback of ~+0.1° (regional +0.4 to 2°C) (medium confidence).

Boreal forest (BORF/TUND)

The boreal forest (or taiga) encircling the Arctic region features multiple stable states of tree cover as a result of feedbacks including albedo and fire (82, 83). We classify it as a regional impact tipping element with two potential CTPs associated with abrupt dieback at its southern edge (BORF) (medium confidence) and abrupt expansion at its northern edge (tundra greening) (TUND) (medium confidence). Warming is projected to destabilize the southern edge, where factors such as hydrological changes, increased fire frequency, and bark beetle outbreaks can lead to self-reinforcing feedbacks driving regionally synchronized forest dieback (on the order of 100 km) to a grass-dominated steppe or prairie state (83). Models project that regime shifts may start in this area at ~1.5°C and become widespread by >3.5°C (84, 85). Dieback may also be rate-dependent (85). Our best estimates for BORF is a threshold of ~4°C (1.4 to 5°C) (low confidence), timescales of 100 years (50+ years) (low confidence), and partial (~50%) dieback leading to emissions of ~52 GtC, which—along with countervailing biogeophysical feedbacks such as increased albedo and reduced evapotranspiration—leads to a net GMST feedback of ~−0.18°C (medium confidence) [regional ~−0.5 to 2°C (low confidence)]. Northward expansion of the forest into the current tundra biome may also feature self-perpetuation dynamics (e.g., by causing further local warming through albedo feedback). Models suggest that regime shifts may begin in this northern area at ~1.5°C and become widespread by ~3.5°C (84), with abrupt high latitude forest expansion occurring in one CMIP5 model at 7.2°C (19). For TUND our best estimates are for a threshold at ~4°C (1.5 to 7.2°C) (low confidence), timescales of 100 years (40+ years) (low confidence), and partial (~50%) uptake of ~6 GtC which along with countervailing biogeophysical feedbacks (decreased albedo, increased evapotranspiration) leads to a net GMST feedback of +0.14°C per °C (regional ~+0.5 to 1°C) (low confidence).

Sahel vegetation and the West African monsoon (SAHL)

Paleoevidence indicates multiple abrupt shifts into and out of African Humid Periods with associated greening of the Sahara in response to gradual changes in orbital forcing (86). AMOC weakening and associated warming of the Equatorial East Atlantic also caused past collapses of the West African monsoon (WAM) (70, 86, 87). Dust aerosol-rainfall positive feedbacks amplify change alongside well-established vegetation-rainfall positive feedbacks but many models still underestimate self-amplifying feedbacks and cannot reproduce the extent of past rainfall and vegetation changes (86). By contrast, a model optimized against present observations and mid-Holocene reconstructions recently reproduced abrupt transitions in Saharan vegetation with potential tipping dynamics (88). In future projections with GHG forcing, global (CMIP5 and CMIP6) and some regional Coordinated Regional Climate Downscaling Experiment (CORDEX) climate models tend to predict strengthening of the WAM and wetting and northward expansion of the central and eastern Sahel (as well as drying in coastal west Africa) (23, 70, 8991), which tend to green the Sahel (86). Abrupt increases in vegetation in the Eastern Sahel occur in three ESM runs at 2.1 to 3.5°C (19). In other global models more gradual WAM strengthening and vegetation shifts are predicted but in some regional climate models the WAM instead collapses (89). Clearly the existence of a future tipping threshold for the WAM and Sahel remains uncertain as does its sign but given multiple past abrupt shifts, known weaknesses in current models, and huge regional impacts but modest global climate feedback, we retain the Sahel/WAM as a potential regional impact tipping element (low confidence). We adopt the scenario of abrupt wetting and greening with a threshold of ~2.8°C (2 to 3.5°C) (low confidence), a timescale of 50 years (10 to 500 years) (low confidence), and uncertain Earth system impacts (regional warming) (medium confidence).

Low-latitude coral reefs (REEF)

Tropical and subtropical coral reefs are threatened by anthropogenic pressures including overfishing, direct damage, sedimentation, ocean acidification, and global warming (92). When water temperatures exceed a certain threshold coral irreversibly expel their symbiotic algae resulting in coral bleaching, thereby triggering coral death (93). Ocean acidification worsens warming-induced degradation. Coral collapse would remove one of the Earth’s most biodiverse ecosystems, affecting the wider marine food web, ocean nutrient and carbon cycling, and livelihoods of millions of people worldwide (92). Although coral bleaching is a localized process synchronous bleaching can occur at the ~1000 km scale (as seen for the Great Barrier Reef), and further warming is expected to cause widespread bleaching (93). Adaptation may be possible with slower warming rates (92) but the IPCC has projected 70 to 90% tropical and subtropical coral reef loss at 1.5°C with near total loss by 2°C (90). Given regionally synchronized tipping dynamics with significant human but indirect climate impacts, we categorize warm-water coral reefs as a regional impact tipping element (high confidence). Our best estimates are for a threshold of ~1.5°C (1 to 2°C) (high confidence), timescales of ~10 years (medium confidence), and negligible GMST feedback (high confidence). Beyond the biosphere elements listed, the ocean biological pump and land/ocean carbon sink are unlikely to be tipping elements although they may feature nonlinearities (see SM).

Implications for climate policy and preventing dangerous levels of global warming

Figure 2A summarizes our temperature threshold estimates for each tipping element making the shortlists (others are summarized in the supplementary text). Here we define crossing a CTP as “possible” beyond its minimum temperature threshold and “likely” beyond its central estimate.
Fig. 2. Our global warming threshold estimates for global core and regional impact climate tipping elements.
Tipping elements (A) relative to IPCC SSP projections and likely future scenarios given current policies and targets (B) and how many thresholds may be crossed per Shared Socioeconomic Pathways (SSP) projection (C). Bars in (A) show the minimum (base, yellow), central (line, red), and maximum (top, dark red) threshold estimates for each element (bold font, global core; regular font, regional impact), with a paleorecord of GMST over the past ~25 ky (95) and projections of future climate change (green, SSP1-1.9; yellow, SSP1-2.6; orange, SSP2-4.5; red, SSP3-7.0; purple, SSP5-8.5) from IPCC AR6 (23) shown for context. Future projections are shown in more detail in (B) along with estimated 21st century warming trajectories for current and net-zero policies (gray bars, extending into (A); horizontal lines show central estimates, bar height the uncertainty ranges) as of November 2021 (96) versus the Paris Agreement range of 1.5 to <2°C (green bar). The number of thresholds potentially passed in the coming decades depending on SSP trajectory in (C) is shown per decade (bars) and cumulatively (lines).
This revised assessment of CTPs has significant implications for climate policy by determining levels of global warming that prevent tipping to either committed changes in Earth system function or major damage to future societies. A risk minimization approach such as this seeks to avoid minimum estimated thresholds but this no longer appears possible for some tipping elements.
Current warming is ~1.1°C above preindustrial and even with rapid emission cuts warming will reach ~1.5°C by the 2030s (23). We cannot rule out that WAIS and GrIS tipping points have already been passed (see above) and several other tipping elements have minimum threshold values within the 1.1 to 1.5°C range. Our best estimate thresholds for GrIS, WAIS, REEF, and abrupt permafrost thaw (PFAT) are ~1.5°C although WAIS and GrIS collapse may still be avoidable if GMST returns below 1.5°C within an uncertain overshoot time (likely decades) (94). Setting aside achievability (and recognizing internal climate variability of ~±0.1°C), this suggests that ~1°C is a level of global warming that minimizes the likelihood of crossing CTPs. This is consistent with the <0.5 to 1°C range of Holocene temperature variability whereas past interglacials ≤1.5 to 2°C had up to 10 to 13 m higher sea level (21, 95).
The chance of triggering CTPs is already non-negligible and will grow even with stringent climate mitigation (SSP1-1.9 in Fig. 2, B and C). Nevertheless, achieving the Paris Agreement’s aim to pursue efforts to limit warming to 1.5°C would clearly be safer than keeping global warming below 2°C (90) (Fig. 2). Going from 1.5 to 2°C increases the likelihood of committing to WAIS and GrIS collapse, near complete warm-water coral die-off, and abrupt permafrost thaw; further, the best estimate threshold for LABC collapse is crossed. The likelihood of triggering AMOC collapse, Boreal forest shifts, and extra-polar glacier loss becomes non-negligible at >1.5°C and glacier loss becomes likely by ~2°C. A cluster of abrupt shifts occur in ESMs at 1.5 to 2°C (19). Although not tipping elements, ASSI loss could become regular by 2°C, gradual permafrost thaw would likely become widespread beyond 1.5°C, and land carbon sink weakening would become significant by 2°C.
Recent net zero targets if implemented could limit peak warming to ~1.95°C (1.3 to 3°C), but as of November 2021 current policies are estimated to result in ~2.6 °C (1.9 °C to 3.7 °C) by 2100 (96). Therefore 2 to 3°C by 2100 is currently likely with matching of pledges with policies key to determining where warming ends up in this range. Going from 2 to 3°C, maximum estimated thresholds for abrupt permafrost thaw, GrIS, WAIS, and extra-polar glaciers are passed, suggesting that tipping them would become very likely. The likelihood of triggering EASB collapse, Amazon dieback, and West African monsoon shift (Sahel greening) becomes non-negligible at ~2°C and increases at ~3°C. Subpolar gyre collapse, boreal forest dieback, and AMOC collapse also become more likely. Although not tipping elements, above 2°C the Arctic would very likely become summer ice–free and land carbon sink-to-source transitions would become widespread.
If the moderate ambition of current policies is not improved and climate sensitivity or carbon cycle feedbacks turn out to be higher than the median assumption then warming of up to ~4°C is possible by 2100, and >4°C cannot be ruled out if future policy ambition declines and/or implementation falters. Going from 3 to 5°C, EASB collapse becomes very likely, Amazon dieback becomes likely >3.5°C, boreal forest shifts likely >4°C, and large-scale permafrost collapse becomes possible at >3°C and likely >4°C. AMOC collapse may become likely >4°C but with high uncertainty (1.4 to 8°C range) and AWSI collapse becomes possible >4.5°C. Warming of >5°C, although very unlikely this century, becomes plausible in the longer-term under higher climate sensitivities with current or reversed policies. This risks EAIS collapse and a commitment of ~55 m of sea level rise if warming stabilizes >5°C for multiple centuries. Other tipping elements, if not already triggered—e.g., Amazon dieback, widespread Permafrost collapse—would very likely be committed and AMOC collapse and AWSI collapse would become increasingly likely. Equatorial stratocumulus cloud breakup occurs in one model beyond ~6°C (97) and if plausible would represent a global CTP to a “hothouse” climate state (3).

Discussion

Tipping elements and their tipping points were treated independently in this assessment but there are multiple causal interactions between them with risks of triggering cascades among CTPs (2, 4, 16), some mediated through temperature. The strength and in some cases even the sign of identified interactions is uncertain (4). Nevertheless, their combined effect tends to lower CTP temperature thresholds (6, 16). The present assessment would likely amplify this effect, further strengthening the incentive for ambitious mitigation.
Some of the threshold and impact estimates are highly uncertain (e.g., AMOC, BORF/TUND, AMAZ, SAHL, PFTP) as are the transition timescales of many elements. Some proposed elements remain too uncertain to categorize (e.g., EQSC, ANOX, INSM, AABW, Congo rainforest), and others considered unlikely to feature tipping dynamics (e.g., ENSO, JETS) cannot yet be fully ruled out (see SM). Other tipping elements may yet be discovered. It may be possible to safely overshoot CTPs in slower elements such as ice sheets (94) but the allowable overshoot times need further research. Spatial pattern formation might allow some biosphere elements to evade direct tipping (98) but this needs to be assessed.
To further our understanding of the likelihood of crossing CTPs an updated expert elicitation [building on (4)] is overdue. A horizon-scanning exercise and systematic scanning of CMIP6 model output [following (19)] and a tipping point model intercomparison project could help identify more candidate tipping elements and refine assessment of their likelihood. Further model improvements and model-data intercomparison are essential. Early warning methods are starting to reveal whether tipping elements are destabilizing for parts of GrIS (11), AMOC (12), and the Amazon (13), and can reveal proximity to a CTP (11). These could be augmented with deep learning techniques (99). Systematic application to observational and remotely sensed data together with targeted new observing systems could begin to provide a CTP early warning system (100).

Conclusion

The UNFCCC stipulates that all countries commit to avoid dangerous climate change, translated through the Paris climate agreement into keeping GMST well below 2°C and aiming for 1.5°C. Our assessment of climate tipping elements and their tipping points suggests that danger may be approached even earlier. The Earth may have left a safe climate state beyond 1°C global warming. A significant likelihood of passing multiple climate tipping points exists above ~1.5°C, particularly in major ice sheets. Tipping point likelihood increases further in the Paris range of 1.5 to <2°C warming. Current policies leading to ~2 to 3°C warming are unsafe because they would likely trigger multiple climate tipping points. Our updated assessment of climate tipping points provides strong scientific support for the Paris Agreement and associated efforts to limit global warming to 1.5°C.

Materials and Methods

We mined the literature subsequent to (1), including studies of paleoclimate change, observed change, early warning signals, future model projections, underlying theory, and existing assessments, to draw up a longlist of possible candidate tipping elements (table S3). For each we extracted information on evidence for self-perpetuation, temperature thresholds, hysteresis/irreversibility, transition timescales, and global/regional impacts on climate, on which we then use subjective expert judgment to determine our best estimates. From this evidence (or lack of it) we drew up shortlists (Table 1) of ‘core’ global tipping elements and regional ‘impact’ tipping elements (Fig. 1), for which we summarize the rationale in the main text and supplementary text S2 and S3. Candidates that did not make the shortlists (table S3) are classed as: (a) ‘uncertain’ tipping elements—due to limited evidence for self-perpetuating feedback and threshold behavior; (b) ‘unlikely’ tipping elements—possessing only localized tipping or nonfeedback response to climate change; and (c) ‘threshold-free feedbacks’—where positive feedbacks exist but are not strong enough to self-perpetuate. Different parts or phenomena of some systems—notably permafrost—are assigned to different categories. We give (very low, low, medium, high, very high) confidence levels based on the IPCC’s confidence rating system (as a product of the authors’ judgements of both the robustness and the degree of agreement of the assessed literature) (101) for the estimates of central, minimum, and maximum temperature thresholds, timescales of transition, and global and local impacts on climate (supplementary text S2). We define crossing a CTP as ‘possible’ beyond its minimum temperature threshold and ‘likely’ beyond its best estimate. Differences with past lists of tipping elements are described in table S4.

Acknowledgments

R.W. gratefully acknowledges support by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 820575 (TiPACCs) and Grant Agreement No. 869304 (PROTECT), by Deutsche Forschungsgemeinschaft (DFG) through grants WI4556/3-1 and WI4556/5-1 and by the PalMod project (FKZ: 01LP1925D), supported by the German Federal Ministry of Education and Research (BMBF) as a Research for Sustainability initiative (FONA).
Funding: This work was initiated and supported by the European Research Council Advanced Investigator project “Earth Resilience in the Anthropocene” ERC-2016-ADG-743080 (to D.I.A.M., A.S., S.C., I.F., and J.R.). This work is part of the Earth Commission which is hosted by Future Earth and is the science component of the Global Commons Alliance. The Global Commons Alliance is a sponsored project of Rockefeller Philanthropy Advisors, with support from Oak Foundation, MAVA, Porticus, Gordon and Betty Moore Foundation, Herlin Foundation, and the Global Environment Facility. (to D.I.A.M., J.F.A., R.W., B.S., S.L., and J.R.). This work was also supported by the Leverhulme Trust RPG-2018-046 (to T.M.L. and D.I.A.M.) and the Turing Fellowship (to T.M.L.).
Author contributions: Conceptualization: D.I.A.M., A.S., I.F., S.E.C., and T.M.L. Methodology: D.I.A.M. and T.M.L. Investigation: D.I.A.M. Validation: A.S., J.F.A., R.W., B.S., I.F., and T.M.L. Visualization: J.F.A., B.S., and S.L. Funding acquisition: J.R. Data curation: D.I.A.M. Writing – original draft: D.I.A.M. and T.M.L. Writing – review and editing: D.I.A.M., A.S., J.F.A., R.W., B.S., S.L., I.F., S.E.C., J.R., and T.M.L.
Competing interests: The authors declare no competing financial interests.
Data and materials availability: All data are available in the manuscript or the supplementary materials.
License information: Copyright © 2022 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.sciencemag.org/about/science-licenses-journal-article-reuse

Supplementary Materials

This PDF file includes:

Materials and Methods
Supplementary Text
Tables S1 to S4
References (101312)

Other Supplementary Material for this manuscript includes the following:

Data S1

References and Notes

1
T. M. Lenton, H. Held, E. Kriegler, J. W. Hall, W. Lucht, S. Rahmstorf, H. J. Schellnhuber, Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. U.S.A. 105, 1786–1793 (2008).
2
T. M. Lenton, J. Rockström, O. Gaffney, S. Rahmstorf, K. Richardson, W. Steffen, H. J. Schellnhuber, Climate tipping points - too risky to bet against. Nature 575, 592–595 (2019).
3
W. Steffen, J. Rockström, K. Richardson, T. M. Lenton, C. Folke, D. Liverman, C. P. Summerhayes, A. D. Barnosky, S. E. Cornell, M. Crucifix, J. F. Donges, I. Fetzer, S. J. Lade, M. Scheffer, R. Winkelmann, H. J. Schellnhuber, Trajectories of the Earth System in the Anthropocene. Proc. Natl. Acad. Sci. U.S.A. 115, 8252–8259 (2018).
4
E. Kriegler, J. W. Hall, H. Held, R. Dawson, H. J. Schellnhuber, Imprecise probability assessment of tipping points in the climate system. Proc. Natl. Acad. Sci. U.S.A. 106, 5041–5046 (2009).
5
H. J. Schellnhuber, S. Rahmstorf, R. Winkelmann, Why the right climate target was agreed in Paris. Nat. Clim. Chang. 6, 649–653 (2016).
6
Y. Cai, T. M. Lenton, T. S. Lontzek, Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction. Nat. Clim. Chang. 6, 520–525 (2016).
7
J. Feldmann, A. Levermann, Collapse of the West Antarctic Ice Sheet after local destabilization of the Amundsen Basin. Proc. Natl. Acad. Sci. U.S.A. 112, 14191–14196 (2015).
8
M. S. Waibel, C. L. Hulbe, C. S. Jackson, D. F. Martin, Rate of Mass Loss Across the Instability Threshold for Thwaites Glacier Determines Rate of Mass Loss for Entire Basin. Geophys. Res. Lett. 45, 809–816 (2018).
9
E. Rignot, J. Mouginot, M. Morlighem, H. Seroussi, B. Scheuchl, Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).
10
I. Joughin, B. E. Smith, B. Medley, Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).
11
N. Boers, M. Rypdal, Critical slowing down suggests that the western Greenland Ice Sheet is close to a tipping point. Proc. Natl. Acad. Sci. U.S.A. 118, e2024192118 (2021).
12
N. Boers, Observation-based early-warning signals for a collapse of the Atlantic Meridional Overturning Circulation. Nat. Clim. Chang. 11, 680–688 (2021).
13
C. A. Boulton, T. M. Lenton, N. Boers, Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Chang. 12, 271–278 (2022).
14
W. Liu, S.-P. Xie, Z. Liu, J. Zhu, Overlooked possibility of a collapsed Atlantic Meridional Overturning Circulation in warming climate. Sci. Adv. 3, e1601666 (2017).
15
W. Hubau, S. L. Lewis, O. L. Phillips, K. Affum-Baffoe, H. Beeckman, A. Cuní-Sanchez, A. K. Daniels, C. E. N. Ewango, S. Fauset, J. M. Mukinzi, D. Sheil, B. Sonké, M. J. P. Sullivan, T. C. H. Sunderland, H. Taedoumg, S. C. Thomas, L. J. T. White, K. A. Abernethy, S. Adu-Bredu, C. A. Amani, T. R. Baker, L. F. Banin, F. Baya, S. K. Begne, A. C. Bennett, F. Benedet, R. Bitariho, Y. E. Bocko, P. Boeckx, P. Boundja, R. J. W. Brienen, T. Brncic, E. Chezeaux, G. B. Chuyong, C. J. Clark, M. Collins, J. A. Comiskey, D. A. Coomes, G. C. Dargie, T. de Haulleville, M. N. D. Kamdem, J.-L. Doucet, A. Esquivel-Muelbert, T. R. Feldpausch, A. Fofanah, E. G. Foli, M. Gilpin, E. Gloor, C. Gonmadje, S. Gourlet-Fleury, J. S. Hall, A. C. Hamilton, D. J. Harris, T. B. Hart, M. B. N. Hockemba, A. Hladik, S. A. Ifo, K. J. Jeffery, T. Jucker, E. K. Yakusu, E. Kearsley, D. Kenfack, A. Koch, M. E. Leal, A. Levesley, J. A. Lindsell, J. Lisingo, G. Lopez-Gonzalez, J. C. Lovett, J.-R. Makana, Y. Malhi, A. R. Marshall, J. Martin, E. H. Martin, F. M. Mbayu, V. P. Medjibe, V. Mihindou, E. T. A. Mitchard, S. Moore, P. K. T. Munishi, N. N. Bengone, L. Ojo, F. E. Ondo, K. S.-H. Peh, G. C. Pickavance, A. D. Poulsen, J. R. Poulsen, L. Qie, J. Reitsma, F. Rovero, M. D. Swaine, J. Talbot, J. Taplin, D. M. Taylor, D. W. Thomas, B. Toirambe, J. T. Mukendi, D. Tuagben, P. M. Umunay, G. M. F. van der Heijden, H. Verbeeck, J. Vleminckx, S. Willcock, H. Wöll, J. T. Woods, L. Zemagho, Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
16
N. Wunderling, J. F. Donges, J. Kurths, R. Winkelmann, Interacting tipping elements increase risk of climate domino effects under global warming. Earth Syst. Dyn. 12, 601–619 (2021).
17
T. M. Lenton, Arctic climate tipping points. Ambio 41, 10–22 (2012).
18
A. Staal, I. Fetzer, L. Wang-Erlandsson, J. H. C. Bosmans, S. C. Dekker, E. H. van Nes, J. Rockström, O. A. Tuinenburg, Hysteresis of tropical forests in the 21st century. Nat. Commun. 11, 4978 (2020).
19
S. Drijfhout, S. Bathiany, C. Beaulieu, V. Brovkin, M. Claussen, C. Huntingford, M. Scheffer, G. Sgubin, D. Swingedouw, Catalogue of abrupt shifts in Intergovernmental Panel on Climate Change climate models. Proc. Natl. Acad. Sci. U.S.A. 112, E5777–E5786 (2015).
20
A. Levermann, J. L. Bamber, S. Drijfhout, A. Ganopolski, W. Haeberli, N. R. P. Harris, M. Huss, K. Krüger, T. M. Lenton, R. W. Lindsay, D. Notz, P. Wadhams, S. Weber, Potential climatic transitions with profound impact on Europe. Clim. Change 110, 845–878 (2012).
21
B. Fox-Kemper, H. T. Hewitt, C. Xiao, G. Aðalgeirsdóttir, S. S. Drijfhout, T. L. Edwards, N. R. Golledge, M. Hemer, R. E. Kopp, G. Krinner, A. Mix, D. Notz, S. Nowicki, I. S. Nurhati, L. Ruiz, J.-B. Sallée, A. B. A. Slangen, Y. Yu, “Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change” V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou, Eds. (Cambridge Univ. Press, 2021).
22
M. Collins, M. Sutherland, L. Bouwer, S.-M. Cheong, T. L. Frölicher, H. Jacot Des Combes, M. K. Roxy, I. Losada, K. L. McInnes, B. Ratter, E. Rivera-Arriaga, R. D. Susanto, D. Swingedouw, L. Tibig, P. Bakker, C. M. Eakin, K. Emanuel, M. Grose, M. Hemer, L. Jackson, A. Kääb, J. B. Kajtar, T. Knutson, C. Laufkötter, I. Noy, M. Payne, R. Ranasinghe, G. Sgubin, M.-L. Timmermans, “IPCC Special Report on the Ocean and Cryosphere in a Changing Climate” H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. M. Weyer, Eds. (2019); pp. 589–655.
23
J. Y. Lee, J. Marotzke, G. Bala, L. Cao, S. Corti, J. P. Dunne, F. Engelbrecht, E. Fischer, J. C. Fyfe, C. Jones, A. Maycock, J. Mutemi, O. Ndiaye, S. Panickal, T. Zhou, “Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change” V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou, Eds. (Cambridge Univ. Press, 2021).
24
W. R. Boos, T. Storelvmo, Near-linear response of mean monsoon strength to a broad range of radiative forcings. Proc. Natl. Acad. Sci. U.S.A. 113, 1510–1515 (2016).
25
J. Garbe, T. Albrecht, A. Levermann, J. F. Donges, R. Winkelmann, The hysteresis of the Antarctic Ice Sheet. Nature 585, 538–544 (2020).
26
D. Chen, M. Rojas, B. H. Samset, K. Cobb, A. D. Niang, P. Edwards, S. Emori, S. H. Faria, E. Hawkins, P. Hope, P. Huybrechts, M. Meinshausen, S. K. Mustafa, G.-K. Plattner, A.-M. Tréguier, “Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change” V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou, Eds. (Cambridge Univ. Press, 2021).
27
M. Scheffer, J. Bascompte, W. A. Brock, V. Brovkin, S. R. Carpenter, V. Dakos, H. Held, E. H. van Nes, M. Rietkerk, G. Sugihara, Early-warning signals for critical transitions. Nature 461, 53–59 (2009).
28
R. Ranasinghe, A. C. Ruane, R. Vautard, N. Arnell, E. Coppola, F. A. Cruz, S. Dessai, A. S. Islam, M. Rahimi, D. R. Carrascal, J. Sillmann, M. B. Sylla, C. Tebaldi, W. Wang, R. Zaaboul, “Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change” V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou, Eds. (Cambridge Univ. Press, 2021), p. 73.
29
National Research Council, Abrupt Climate Change: Inevitable Surprises (The National Academies Press, 2002); https://www.nap.edu/catalog/10136.
30
R. E. Kopp, R. L. Shwom, G. Wagner, J. Yuan, Tipping elements and climate–economic shocks: Pathways toward integrated assessment. Earths Future 4, 346–372 (2016).
31
C. Hankel, E. Tziperman, The Role of Atmospheric Feedbacks in Abrupt Winter Arctic Sea Ice Loss in Future Warming Scenarios. J. Clim. 34, 4435–4447 (2021).
32
P. J. Hezel, T. Fichefet, F. Massonnet, Modeled Arctic sea ice evolution through 2300 in CMIP5 extended RCPs. Cryosphere 8, 1195–1204 (2014).
33
D. Docquier, R. Fuentes-Franco, T. Koenigk, T. Fichefet, Sea Ice—Ocean Interactions in the Barents Sea Modeled at Different Resolutions. Front. Earth Sci. 8, 1–21 (2020).
34
F. Lehner, A. Born, C. C. Raible, T. F. Stocker, Amplified Inception of European Little Ice Age by Sea Ice–Ocean–Atmosphere Feedbacks. J. Clim. 26, 7586–7602 (2013).
35
I. Allison, N. L. Bindoff, R. A. Bindoff, R. A. Bindschadler, P. M. Cox, N. de Noblet, M. H. England, J. E. Francis, N. Gruber, A.M. Haywood, D. J. Karoly, G. Kaser, C. Le Quéré, T. M. Lenton, M. E. Mann, B. I. McNeil, A. J. Pitman, S. Rahmstorf, E. Rignot, H. J. Schellnhuber, S. H. Schneider, S. C. Sherwood, R .C. J. Somerville, K. Steffen, E. J. Steig, M. Visbeck, A. J. Weaver, “The Copenhagen Diagnosis” (The Univ. of New South Wales Climate Change Research Centre, 2009); https://www.ccrc.unsw.edu.au/sites/default/files/Copenhagen_Diagnosis_LOW.pdf).
36
D. Notz, S. Community, Arctic Sea Ice in CMIP6. Geophys. Res. Lett. 47, 1–26 (2020).
37
M. D. King, I. M. Howat, S. G. Candela, M. J. Noh, S. Jeong, B. P. Y. Noël, M. R. van den Broeke, B. Wouters, A. Negrete, Dynamic ice loss from the Greenland Ice Sheet driven by sustained glacier retreat. Commun. Earth Environ. 1, 1–7 (2020).
38
A. Shepherd, E. Ivins, E. Rignot, B. Smith, M. van den Broeke, I. Velicogna, P. Whitehouse, K. Briggs, I. Joughin, G. Krinner, S. Nowicki, T. Payne, T. Scambos, N. Schlegel, G. A, C. Agosta, A. Ahlstrøm, G. Babonis, V. R. Barletta, A. A. Bjørk, A. Blazquez, J. Bonin, W. Colgan, B. Csatho, R. Cullather, M. E. Engdahl, D. Felikson, X. Fettweis, R. Forsberg, A. E. Hogg, H. Gallee, A. Gardner, L. Gilbert, N. Gourmelen, A. Groh, B. Gunter, E. Hanna, C. Harig, V. Helm, A. Horvath, M. Horwath, S. Khan, K. K. Kjeldsen, H. Konrad, P. L. Langen, B. Lecavalier, B. Loomis, S. Luthcke, M. McMillan, D. Melini, S. Mernild, Y. Mohajerani, P. Moore, R. Mottram, J. Mouginot, G. Moyano, A. Muir, T. Nagler, G. Nield, J. Nilsson, B. Noël, I. Otosaka, M. E. Pattle, W. R. Peltier, N. Pie, R. Rietbroek, H. Rott, L. Sandberg Sørensen, I. Sasgen, H. Save, B. Scheuchl, E. Schrama, L. Schröder, K. W. Seo, S. B. Simonsen, T. Slater, G. Spada, T. Sutterley, M. Talpe, L. Tarasov, W. J. van de Berg, W. van der Wal, M. van Wessem, B. D. Vishwakarma, D. Wiese, D. Wilton, T. Wagner, B. Wouters, J. Wuite, Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579, 233–239 (2020).
39
A. Robinson, R. Calov, A. Ganopolski, Multistability and critical thresholds of the Greenland ice sheet. Nat. Clim. Chang. 2, 429–432 (2012).
40
J. Van Breedam, H. Goelzer, P. Huybrechts, Semi-equilibrated global sea-level change projections for the next 10 000 years. Earth Syst. Dyn. 11, 953–976 (2020).
41
B. Noël, L. van Kampenhout, J. T. M. Lenaerts, W. J. van de Berg, M. R. van den Broeke, A 21st Century Warming Threshold for Sustained Greenland Ice Sheet Mass Loss. Geophys. Res. Lett. 48, 1–9 (2021).
42
G. L. Foster, E. J. Rohling, Relationship between sea level and climate forcing by CO2 on geological timescales. Proc. Natl. Acad. Sci. U.S.A. 110, 1209–1214 (2013).
43
A. J. Christ, P. R. Bierman, J. M. Schaefer, D. Dahl-Jensen, J. P. Steffensen, L. B. Corbett, D. M. Peteet, E. K. Thomas, E. J. Steig, T. M. Rittenour, J.-L. Tison, P.-H. Blard, N. Perdrial, D. P. Dethier, A. Lini, A. J. Hidy, M. W. Caffee, J. Southon, A multimillion-year-old record of Greenland vegetation and glacial history preserved in sediment beneath 1.4 km of ice at Camp Century. Proc. Natl. Acad. Sci. U.S.A. 118, e2021442118 (2021).
44
J. M. Gregory, S. E. George, R. S. Smith, Large and irreversible future decline of the Greenland ice sheet. Cryosphere 14, 4299–4322 (2020).
45
R. B. Alley, S. Anandakrishnan, K. Christianson, H. J. Horgan, A. Muto, B. R. Parizek, D. Pollard, R. T. Walker, Oceanic Forcing of Ice-Sheet Retreat: West Antarctica and More. Annu. Rev. Earth Planet. Sci. 43, 207–231 (2015).
46
C. S. M. Turney, C. J. Fogwill, N. R. Golledge, N. P. McKay, E. van Sebille, R. T. Jones, D. Etheridge, M. Rubino, D. P. Thornton, S. M. Davies, C. B. Ramsey, Z. A. Thomas, M. I. Bird, N. C. Munksgaard, M. Kohno, J. Woodward, K. Winter, L. S. Weyrich, C. M. Rootes, H. Millman, P. G. Albert, A. Rivera, T. van Ommen, M. Curran, A. Moy, S. Rahmstorf, K. Kawamura, C.-D. Hillenbrand, M. E. Weber, C. J. Manning, J. Young, A. Cooper, Early Last Interglacial ocean warming drove substantial ice mass loss from Antarctica. Proc. Natl. Acad. Sci. U.S.A. 117, 3996–4006 (2020).
47
H. Yu, E. Rignot, H. Seroussi, M. Morlighem, Impact of iceberg calving on the retreat of Thwaites Glacier, West Antarctica over the next century with different calving laws and ocean thermal forcing. Geophys. Res. Lett. 46, 14539–14547 (2019).
48
R. J. Arthern, C. R. Williams, The sensitivity of West Antarctica to the submarine melting feedback. Geophys. Res. Lett. 44, 2352–2359 (2017).
49
T. L. Edwards, M. A. Brandon, G. Durand, N. R. Edwards, N. R. Golledge, P. B. Holden, I. J. Nias, A. J. Payne, C. Ritz, A. Wernecke, Revisiting Antarctic ice loss due to marine ice-cliff instability. Nature 566, 58–64 (2019).
50
P. U. Clark, F. He, N. R. Golledge, J. X. Mitrovica, A. Dutton, J. S. Hoffman, S. Dendy, Oceanic forcing of penultimate deglacial and last interglacial sea-level rise. Nature 577, 660–664 (2020).
51
R. M. DeConto, D. Pollard, R. B. Alley, I. Velicogna, E. Gasson, N. Gomez, S. Sadai, A. Condron, D. M. Gilford, E. L. Ashe, R. E. Kopp, D. Li, A. Dutton, The Paris Climate Agreement and future sea-level rise from Antarctica. Nature 593, 83–89 (2021).
52
D. J. Wilson, R. A. Bertram, E. F. Needham, T. van de Flierdt, K. J. Welsh, R. M. McKay, A. Mazumder, C. R. Riesselman, F. J. Jimenez-Espejo, C. Escutia, Ice loss from the East Antarctic Ice Sheet during late Pleistocene interglacials. Nature 561, 383–386 (2018).
53
E. Gasson, R. M. DeConto, D. Pollard, R. H. Levy, Dynamic Antarctic ice sheet during the early to mid-Miocene. Proc. Natl. Acad. Sci. U.S.A. 113, 3459–3464 (2016).
54
E. A. G. Schuur, A. D. McGuire, C. Schädel, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, C. D. Koven, P. Kuhry, D. M. Lawrence, S. M. Natali, D. Olefeldt, V. E. Romanovsky, K. Schaefer, M. R. Turetsky, C. C. Treat, J. E. Vonk, Climate change and the permafrost carbon feedback. Nature 520, 171– 17-9 (2015).
55
A. Vaks, O. S. Gutareva, S. F. M. Breitenbach, E. Avirmed, A. J. Mason, A. L. Thomas, A. V. Osinzev, A. M. Kononov, G. M. Henderson, Speleothems Reveal 500,000-Year History of Siberian Permafrost. Science 340, 183– 186 (2013).
56
J. G. Canadell, P. M. S. Monteiro, M. H. Costa, L. C. da Cunha, P. M. Cox, A. V. Eliseev, S. Henson, M. Ishii, S. Jaccard, C. Koven, A. Lohila, P. K. Patra, S. Piao, J. Rogelj, S. Syampungani, S. Zaehle, K. Zickfeld, “Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change” V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou, Eds. (Cambridge Univ. Press, 2021).
57
M. R. Turetsky, B. W. Abbott, M. C. Jones, K. W. Anthony, D. Olefeldt, E. A. G. Schuur, G. Grosse, P. Kuhry, G. Hugelius, C. Koven, D. M. Lawrence, C. Gibson, A. B. K. Sannel, A. D. McGuire, Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).
58
B. Teufel, L. Sushama, Abrupt changes across the Arctic permafrost region endanger northern development. Nat. Clim. Chang. 9, 858–862 (2019).
59
J. Strauss, L. Schirrmeister, G. Grosse, D. Fortier, G. Hugelius, C. Knoblauch, V. Romanovsky, C. Schädel, T. Schneider von Deimling, E. A. G. Schuur, D. Shmelev, M. Ulrich, A. Veremeeva, Deep Yedoma permafrost: A synthesis of depositional characteristics and carbon vulnerability. Earth Sci. Rev. 172, 75–86 (2017).
60
C. M. Luke, P. M. Cox, Soil carbon and climate change: From the Jenkinson effect to the compost-bomb instability. Eur. J. Soil Sci. 62, 5–12 (2011).
61
J. Hollesen, H. Matthiesen, A. B. Møller, B. Elberling, Permafrost thawing in organic Arctic soils accelerated by ground heat production. Nat. Clim. Chang. 5, 574–578 (2015).
62
M. Huss, R. Hock, Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 8, 135–140 (2018).
63
R. Hock, G. Rasul, C. Adler, B. Cáceres, S. Gruber, Y. Hirabayashi, M. Jackson, A. Kääb, S. Kang, S. Kutuzov, A. Milner, U. Molau, S. Morin, B. Orlove, H. I. Steltzer, “IPCC Special Report on the Ocean and Cryosphere in a Changing Climate” H.-O. Pörtner, D. C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. M. Weyer, Eds. (Cambridge Univ. Press, 2019), pp. 131–202.
64
P. U. Clark, J. D. Shakun, S. A. Marcott, A. C. Mix, M. Eby, S. Kulp, A. Levermann, G. A. Milne, P. L. Pfister, B. D. Santer, D. P. Schrag, S. Solomon, T. F. Stocker, B. H. Strauss, A. J. Weaver, R. Winkelmann, D. Archer, E. Bard, A. Goldner, K. Lambeck, R. T. Pierrehumbert, G.-K. Plattner, Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Chang. 6, 360–369 (2016).
65
G. Sgubin, D. Swingedouw, S. Drijfhout, Y. Mary, A. Bennabi, Abrupt cooling over the North Atlantic in modern climate models. Nat. Commun. 8, 14375 (2017).
66
D. Swingedouw, A. Bily, C. Esquerdo, L. F. Borchert, G. Sgubin, J. Mignot, M. Menary, On the risk of abrupt changes in the North Atlantic subpolar gyre in CMIP6 models. Ann. N. Y. Acad. Sci. 1504, 187–201 (2021).
67
L. Caesar, S. Rahmstorf, A. Robinson, G. Feulner, V. Saba, Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).
68
J. Lynch-Stieglitz, The Atlantic Meridional Overturning Circulation and Abrupt Climate Change. Annu. Rev. Mar. Sci. 9, 83–104 (2017).
69
J. Lohmann, P. D. Ditlevsen, Risk of tipping the overturning circulation due to increasing rates of ice melt. Proc. Natl. Acad. Sci. U.S.A. 118, e2017989118 (2021).
70
H. Douville, K. Raghavan, J. Renwick, R. P. Allan, P. A. Arias, M. Barlow, R. Cerezo-Mota, A. Cherchi, T. Y. Gan, J. Gergis, D. Jiang, A. Khan, W. P. Mba, D. Rosenfeld, J. Tierney, O. Zolina, “Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change” V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou, Eds. (Cambridge Univ. Press, 2021), p. 73.
71
L. C. Jackson, R. Kahana, T. Graham, M. A. Ringer, T. Woollings, J. V. Mecking, R. A. Wood, Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim. Dyn. 45, 3299–3316 (2015).
72
S. Drijfhout, Competition between global warming and an abrupt collapse of the AMOC in Earth’s energy imbalance. Sci. Rep. 5, 14877 (2015).
73
A. Bozbiyik, M. Steinacher, F. Joos, T. F. Stocker, L. Menviel, Fingerprints of changes in the terrestrial carbon cycle in response to large reorganizations in ocean circulation. Clim. Past 7, 319–338 (2011).
74
L. V. Gatti, L. S. Basso, J. B. Miller, M. Gloor, L. Gatti Domingues, H. L. G. Cassol, G. Tejada, L. E. O. C. Aragão, C. Nobre, W. Peters, L. Marani, E. Arai, A. H. Sanches, S. M. Corrêa, L. Anderson, C. Von Randow, C. S. C. Correia, S. P. Crispim, R. A. L. Neves, Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).
75
Science Panel for the Amazon (SPA), “Executive Summary of the Amazon Assessment Report 2021” C. Nobre, A. Encalada, E. Anderson, F.H. Roca Alcazar, M. Bustamante, C. Mena, M. Peña-Claros, G. Poveda, J.P. Rodriguez, S. Saleska, S. Trumbore, A.L. Val, L. Villa Nova, R. Abramovay, A. Alencar, A.C.R. Alzza, D. Armenteras, P. Artaxo, S. Athayde, H.T. Barretto Filho, J. Barlow, E. Berenguer, F. Bortolotto, F.A. Costa, M.H. Costa, N. Cuvi, P.M. Fearnside, J. Ferreira, B.M. Flores, S. Frieri, L.V. Gatti, J.M. Guayasamin, S. Hecht, M. Hirota, C. Hoorn, C. Josse, D.M. Lapola, C. Larrea, D.M. Larrea-Alcazar, Z. Lehm Ardaya, Y. Malhi, J.A. Marengo, M.R. Moraes, P. Moutinho, M.R. Murmis, E.G. Neves, B. Paez, L. Painter, A. Ramos, M.C. Rosero-Peña, M. Schmink, P. Sist, H. ter Steege, P. Val, H. van der Voort, M. Varese, Zapata-Ríos, Eds. (United Nations Sustainable Development Solutions Network, 2021); https://www.theamazonwewant.org/wp-content/uploads/2021/09/SPA-Executive-Summary-11Mb.pdf.
76
A. Staal, O. A. Tuinenburg, J. H. C. Bosmans, M. Holmgren, E. H. Van Nes, M. Scheffer, D. C. Zemp, S. C. Dekker, Forest-rainfall cascades buffer against drought across the Amazon. Nat. Clim. Chang. 8, 539–543 (2018).
77
D. C. Zemp, C.-F. Schleussner, H. M. J. Barbosa, M. Hirota, V. Montade, G. Sampaio, A. Staal, L. Wang-Erlandsson, A. Rammig, Self-amplified Amazon forest loss due to vegetation-atmosphere feedbacks. Nat. Commun. 8, 14681 (2017).
78
C. A. Nobre, G. Sampaio, L. S. Borma, J. C. Castilla-Rubio, J. S. Silva, M. Cardoso, Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl. Acad. Sci. U.S.A. 113, 10759–10768 (2016).
79
T. E. Lovejoy, C. Nobre, Amazon Tipping Point. Sci. Adv. 4, eaat2340 (2018).
80
P. M. Cox, D. Pearson, B. B. Booth, P. Friedlingstein, C. Huntingford, C. D. Jones, C. M. Luke, Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).
81
C. Terrer, R. B. Jackson, I. C. Prentice, T. F. Keenan, C. Kaiser, S. Vicca, J. B. Fisher, P. B. Reich, B. D. Stocker, B. A. Hungate, J. Peñuelas, I. McCallum, N. A. Soudzilovskaia, L. A. Cernusak, A. F. Talhelm, K. Van Sundert, S. Piao, P. C. D. Newton, M. J. Hovenden, D. M. Blumenthal, Y. Y. Liu, C. Müller, K. Winter, C. B. Field, W. Viechtbauer, C. J. Van Lissa, M. R. Hoosbeek, M. Watanabe, T. Koike, V. O. Leshyk, H. W. Polley, O. Franklin, Nitrogen and phosphorus constrain the CO2 fertilization of global plant biomass. Nat. Clim. Chang. 9, 684–689 (2019).
82
B. Abis, V. Brovkin, Environmental conditions for alternative tree-cover states in high latitudes. Biogeosciences 14, 511–527 (2017).
83
M. Scheffer, M. Hirota, M. Holmgren, E. H. Van Nes, F. S. Chapin 3rd, Thresholds for boreal biome transitions. Proc. Natl. Acad. Sci. U.S.A. 109, 21384–21389 (2012).
84
D. Gerten, W. Lucht, S. Ostberg, J. Heinke, M. Kowarsch, H. Kreft, Z. W. Kundzewicz, J. Rastgooy, R. Warren, H. J. Schellnhuber, Asynchronous exposure to global warming: Freshwater resources and terrestrial ecosystems. Environ. Res. Lett. 8, 034032 (2013).
85
C. D. Koven, Boreal carbon loss due to poleward shift in low-carbon ecosystems. Nat. Geosci. 6, 452–456 (2013).
86
F. S. R. Pausata, M. Gaetani, G. Messori, A. Berg, D. Maia de Souza, R. F. Sage, P. B. deMenocal, The Greening of the Sahara: Past Changes and Future Implications. One Earth 2, 235–250 (2020).
87
M. W. Schmidt, P. Chang, A. O. Parker, L. Ji, F. He, Deglacial Tropical Atlantic subsurface warming links ocean circulation variability to the West African Monsoon. Sci. Rep. 7, 15390 (2017).
88
P. O. Hopcroft, P. J. Valdes, Paleoclimate-conditioning reveals a North Africa land-atmosphere tipping point. Proc. Natl. Acad. Sci. U.S.A. 118, e2108783118 (2021).
89
A. Dosio, M. W. Jury, M. Almazroui, M. Ashfaq, I. Diallo, F. A. Engelbrecht, N. A. B. Klutse, C. Lennard, I. Pinto, M. B. Sylla, A. T. Tamoffo, Projected future daily characteristics of African precipitation based on global (CMIP5, CMIP6) and regional (CORDEX, CORDEX-CORE) climate models. Clim. Dyn. 57, 3135–3158 (2021).
90
O. Hoegh-Guldberg, D. Jacob, M. Taylor, M. Bindi, S. Brown, I. Camilloni, A. Diedhiou, R. Djalante, K. L. Ebi, F. Engelbrecht, J. Guiot, Y. Hijioka, S. Mehrotra, A. Payne, S. I. Seneviratne, A. Thomas, R. Warren, G. Zhou, “Impacts of 1.5°C Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty.” V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield, Eds. (2018), pp. 175–311.
91
A. Erfanian, G. Wang, M. Yu, R. Anyah, Multimodel ensemble simulations of present and future climates over West Africa: Impacts of vegetation dynamics. J. Adv. Model. Earth Syst. 8, 1411–1431 (2016).
92
T. P. Hughes, M. L. Barnes, D. R. Bellwood, J. E. Cinner, G. S. Cumming, J. B. C. Jackson, J. Kleypas, I. A. van de Leemput, J. M. Lough, T. H. Morrison, S. R. Palumbi, E. H. van Nes, M. Scheffer, Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).
93
K. Frieler, M. Meinshausen, A. Golly, M. Mengel, K. Lebek, S. D. Donner, O. Hoegh-Guldberg, Limiting global warming to 2 °C is unlikely to save most coral reefs. Nat. Clim. Chang. 3, 165–170 (2013).
94
P. D. L. Ritchie, J. J. Clarke, P. M. Cox, C. Huntingford, Overshooting tipping point thresholds in a changing climate. Nature 592, 517–523 (2021).
95
M. B. Osman, J. E. Tierney, J. Zhu, R. Tardif, G. J. Hakim, J. King, C. J. Poulsen, Globally resolved surface temperatures since the Last Glacial Maximum. Nature 599, 239–244 (2021).
96
M. Meinshausen, J. Lewis, C. McGlade, J. Gütschow, Z. Nicholls, R. Burdon, L. Cozzi, B. Hackmann, Realization of Paris Agreement pledges may limit warming just below 2°C. Nature 604, 304–309 (2022).
97
T. Schneider, C. M. Kaul, K. G. Pressel, Possible climate transitions from breakup of stratocumulus decks under greenhouse warming. Nat. Geosci. 12, 163–167 (2019).
98
M. Rietkerk, R. Bastiaansen, S. Banerjee, J. Van De Koppel, Evasion of tipping in complex systems through spatial pattern formation. 374, abj0359 (2021).
99
T. M. Bury, R. I. Sujith, I. Pavithran, M. Scheffer, T. M. Lenton, M. Anand, C. T. Bauch, Deep learning for early warning signals of tipping points. Proc. Natl. Acad. Sci. U.S.A. 118, e2106140118 (2021).
100
T. M. Lenton, Early warning of climate tipping points. Nat. Clim. Chang. 1, 201–209 (2011).
101
M. D. Mastrandrea, C. B. Field, T. F. Stocker, O. Edenhofer, K. L. Ebi, D. J. Frame, H. Held, E. Kriegler, K. J. Mach, P. R. Matschoss, G.-K. Plattner, G. W. Yohe, F. W. Zwiers, “Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties.” (IPCC, 2010); www.ipcc.ch/site/assets/uploads/2017/08/AR5_Uncertainty_Guidance_Note.pdf.
102
E. H. van Nes, B. M. S. Arani, A. Staal, B. van der Bolt, B. M. Flores, S. Bathiany, M. Scheffer, What Do You Mean, ‘Tipping Point’?Trends Ecol. Evol. 31, 902–904 (2016).
103
S. Kéfi, V. Dakos, M. Scheffer, E. H. Van Nes, M. Rietkerk, Early warning signals also precede non-catastrophic transitions. Oikos 122, 641–648 (2013).
104
P. C. de Ruiter, A.-M. Neutel, J. C. Moore, Energetics, Patterns of Interaction Strengths, and Stability in Real Ecosystems. Science 269, 1257–1260 (1995).
105
J. J. Kuiper, C. van Altena, P. C. de Ruiter, L. P. A. van Gerven, J. H. Janse, W. M. Mooij, Food-web stability signals critical transitions in temperate shallow lakes. Nat. Commun. 6, 7727 (2015).
106
S. J. Lade, T. Gross, Early warning signals for critical transitions: A generalized modeling approach. PLOS Comput. Biol. 8, e1002360 (2012).
107
P. S. Dutta, Y. Sharma, K. C. Abbott, Robustness of early warning signals for catastrophic and non-catastrophic transitions. Oikos 127, 1251–1263 (2018).
108
C. Boettiger, N. Ross, A. Hastings, Early warning signals: The charted and uncharted territories. Theor. Ecol. 6, 255–264 (2013).
109
C. Kuehn, A mathematical framework for critical transitions: Bifurcations, fast–slow systems and stochastic dynamics. Physica D 240, 1020–1035 (2011).
110
C. Kuehn, A mathematical framework for critical transitions: Normal forms, variance and applications. J. Nonlinear Sci. 23, 457–510 (2013).
111
N. Irvalı, E. V. Galaasen, U. S. Ninnemann, Y. Rosenthal, A. Born, H. K. F. Kleiven, A low climate threshold for south Greenland Ice Sheet demise during the Late Pleistocene. Proc. Natl. Acad. Sci. U.S.A. 117, 190–195 (2020).
112
A. N. Sommers, B. L. Otto-Bliesner, W. H. Lipscomb, M. Lofverstrom, S. L. Shafer, P. J. Bartlein, E. C. Brady, E. Kluzek, G. Leguy, K. Thayer-Calder, R. A. Tomas, Retreat and Regrowth of the Greenland Ice Sheet During the Last Interglacial as Simulated by the CESM2-CISM2 Coupled Climate–Ice Sheet Model. Paleoceanogr. Paleoclimatol. 36, 1–19 (2021).
113
A. Aschwanden, M. A. Fahnestock, M. Truffer, D. J. Brinkerhoff, R. Hock, C. Khroulev, R. Mottram, S. A. Khan, Contribution of the Greenland Ice Sheet to sea level over the next millennium. Sci. Adv. 5, eaav9396 (2019).
114
A. Robinson, J. Alvarez-Solas, R. Calov, A. Ganopolski, M. Montoya, MIS-11 duration key to disappearance of the Greenland ice sheet. Nat. Commun. 8, 16008 (2017).
115
N. Wunderling, M. Willeit, J. F. Donges, R. Winkelmann, Global warming due to loss of large ice masses and Arctic summer sea ice. Nat. Commun. 11, 5177 (2020).
116
K. Pistone, I. Eisenman, V. Ramanathan, Radiative Heating of an Ice-Free Arctic Ocean. Geophys. Res. Lett. 46, 7474–7480 (2019).
117
S. R. Hudson, Estimating the global radiative impact of the sea ice–albedo feedback in the Arctic. J. Geophys. Res. 116 (D16), D16102 (2011).
118
D. Yumashev, C. Hope, K. Schaefer, K. Riemann-Campe, F. Iglesias-Suarez, E. Jafarov, E. J. Burke, P. J. Young, Y. Elshorbany, G. Whiteman, Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements. Nat. Commun. 10, 1900 (2019).
119
S. Bathiany, D. Notz, T. Mauritsen, G. Raedel, V. Brovkin, On the potential for abrupt Arctic winter sea ice loss. J. Clim. 29, 2703–2719 (2016).
120
D. Pollard, R. M. DeConto, Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329–332 (2009).
121
C. Chambers, R. Greve, T. Obase, F. Saito, A. Abe-Ouchi, Mass loss of the Antarctic ice sheet until the year 3000 under a sustained late-21st-century climate. J. Glaciol. 68, 605–617 (2022).
122
R. Winkelmann, A. Levermann, A. Ridgwell, K. Caldeira, Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet. Sci. Adv. 1, e1500589 (2015).
123
F. Pattyn, C. Ritz, E. Hanna, X. Asay-Davis, R. DeConto, G. Durand, L. Favier, X. Fettweis, H. Goelzer, N. R. Golledge, P. Kuipers Munneke, J. T. M. Lenaerts, S. Nowicki, A. J. Payne, A. Robinson, H. Seroussi, L. D. Trusel, M. van den Broeke, The Greenland and Antarctic ice sheets under 1.5 °C global warming. Nat. Clim. Chang. 8, 1053–1061 (2018).
124
N. R. Golledge, D. E. Kowalewski, T. R. Naish, R. H. Levy, C. J. Fogwill, E. G. W. Gasson, The multi-millennial Antarctic commitment to future sea-level rise. Nature 526, 421–425 (2015).
125
M. Yamane, Y. Yokoyama, A. Abe-Ouchi, S. Obrochta, F. Saito, K. Moriwaki, H. Matsuzaki, Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics. Nat. Commun. 6, 7016 (2015).
126
D. J. Lunt, A. M. Haywood, G. A. Schmidt, U. Salzmann, P. J. Valdes, H. J. Dowsett, C. A. Loptson, On the causes of mid-Pliocene warmth and polar amplification. Earth Planet. Sci. Lett. 321–322, 128–138 (2012).
127
R. M. DeConto, D. Pollard, Contribution of Antarctica to past and future sea-level rise. Nature 531, 591–597 (2016).
128
D. Pollard, R. M. DeConto, R. B. Alley, Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–1 2-1 (2015).
129
J. N. Bassis, B. Berg, A. J. Crawford, D. I. Benn, Transition to marine ice cliff instability controlled by ice thickness gradients and velocity. Science 372, 1342–1344 (2021).
130
D. P. Lowry, M. Krapp, N. R. Golledge, A. Alevropoulos-Borrill, The influence of emissions scenarios on future Antarctic ice loss is unlikely to emerge this century. Commun. Earth Environ. 2, 221 (2021).
131
J. Etourneau, G. Sgubin, X. Crosta, D. Swingedouw, V. Willmott, L. Barbara, M.-N. Houssais, S. Schouten, J. S. S. Damsté, H. Goosse, C. Escutia, J. Crespin, G. Massé, J.-H. Kim, Ocean temperature impact on ice shelf extent in the eastern Antarctic Peninsula. Nat. Commun. 10, 304 (2019).
132
K. E. Alley, C. T. Wild, A. Luckman, T. A. Scambos, M. Truffer, E. C. Pettit, A. Muto, B. Wallin, M. Klinger, T. Sutterley, S. F. Child, C. Hulen, J. T. M. Lenaerts, M. Maclennan, E. Keenan, D. Dunmire, Two decades of dynamic change and progressive destabilization on the Thwaites Eastern Ice Shelf. Cryosphere 15, 5187–5203 (2021).
133
C. T. Wild, K. E. Alley, A. Muto, M. Truffer, T. A. Scambos, E. C. Pettit, Weakening of the pinning point buttressing Thwaites Glacier, West Antarctica. Cryosphere 16, 397–417 (2022).
134
E. C. Pettit, C. Wild, K. Alley, A. Muto, M. Truffer, D. Benn, in AGU Fall Meeting (New Orleans, USA, 2021).
135
P. Milillo, E. Rignot, P. Rizzoli, B. Scheuchl, J. Mouginot, J. L. Bueso-Bello, P. Prats-Iraola, L. Dini, Rapid glacier retreat rates observed in West Antarctica. Nat. Geosci. 15, 48–53 (2022).
136
D. I. Benn, A. Luckman, J. A. Åström, A. J. Crawford, S. L. Cornford, S. Bevan, R. Gladstone, T. Zwinger, K. Alley, E. Pettit, J. Bassis, Rapid fragmentation of Thwaites Eastern Ice ShelfCryosphere, 16, 2545–2564 (2021).
137
J. N. Bassis, in APS March Meeting 2022 (Chicago, 2022).
138
A. K. Wåhlin, A. G. C. Graham, K. A. Hogan, B. Y. Queste, L. Boehme, R. D. Larter, E. C. Pettit, J. Wellner, K. J. Heywood, Pathways and modification of warm water flowing beneath Thwaites Ice Shelf, West Antarctica. Sci. Adv. 7, eabd7254 (2021).
139
L. Favier, G. Durand, S. L. Cornford, G. H. Gudmundsson, O. Gagliardini, F. Gillet-Chaulet, T. Zwinger, A. J. Payne, A. M. Le Brocq, Retreat of Pine Island Glacier controlled by marine ice-sheet instability. Nat. Clim. Chang. 4, 117–121 (2014).
140
R. Reese, J. Garbe, E. A. Hill, B. Urruty, K. A. Naughten, O. Gagliardini, G. Durand, F. Gillet-chaulet, D. Chandler, P. M. Langebroek, R. Winkelmann, The stability of present-day Antarctic grounding lines — Part B: Possible commitment of regional collapse under current climate. The Cryosphere Discuss. tc-2022-105 [Preprint] (2022);.
141
E. J. Steig, K. Huybers, H. A. Singh, N. J. Steiger, Q. Ding, D. M. W. Frierson, T. Popp, J. W. C. White, Influence of West Antarctic Ice Sheet collapse on Antarctic surface climate. Geophys. Res. Lett. 42, 4862–4868 (2015).
142
S. Sun, F. Pattyn, E. G. Simon, T. Albrecht, S. Cornford, R. Calov, C. Dumas, F. Gillet-Chaulet, H. Goelzer, N. R. Golledge, R. Greve, M. J. Hoffman, A. Humbert, E. Kazmierczak, T. Kleiner, G. R. Leguy, W. H. Lipscomb, D. Martin, M. Morlighem, S. Nowicki, D. Pollard, S. Price, A. Quiquet, H. Seroussi, T. Schlemm, J. Sutter, R. S. W. Van De Wal, R. Winkelmann, T. Zhang, Antarctic ice sheet response to sudden and sustained ice-shelf collapse (ABUMIP). J. Glaciol. 66, 891–904 (2020).
143
M. Mengel, A. Levermann, Ice plug prevents irreversible discharge from east Antarctica. Nat. Clim. Chang. 4, 451–455 (2014).
144
R. A. Bertram, D. J. Wilson, T. van de Flierdt, R. M. McKay, M. O. Patterson, F. J. Jimenez-Espejo, C. Escutia, G. C. Duke, B. I. Taylor-Silva, C. R. Riesselman, Pliocene deglacial event timelines and the biogeochemical response offshore Wilkes Subglacial Basin, East Antarctica. Earth Planet. Sci. Lett. 494, 109–116 (2018).
145
C. P. Cook, T. Van De Flierdt, T. Williams, S. R. Hemming, M. Iwai, M. Kobayashi, F. J. Jimenez-Espejo, C. Escutia, J. J. González, B. K. Khim, R. M. McKay, S. Passchier, S. M. Bohaty, C. R. Riesselman, L. Tauxe, S. Sugisaki, A. L. Galindo, M. O. Patterson, F. Sangiorgi, E. L. Pierce, H. Brinkhuis, A. Klaus, A. Fehr, J. A. P. Bendle, P. K. Bijl, S. A. Carr, R. B. Dunbar, J. A. Flores, T. G. Hayden, K. Katsuki, G. S. Kong, M. Nakai, M. P. Olney, S. F. Pekar, J. Pross, U. Röhl, T. Sakai, P. K. Shrivastava, C. E. Stickley, S. Tuo, K. Welsh, M. Yamane, Dynamic behaviour of the East Antarctic ice sheet during Pliocene warmth. Nat. Geosci. 6, 765–769 (2013).
146
R. M. Deconto, D. Pollard, P. A. Wilson, H. Pälike, C. H. Lear, M. Pagani, Thresholds for Cenozoic bipolar glaciation. Nature 455, 652–656 (2008).
147
D. I. Armstrong McKay, T. Tyrrell, P. A. Wilson, Global carbon cycle perturbation across the Eocene-Oligocene climate transition. Paleoceanography 31, 311–329 (2016).
148
D. K. Hutchinson, H. K. Coxall, D. J. Lunt, M. Steinthorsdottir, A. M. De Boer, M. Baatsen, A. von der Heydt, M. Huber, A. T. Kennedy-Asser, L. Kunzmann, J.-B. Ladant, C. H. Lear, K. Moraweck, P. N. Pearson, E. Piga, M. J. Pound, U. Salzmann, H. D. Scher, W. P. Sijp, K. K. Śliwińska, P. A. Wilson, Z. Zhang, The Eocene-Oligocene transition: a review of marine and terrestrial proxy data, models and model-data comparisons. Clim. Past. 17, 269–315 (2021). .
149
B. Marzeion, G. Kaser, F. Maussion, N. Champollion, Limited influence of climate change mitigation on short-term glacier mass loss. Nat. Clim. Chang. 8, 305–308 (2018).
150
B. Marzeion, R. Hock, B. Anderson, A. Bliss, N. Champollion, K. Fujita, M. Huss, W. W. Immerzeel, P. Kraaijenbrink, J. H. Malles, F. Maussion, V. Radić, D. R. Rounce, A. Sakai, S. Shannon, R. van de Wal, H. Zekollari, Partitioning the Uncertainty of Ensemble Projections of Global Glacier Mass Change. Earths Futur. 8, 1–25 (2020).
151
S. E. Chadburn, E. J. Burke, P. M. Cox, P. Friedlingstein, G. Hugelius, S. Westermann, An observation-based constraint on permafrost loss as a function of global warming. Nat. Clim. Chang. 7, 340–344 (2017).
152
D. V. Khvorostyanov, P. Ciais, G. Krinner, S. A. Zimov, Vulnerability of east Siberia’s frozen carbon stores to future warming. Geophys. Res. Lett. 35, 1–5 (2008).
153
T. Schneider von Deimling, G. Grosse, J. Strauss, L. Schirrmeister, A. Morgenstern, S. Schaphoff, M. Meinshausen, J. Boike, Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences 12, 3469–3488 (2015).
154
D. V. Khvorostyanov, P. Ciais, G. Krinner, S. A. Zimov, C. Corradi, G. Guggenberger, Vulnerability of permafrost carbon to global warming. Part II: Sensitivity of permafrost carbon stock to global warming. Tellus B: Chem. Phys. Meteorol. 60, 265–275 (2008) .
155
J. Obu, S. Westermann, A. Bartsch, N. Berdnikov, H. H. Christiansen, A. Dashtseren, R. Delaloye, B. Elberling, B. Etzelmüller, A. Kholodov, A. Khomutov, A. Kääb, M. O. Leibman, A. G. Lewkowicz, S. K. Panda, V. Romanovsky, R. G. Way, A. Westergaard-Nielsen, T. Wu, J. Yamkhin, D. Zou, Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Sci. Rev. 193, 299–316 (2019).
156
FAO, ITPS, Recarbonizing global soils – A technical manual of recommended management practices (FAO, 2021); https://www.fao.org/documents/card/en/c/cb6378en
157
C. Schädel, E. A. G. Schuur, R. Bracho, B. Elberling, C. Knoblauch, H. Lee, Y. Luo, G. R. Shaver, M. R. Turetsky, Circumpolar assessment of permafrost C quality and its vulnerability over time using long-term incubation data. Glob. Change Biol. 20, 641–6 5-2 (2014).
158
B. Elberling, A. Michelsen, C. Schädel, E. A. G. Schuur, H. H. Christiansen, L. Berg, M. P. Tamstorf, C. Sigsgaard, Long-term CO2 production following permafrost thaw. Nat. Clim. Chang. 3, 890–894 (2013).
159
D. V. Khvorostyanov, G. Krinner, P. Ciais, M. Heimann, S. A. Zimov, Vulnerability of permafrost carbon to global warming. Part I: Model description and role of heat generated by organic matter decomposition. Tellus B: Chem. Phys. Meteorol.. 60, 250– 264 (2008).
160
S. Schaphoff, U. Heyder, S. Ostberg, D. Gerten, J. Heinke, W. Lucht, Contribution of permafrost soils to the global carbon budget. Environ. Res. Lett. 8, 014026 (2013).
161
M. R. Turetsky, B. W. Abbott, M. C. Jones, K. Walter Anthony, D. Olefeldt, E. A. G. Schuur, C. Koven, A. D. McGuire, G. Grosse, P. Kuhry, G. Hugelius, D. M. Lawrence, C. Gibson, A. B. K. Sannel, Permafrost collapse is accelerating carbon release. Nature 569, 32–34 (2019).
162
D. Olefeldt, S. Goswami, G. Grosse, D. Hayes, G. Hugelius, P. Kuhry, A. D. McGuire, V. E. Romanovsky, A. B. K. Sannel, E. A. G. Schuur, M. R. Turetsky, Circumpolar distribution and carbon storage of thermokarst landscapes. Nat. Commun. 7, 13043 (2016).
163
A. Vaks, A. J. Mason, S. F. M. Breitenbach, A. M. Kononov, A. V. Osinzev, M. Rosensaft, A. Borshevsky, O. S. Gutareva, G. M. Henderson, Palaeoclimate evidence of vulnerable permafrost during times of low sea ice. Nature 577, 221–225 (2020).
164
K. Schaefer, H. Lantuit, V. E. Romanovsky, E. A. G. Schuur, R. Witt, The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).
165
C. D. Koven, D. M. Lawrence, W. J. Riley, Permafrost carbon-climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proc. Natl. Acad. Sci. U.S.A. 112, 3752–3757 (2015).
166
A. D. McGuire, D. M. Lawrence, C. Koven, J. S. Clein, E. Burke, G. Chen, E. Jafarov, A. H. MacDougall, S. Marchenko, D. Nicolsky, S. Peng, A. Rinke, P. Ciais, I. Gouttevin, D. J. Hayes, D. Ji, G. Krinner, J. C. Moore, V. Romanovsky, C. Schädel, K. Schaefer, E. A. G. Schuur, Q. Zhuang, Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proc. Natl. Acad. Sci. U.S.A. 115, 3882–3887 (2018).
167
A. H. MacDougall, C. A. Avis, A. J. Weaver, Significant contribution to climate warming from the permafrost carbon feedback. Nat. Geosci. 5, 719–721 (2012).
168
F. Cheng, C. Garzione, X. Li, U. Salzmann, F. Schwarz, A. M. Haywood, J. Tindall, J. Nie, L. Li, L. Wang, B. W. Abbott, B. Elliott, W. Liu, D. Upadhyay, A. Arnold, A. Tripati, Alpine permafrost could account for a quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue. Nat. Commun. 13, 1329 (2022).
169
R. E. Fewster, P. J. Morris, R. F. Ivanovic, G. T. Swindles, A. M. Peregon, C. J. Smith, Imminent loss of climate space for permafrost peatlands in Europe and Western Siberia. Nat. Clim. Chang. 12, 373–379 (2022).
170
N. Chandra, P. K. Patra, J. S. H. Bisht, A. Ito, T. Umezawa, N. Saigusa, S. Morimoto, S. Aoki, G. Janssens-Maenhout, R. Fujita, M. Takigawa, S. Watanabe, N. Saitoh, J. G. Canadell, Emissions from the Oil and Gas Sectors, Coal Mining and Ruminant Farming Drive Methane Growth over the Past Three Decades. J. Meteorol. Soc. Jpn. 99, 309–337 (2021).
171
M. Saunois, A. R. Stavert, B. Poulter, P. Bousquet, J. G. Canadell, R. B. Jackson, P. A. Raymond, E. J. Dlugokencky, S. Houweling, P. K. Patra, P. Ciais, V. K. Arora, D. Bastviken, P. Bergamaschi, D. R. Blake, G. Brailsford, L. Bruhwiler, K. M. Carlson, M. Carrol, S. Castaldi, N. Chandra, C. Crevoisier, P. M. Crill, K. Covey, C. L. Curry, G. Etiope, C. Frankenberg, N. Gedney, M. I. Hegglin, L. Höglund-Isaksson, G. Hugelius, M. Ishizawa, A. Ito, G. Janssens-Maenhout, K. M. Jensen, F. Joos, T. Kleinen, P. B. Krummel, R. L. Langenfelds, G. G. Laruelle, L. Liu, T. Machida, S. Maksyutov, K. C. McDonald, J. McNorton, P. A. Miller, J. R. Melton, I. Morino, J. Müller, F. Murguia-Flores, V. Naik, Y. Niwa, S. Noce, S. O’Doherty, R. J. Parker, C. Peng, S. Peng, G. P. Peters, C. Prigent, R. Prinn, M. Ramonet, P. Regnier, W. J. Riley, J. A. Rosentreter, A. Segers, I. J. Simpson, H. Shi, S. J. Smith, L. P. Steele, B. F. Thornton, H. Tian, Y. Tohjima, F. N. Tubiello, A. Tsuruta, N. Viovy, A. Voulgarakis, T. S. Weber, M. van Weele, G. R. van der Werf, R. F. Weiss, D. Worthy, D. Wunch, Y. Yin, Y. Yoshida, W. Zhang, Z. Zhang, Y. Zhao, B. Zheng, Q. Zhu, Q. Zhu, Q. Zhuang, The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).
172
E. J. Burke, A. Ekici, Y. Huang, S. E. Chadburn, C. Huntingford, P. Ciais, P. Friedlingstein, S. Peng, G. Krinner, Quantifying uncertainties of permafrost carbon–climate feedbacks. Biogeosciences 14, 3051–3066 (2017).
173
C. D. Koven, W. J. Riley, A. Stern, Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models. J. Clim. 26, 1877–1900 (2013).
174
M. Meinshausen, Z. R. J. Nicholls, J. Lewis, M. J. Gidden, E. Vogel, M. Freund, U. Beyerle, C. Gessner, A. Nauels, N. Bauer, J. G. Canadell, J. S. Daniel, A. John, P. B. Krummel, G. Luderer, N. Meinshausen, S. A. Montzka, P. J. Rayner, S. Reimann, S. J. Smith, M. van den Berg, G. J. M. Velders, M. K. Vollmer, R. H. J. Wang, The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13, 3571–3605 (2020).
175
C. D. Koven, E. A. G. Schuur, C. Schädel, T. J. Bohn, E. J. Burke, G. Chen, X. Chen, P. Ciais, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, E. E. Jafarov, G. Krinner, P. Kuhry, D. M. Lawrence, A. H. MacDougall, S. S. Marchenko, A. D. McGuire, S. M. Natali, D. J. Nicolsky, D. Olefeldt, S. Peng, V. E. Romanovsky, K. M. Schaefer, J. Strauss, C. C. Treat, M. Turetsky, A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback. Philos. Trans. R. Soc. A 373, 20140423 (2015).
176
K. Isaksen, Ø. Nordli, B. Ivanov, M. A. Ø. Køltzow, S. Aaboe, H. M. Gjelten, A. Mezghani, S. Eastwood, E. Førland, R. E. Benestad, I. Hanssen-Bauer, R. Brækkan, P. Sviashchennikov, V. Demin, A. Revina, T. Karandasheva, Exceptional warming over the Barents area. Sci. Rep. 12, 9371 (2022).
177
H. Bailey, A. Hubbard, E. S. Klein, K.-R. Mustonen, P. D. Akers, H. Marttila, J. M. Welker, Arctic sea-ice loss fuels extreme European snowfall. Nat. Geosci. 14, 283–288 (2021).
178
P. Bakker, A. Schmittner, J. T. M. Lenaerts, A. Abe-Ouchi, D. Bi, M. R. van den Broeke, W.-L. Chan, A. Hu, R. L. Beadling, S. J. Marsland, S. H. Mernild, O. A. Saenko, D. Swingedouw, A. Sullivan, J. Yin, Fate of the Atlantic Meridional Overturning Circulation: Strong decline under continued warming and Greenland melting. Geophys. Res. Lett. 43, 12,252–12,260 (2016).
179
J. T. M. Lenaerts, D. Le Bars, L. van Kampenhout, M. Vizcaino, E. M. Enderlin, M. R. van den Broeke, Representing Greenland ice sheet freshwater fluxes in climate models. Geophys. Res. Lett. 42, 6373–6381 (2015).
180
L. Caesar, G. D. McCarthy, D. J. R. Thornalley, N. Cahill, S. Rahmstorf, Current Atlantic Meridional Overturning Circulation weakest in last millennium. Nat. Geosci. 14, 118–120 (2021).
181
L. C. Jackson, A. Biastoch, M. W. Buckley, D. G. Desbruyères, E. Frajka-Williams, B. Moat, J. Robson, The evolution of the North Atlantic Meridional Overturning Circulation since 1980. Nat. Rev. Earth Environ. 3, 241–254 (2022).
182
K. H. Kilbourne, A. D. Wanamaker, P. Moffa-Sanchez, D. J. Reynolds, D. E. Amrhein, P. G. Butler, G. Gebbie, M. Goes, M. F. Jansen, C. M. Little, M. Mette, E. Moreno-Chamarro, P. Ortega, B. L. Otto-Bliesner, T. Rossby, J. Scourse, N. M. Whitney, Atlantic circulation change still uncertain. Nat. Geosci. 15, 165–167 (2022).
183
L. C. Jackson, R. A. Wood, Timescales of AMOC decline in response to fresh water forcing. Clim. Dyn. 51, 1333–1350 (2018).
184
W. Liu, A. V. Fedorov, S.-P. Xie, S. Hu, Climate impacts of a weakened Atlantic Meridional Overturning Circulation in a warming climate. Sci. Adv. 6, eaaz4876 (2020).
185
A. M. Dixon, P. M. Forster, S. F. Heron, A. M. K. Stoner, M. Beger, Future loss of local-scale thermal refugia in coral reef ecosystems. PLOS Clim. 1, e0000004 (2022).
186
C. F. Schleussner, T. K. Lissner, E. M. Fischer, J. Wohland, M. Perrette, A. Golly, J. Rogelj, K. Childers, J. Schewe, K. Frieler, M. Mengel, W. Hare, M. Schaeffer, Differential climate impacts for policy-relevant limits to global warming: The case of 1.5 °c and 2 °c. Earth Syst. Dyn. 7, 327–351 (2016).
187
J. K. McWhorter, P. R. Halloran, G. Roff, W. J. Skirving, C. T. Perry, P. J. Mumby, The importance of 1.5°C warming for the Great Barrier Reef. Glob. Chang. Biol. 28, 1332–1341 (2021) .
188
S. I. Seneviratne, J. Rogelj, R. Séférian, R. Wartenburger, M. R. Allen, M. Cain, R. J. Millar, K. L. Ebi, N. Ellis, O. Hoegh-Guldberg, A. J. Payne, C. F. Schleussner, P. Tschakert, R. F. Warren, The many possible climates from the Paris Agreement’s aim of 1.5 °C warming. Nature 558, 41–49 (2018).
189
S. Bathiany, M. Claussen, V. Brovkin, CO2-induced sahel greening in three CMIP5 earth system models. J. Clim. 27, 7163–7184 (2014).
190
P. Chang, R. Zhang, W. Hazeleger, C. Wen, X. Wan, L. Ji, R. J. Haarsma, W.-P. Breugem, H. Seidel, Oceanic link between abrupt changes in the North Atlantic Ocean and the African monsoon. Nat. Geosci. 1, 444–448 (2008).
191
K. H. Cook, E. K. Vizy, Coupled Model Simulations of the West African Monsoon System: Twentieth- and Twenty-First-Century Simulations. J. Clim. 19, 3681–3703 (2006).
192
J. Raj, H. K. Bangalath, G. Stenchikov, West African Monsoon: Current state and future projections in a high-resolution AGCM. Clim. Dyn. 52, 6441–6461 (2019).
193
M. Biasutti, Forced Sahel rainfall trends in the CMIP5 archive. J. Geophys. Res. Atmos. 118, 1613–1623 (2013).
194
T. M. Shanahan, N. P. Mckay, K. A. Hughen, J. T. Overpeck, B. Otto-Bliesner, C. W. Heil, J. King, C. A. Scholz, J. Peck, The time-transgressive termination of the African humid period. Nat. Geosci. 8, 140–144 (2015).
195
F. S. R. Pausata, G. Messori, Q. Zhang, Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period. Earth Planet. Sci. Lett. 434, 298–307 (2016).
196
D. Chandan, W. R. Peltier, African Humid Period Precipitation Sustained by Robust Vegetation, Soil, and Lake Feedbacks. Geophys. Res. Lett. 47, 1–12 (2020).
197
J. A. Collins, M. Prange, T. Caley, L. Gimeno, B. Beckmann, S. Mulitza, C. Skonieczny, D. Roche, E. Schefuß, Rapid termination of the African Humid Period triggered by northern high-latitude cooling. Nat. Commun. 8, 1372 (2017).
198
D. Gerten, H. Hoff, J. Rockström, J. Jägermeyr, M. Kummu, A. V. Pastor, Towards a revised planetary boundary for consumptive freshwater use: Role of environmental flow requirements. Curr. Opin. Environ. Sustain. 5, 551–558 (2013).
199
W. Lucht, S. Schaphoff, T. Erbrecht, U. Heyder, W. Cramer, Terrestrial vegetation redistribution and carbon balance under climate change. Carbon Balance Manag. 1, 6 (2006).
200
A. J. Winkler, R. B. Myneni, A. Hannart, S. Sitch, V. Haverd, D. Lombardozzi, V. K. Arora, J. Pongratz, D. S. Goll, E. Kato, H. Tian, A. Arneth, P. Friedlingstein, A. K. Jain, S. Zaehle, V. Brovkin, Slowdown of the greening trend in natural vegetation with further rise in atmospheric CO2. Biogeosciences 18, 4985–5010 (2021).
201
Y. Pan, R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, A. Shvidenko, S. L. Lewis, J. G. Canadell, P. Ciais, R. B. Jackson, S. W. Pacala, A. D. McGuire, S. Piao, A. Rautiainen, S. Sitch, D. Hayes, A Large and Persistent Carbon Sink in the World’s Forests. Science 333, 988–993 (2011).
202
C. J. A. Bradshaw, I. G. Warkentin, Global estimates of boreal forest carbon stocks and flux. Global Planet. Change 128, 24–30 (2015).
203
M. Thurner, C. Beer, M. Santoro, N. Carvalhais, T. Wutzler, D. Schepaschenko, A. Shvidenko, E. Kompter, B. Ahrens, S. R. Levick, C. Schmullius, Carbon stock and density of northern boreal and temperate forests. Glob. Ecol. Biogeogr. 23, 297–310 (2014).
204
S. Bathiany, M. Claussen, V. Brovkin, T. Raddatz, V. Gayler, Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI earth system model. Biogeosciences 7, 1383–1399 (2010).
205
D. Lawrence, M. Coe, W. Walker, L. Verchot, K. Vandecar, The Unseen Effects of Deforestation: Biophysical Effects on Climate. Front. For. Glob. Chang. 5, ffgc.2022.756115 (2022).
206
G. B. Bonan, Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science 320, 1444–1450 (2008).
207
B. Abis, V. Brovkin, Alternative tree-cover states of the boreal ecosystem: A conceptual model. Glob. Ecol. Biogeogr. 28, 612–627 (2019).
208
R. G. Pearson, S. J. Phillips, M. M. Loranty, P. S. A. Beck, T. Damoulas, S. J. Knight, S. J. Goetz, Shifts in Arctic vegetation and associated feedbacks under climate change. Nat. Clim. Chang. 3, 673–677 (2013).
209
W. Zhang, P. A. Miller, B. Smith, R. Wania, T. Koenigk, R. Döscher, Tundra shrubification and tree-line advance amplify arctic climate warming: Results from an individual-based dynamic vegetation model. Environ. Res. Lett. 8, 034023 (2013).
210
O. A. Carpino, A. A. Berg, W. L. Quinton, J. R. Adams, Climate change and permafrost thaw-induced boreal forest loss in northwestern Canada. Environ. Res. Lett. 13, 084018 (2018).
211
K. D. Dearborn, C. A. Wallace, R. Patankar, J. L. Baltzer, Permafrost thaw in boreal peatlands is rapidly altering forest community composition. J. Ecol. 109, 1452–1467 (2021).
212
G. Grosse, S. Goetz, A. D. McGuire, V. E. Romanovsky, E. A. G. Schuur, Changing permafrost in a warming world and feedbacks to the Earth system. Environ. Res. Lett. 11, 040201 (2016).
213
M. Williams, Y. Zhang, C. Estop-Aragonés, J. P. Fisher, G. Xenakis, D. J. Charman, I. P. Hartley, J. B. Murton, G. K. Phoenix, Boreal permafrost thaw amplified by fire disturbance and precipitation increases. Environ. Res. Lett. 15, 114050 (2020).
214
C. M. Gibson, L. E. Chasmer, D. K. Thompson, W. L. Quinton, M. D. Flannigan, D. Olefeldt, Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9, 3041 (2018).
215
M. Hirota, M. Holmgren, E. H. Van Nes, M. Scheffer, Global Resilience of Tropical Forest and Savanna to Critical Transitions. Science 334, 232–235 (2011).
216
I. Parry, P. Ritchie, P. Cox, Evidence of Amazon rainforest dieback in CMIP6 models. EGUsphere egusphere-2022-82 [Preprint] (2022);.
217
C. Jones, J. Lowe, S. Liddicoat, R. Betts, Committed terrestrial ecosystem changes due to climate change. Nat. Geosci. 2, 484–487 (2009).
218
J. D. Anadón, O. E. Sala, F. T. Maestre, Climate change will increase savannas at the expense of forests and treeless vegetation in tropical and subtropical Americas. J. Ecol. 102, 1363–1373 (2014).
219
P. M. Brando, B. Soares-Filho, L. Rodrigues, A. Assunção, D. Morton, D. Tuchschneider, E. C. M. Fernandes, M. N. Macedo, U. Oliveira, M. T. Coe, The gathering firestorm in southern Amazonia. Sci. Adv. 6, eaay1632 (2020).
220
R. A. Betts, N. W. Arnell, P. M. Boorman, S. E. Cornell, J. I. House, N. R. Kaye, M. P. McCarthy, D. J. McNeall, M. G. Sanderson, A. J. Wiltshire, in Understanding the Earth System, S. Cornell, I. C. Prentice, J. House, C. Downy, Eds. (Cambridge Univ. Press, 2012;, pp. 160–201.
221
L. F. Salazar, C. A. Nobre, Climate change and thresholds of biome shifts in Amazonia. Geophys. Res. Lett. 37, 2010GL043538 (2010).
222
P. Zelazowski, Y. Malhi, C. Huntingford, S. Sitch, J. B. Fisher, Changes in the potential distribution of humid tropical forests on a warmer planet. Philos. Trans. R. Soc. A 369, 137–160 (2011).
223
C. A. Boulton, B. B. B. Booth, P. Good, Exploring uncertainty of Amazon dieback in a perturbed parameter Earth system ensemble. Glob. Change Biol. 23, 5032–5044 (2017).
224
C. Lyon, E. E. Saupe, C. J. Smith, D. J. Hill, A. P. Beckerman, L. C. Stringer, R. Marchant, J. McKay, A. Burke, P. O’Higgins, A. M. Dunhill, B. J. Allen, J. Riel-Salvatore, T. Aze, Climate change research and action must look beyond 2100. Glob. Chang. Biol. 28, 349–361 (2021).
225
C. A. Boulton, P. Good, T. M. Lenton, Early warning signals of simulated Amazon rainforest dieback. Theor. Ecol. 6, 373–384 (2013).
226
M. J. P. Sullivan, S. L. Lewis, K. Affum-Baffoe, C. Castilho, F. Costa, A. C. Sanchez, C. E. N. Ewango, W. Hubau, B. Marimon, A. Monteagudo-Mendoza, L. Qie, B. Sonké, R. V. Martinez, T. R. Baker, R. J. W. Brienen, T. R. Feldpausch, D. Galbraith, M. Gloor, Y. Malhi, S.-I. Aiba, M. N. Alexiades, E. C. Almeida, E. A. de Oliveira, E. Á. Dávila, P. A. Loayza, A. Andrade, S. A. Vieira, L. E. O. C. Aragão, A. Araujo-Murakami, E. J. M. M. Arets, L. Arroyo, P. Ashton, F. B. Baccaro, L. F. Banin, C. Baraloto, P. B. Camargo, J. Barlow, J. Barroso, J.-F. Bastin, S. A. Batterman, H. Beeckman, S. K. Begne, A. C. Bennett, E. Berenguer, N. Berry, L. Blanc, P. Boeckx, J. Bogaert, D. Bonal, F. Bongers, M. Bradford, F. Q. Brearley, T. Brncic, F. Brown, B. Burban, J. L. Camargo, W. Castro, C. Céron, S. C. Ribeiro, V. C. Moscoso, J. Chave, E. Chezeaux, C. J. Clark, F. C. de Souza, M. Collins, J. A. Comiskey, F. C. Valverde, M. C. Medina, L. da Costa, M. Dančák, G. C. Dargie, S. Davies, N. D. Cardozo, T. de Haulleville, M. B. de Medeiros, J. del Aguila Pasquel, G. Derroire, A. Di Fiore, J.-L. Doucet, A. Dourdain, V. Droissart, R. Ekoungoulou, F. Elias, T. Erwin, A. Esquivel-Muelbert, S. Fauset, J. Ferreira, G. F. Llampazo, E. Foli, A. Ford, M. Gilpin, J. S. Hall, K. C. Hamer, A. C. Hamilton, D. J. Harris, T. B. Hart, R. Hédl, B. Herault, R. Herrera, N. Higuchi, A. Hladik, E. H. Coronado, I. Huamantupa-Chuquimaco, W. H. Huasco, K. J. Jeffery, E. Jimenez-Rojas, M. Kalamandeen, M. N. K. Djuikouo, E. Kearsley, R. K. Umetsu, L. K. Kho, T. Killeen, K. Kitayama, B. Klitgaard, A. Koch, N. Labrière, W. Laurance, S. Laurance, M. E. Leal, A. Levesley, A. J. N. Lima, J. Lisingo, A. P. Lopes, G. Lopez-Gonzalez, T. Lovejoy, J. C. Lovett, R. Lowe, W. E. Magnusson, J. Malumbres-Olarte, Â. G. Manzatto, B. H. Marimon, A. R. Marshall, T. Marthews, S. M. de Almeida Reis, C. Maycock, K. Melgaço, C. Mendoza, F. Metali, V. Mihindou, W. Milliken, E. T. A. Mitchard, P. S. Morandi, H. L. Mossman, L. Nagy, H. Nascimento, D. Neill, R. Nilus, P. N. Vargas, W. Palacios, N. P. Camacho, J. Peacock, C. Pendry, M. C. Peñuela Mora, G. C. Pickavance, J. Pipoly, N. Pitman, M. Playfair, L. Poorter, J. R. Poulsen, A. D. Poulsen, R. Preziosi, A. Prieto, R. B. Primack, H. Ramírez-Angulo, J. Reitsma, M. Réjou-Méchain, Z. R. Correa, T. R. de Sousa, L. R. Bayona, A. Roopsind, A. Rudas, E. Rutishauser, K. Abu Salim, R. P. Salomão, J. Schietti, D. Sheil, R. C. Silva, J. S. Espejo, C. S. Valeria, M. Silveira, M. Simo-Droissart, M. F. Simon, J. Singh, Y. C. Soto Shareva, C. Stahl, J. Stropp, R. Sukri, T. Sunderland, M. Svátek, M. D. Swaine, V. Swamy, H. Taedoumg, J. Talbot, J. Taplin, D. Taylor, H. ter Steege, J. Terborgh, R. Thomas, S. C. Thomas, A. Torres-Lezama, P. Umunay, L. V. Gamarra, G. van der Heijden, P. van der Hout, P. van der Meer, M. van Nieuwstadt, H. Verbeeck, R. Vernimmen, A. Vicentini, I. C. G. Vieira, E. V. Torre, J. Vleminckx, V. Vos, O. Wang, L. J. T. White, S. Willcock, J. T. Woods, V. Wortel, K. Young, R. Zagt, L. Zemagho, P. A. Zuidema, J. A. Zwerts, O. L. Phillips, Long-term thermal sensitivity of Earth’s tropical forests. Science 368, 869–874 (2020).
227
G. Sampaio, M. H. Shimizu, C. A. Guimarães-Júnior, F. Alexandre, M. Guatura, M. Cardoso, T. F. Domingues, A. Rammig, C. von Randow, L. F. C. Rezende, D. M. Lapola, CO2 physiological effect can cause rainfall decrease as strong as large-scale deforestation in the Amazon. Biogeosciences 18, 2511–2525 (2021).
228
Science Panel for the Amazon (SPA), “Amazon Assessment Report 2021” Nobre C, Encalada A, Anderson E, Roca Alcazar FH, Bustamante M, Mena C, Peña-Claros M, Poveda G, Rodriguez JP, Saleska S, Trumbore S, Val AL, Villa Nova L, Abramovay R, Alencar A, Rodríguez Alzza C, Armenteras D, Artaxo P, Athayde S, Barretto Filho HT, Barlow J, Berenguer E, Bortolotto F, Costa FA, Costa MH, Cuvi N, Fearnside PM, Ferreira J, Flores BM, Frieri S, Gatti LV, Guayasamin JM, Hecht S, Hirota M, Hoorn C, Josse C, Lapola DM, Larrea C, Larrea-Alcazar DM, Lehm Ardaya Z, Malhi Y, Marengo JA, Melack J, Moraes R M, Moutinho P, Murmis MR, Neves EG, Paez B, Painter L, Ramos A, Rosero-Peña MC, Schmink M, Sist P, ter Steege H, Val P, van der Voort H, Varese M, Zapata-Ríos G, Eds. (United Nations Sustainable Development Solutions Network, 2021);
229
L. V. Gatti, L. S. Basso, J. B. Miller, M. Gloor, L. Gatti Domingues, H. L. G. Cassol, G. Tejada, L. E. O. C. Aragão, C. Nobre, W. Peters, L. Marani, E. Arai, A. H. Sanches, S. M. Corrêa, L. Anderson, C. Von Randow, C. S. C. Correia, S. P. Crispim, R. A. L. Neves, Amazonia as a carbon source linked to deforestation and climate change. Nature 595, 388–393 (2021).
230
R. J. W. Brienen, O. L. Phillips, T. R. Feldpausch, E. Gloor, T. R. Baker, J. Lloyd, G. Lopez-Gonzalez, A. Monteagudo-Mendoza, Y. Malhi, S. L. Lewis, R. Vásquez Martinez, M. Alexiades, E. Álvarez Dávila, P. Alvarez-Loayza, A. Andrade, L. E. O. C. Aragão, A. Araujo-Murakami, E. J. M. M. Arets, L. Arroyo, O. S. Bánki, C. Baraloto, J. Barroso, D. Bonal, R. G. A. Boot, J. L. C. Camargo, C. V. Castilho, V. Chama, K. J. Chao, J. Chave, J. A. Comiskey, F. Cornejo Valverde, L. da Costa, E. A. de Oliveira, A. Di Fiore, T. L. Erwin, S. Fauset, M. Forsthofer, D. R. Galbraith, E. S. Grahame, N. Groot, B. Hérault, N. Higuchi, E. N. Honorio Coronado, H. Keeling, T. J. Killeen, W. F. Laurance, S. Laurance, J. Licona, W. E. Magnussen, B. S. Marimon, B. H. Marimon-Junior, C. Mendoza, D. A. Neill, E. M. Nogueira, P. Núñez, N. C. Pallqui Camacho, A. Parada, G. Pardo-Molina, J. Peacock, M. Peña-Claros, G. C. Pickavance, N. C. A. Pitman, L. Poorter, A. Prieto, C. A. Quesada, F. Ramírez, H. Ramírez-Angulo, Z. Restrepo, A. Roopsind, A. Rudas, R. P. Salomão, M. Schwarz, N. Silva, J. E. Silva-Espejo, M. Silveira, J. Stropp, J. Talbot, H. ter Steege, J. Teran-Aguilar, J. Terborgh, R. Thomas-Caesar, M. Toledo, M. Torello-Raventos, R. K. Umetsu, G. M. F. van der Heijden, P. van der Hout, I. C. Guimarães Vieira, S. A. Vieira, E. Vilanova, V. A. Vos, R. J. Zagt, Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
231
A. Esquivel-Muelbert, T. R. Baker, K. G. Dexter, S. L. Lewis, R. J. W. Brienen, T. R. Feldpausch, J. Lloyd, A. Monteagudo-Mendoza, L. Arroyo, E. Álvarez-Dávila, N. Higuchi, B. S. Marimon, B. H. Marimon-Junior, M. Silveira, E. Vilanova, E. Gloor, Y. Malhi, J. Chave, J. Barlow, D. Bonal, N. Davila Cardozo, T. Erwin, S. Fauset, B. Hérault, S. Laurance, L. Poorter, L. Qie, C. Stahl, M. J. P. Sullivan, H. ter Steege, V. A. Vos, P. A. Zuidema, E. Almeida, E. Almeida de Oliveira, A. Andrade, S. A. Vieira, L. Aragão, A. Araujo-Murakami, E. Arets, C. Baraloto, P. B. Camargo, J. G. Barroso, F. Bongers, R. Boot, J. L. Camargo, W. Castro, V. Chama Moscoso, J. Comiskey, F. Cornejo Valverde, A. C. Lola da Costa, J. del Aguila Pasquel, A. Di Fiore, L. Fernanda Duque, F. Elias, J. Engel, G. Flores Llampazo, D. Galbraith, R. Herrera Fernández, E. Honorio Coronado, W. Hubau, E. Jimenez-Rojas, A. J. N. Lima, R. K. Umetsu, W. Laurance, G. Lopez-Gonzalez, T. Lovejoy, O. Aurelio Melo Cruz, P. S. Morandi, D. Neill, P. Núñez Vargas, N. C. Pallqui Camacho, A. Parada Gutierrez, G. Pardo, J. Peacock, M. Peña-Claros, M. C. Peñuela-Mora, P. Petronelli, G. C. Pickavance, N. Pitman, A. Prieto, C. Quesada, H. Ramírez-Angulo, M. Réjou-Méchain, Z. Restrepo Correa, A. Roopsind, A. Rudas, R. Salomão, N. Silva, J. Silva Espejo, J. Singh, J. Stropp, J. Terborgh, R. Thomas, M. Toledo, A. Torres-Lezama, L. Valenzuela Gamarra, P. J. van de Meer, G. van der Heijden, P. van der Hout, R. Vasquez Martinez, C. Vela, I. C. G. Vieira, O. L. Phillips, Compositional response of Amazon forests to climate change. Glob. Change Biol. 25, 39–56 (2019).
232
A. Esquivel-Muelbert, O. L. Phillips, R. J. W. Brienen, S. Fauset, M. J. P. Sullivan, T. R. Baker, K. J. Chao, T. R. Feldpausch, E. Gloor, N. Higuchi, J. Houwing-Duistermaat, J. Lloyd, H. Liu, Y. Malhi, B. Marimon, B. H. Marimon Junior, A. Monteagudo-Mendoza, L. Poorter, M. Silveira, E. V. Torre, E. A. Dávila, J. Del Aguila Pasquel, E. Almeida, P. A. Loayza, A. Andrade, L. E. O. C. Aragão, A. Araujo-Murakami, E. Arets, L. Arroyo, M. Baisie, C. Baraloto, P. B. Camargo, J. Barroso, L. Blanc, D. Bonal, F. Bongers, R. Boot, F. Brown, B. Burban, J. L. Camargo, W. Castro, V. C. Moscoso, J. Chave, J. Comiskey, F. C. Valverde, A. L. da Costa, N. D. Cardozo, A. Di Fiore, A. Dourdain, T. Erwin, G. F. Llampazo, I. C. G. Vieira, R. Herrera, E. Honorio Coronado, I. Huamantupa-Chuquimaco, E. Jimenez-Rojas, T. Killeen, S. Laurance, W. Laurance, A. Levesley, S. L. Lewis, K. L. L. M. Ladvocat, G. Lopez-Gonzalez, T. Lovejoy, P. Meir, C. Mendoza, P. Morandi, D. Neill, A. J. Nogueira Lima, P. N. Vargas, E. A. de Oliveira, N. P. Camacho, G. Pardo, J. Peacock, M. Peña-Claros, M. C. Peñuela-Mora, G. Pickavance, J. Pipoly, N. Pitman, A. Prieto, T. A. M. Pugh, C. Quesada, H. Ramirez-Angulo, S. M. de Almeida Reis, M. Rejou-Machain, Z. R. Correa, L. R. Bayona, A. Rudas, R. Salomão, J. Serrano, J. S. Espejo, N. Silva, J. Singh, C. Stahl, J. Stropp, V. Swamy, J. Talbot, H. Ter Steege, J. Terborgh, R. Thomas, M. Toledo, A. Torres-Lezama, L. V. Gamarra, G. van der Heijden, P. van der Meer, P. van der Hout, R. V. Martinez, S. A. Vieira, J. V. Cayo, V. Vos, R. Zagt, P. Zuidema, D. Galbraith, Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).
233
K. Yu, P. Ciais, S. I. Seneviratne, Z. Liu, H. Y. H. Chen, J. Barichivich, C. D. Allen, H. Yang, Y. Huang, A. P. Ballantyne, Field-based tree mortality constraint reduces estimates of model-projected forest carbon sinks. Nat. Commun. 13, 2094 (2022).
234
M. Baudena, O. A. Tuinenburg, P. A. Ferdinand, A. Staal, Effects of land-use change in the Amazon on precipitation are likely underestimated. Glob. Change Biol. 27, 5580–5587 (2021).
235
Y. Chai, G. Martins, C. Nobre, C. von Randow, T. Chen, H. Dolman, Constraining Amazonian land surface temperature sensitivity to precipitation and the probability of forest dieback. NPJ Clim. Atmos. Sci. 4, 6 (2021).
236
C. Huntingford, P. Zelazowski, D. Galbraith, L. M. Mercado, S. Sitch, R. Fisher, M. Lomas, A. P. Walker, C. D. Jones, B. B. B. Booth, Y. Malhi, D. Hemming, G. Kay, P. Good, S. L. Lewis, O. L. Phillips, O. K. Atkin, J. Lloyd, E. Gloor, J. Zaragoza-Castells, P. Meir, R. Betts, P. P. Harris, C. Nobre, J. Marengo, P. M. Cox, Simulated resilience of tropical rainforests to CO2 -induced climate change. Nat. Geosci. 6, 268–273 (2013).
237
S. S. Saatchi, N. L. Harris, S. Brown, M. Lefsky, E. T. A. Mitchard, W. Salas, B. R. Zutta, W. Buermann, S. L. Lewis, S. Hagen, S. Petrova, L. White, M. Silman, A. Morel, Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. U.S.A. 108, 9899–9904 (2011).
238
E. M. Nogueira, A. M. Yanai, F. O. R. Fonseca, P. M. Fearnside, Carbon stock loss from deforestation through 2013 in Brazilian Amazonia. Glob. Change Biol. 21, 1271–1292 (2015).
239
V. H. A. Heinrich, R. Dalagnol, H. L. G. Cassol, T. M. Rosan, C. T. de Almeida, C. H. L. Silva Junior, W. A. Campanharo, J. I. House, S. Sitch, T. C. Hales, M. Adami, L. O. Anderson, L. E. O. C. Aragão, Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat. Commun. 12, 1785 (2021).
240
B. Zimbres, P. Rodríguez-Veiga, J. Z. Shimbo, P. da Conceição Bispo, H. Balzter, M. Bustamante, I. Roitman, R. Haidar, S. Miranda, L. Gomes, F. Alvim Carvalho, E. Lenza, L. Maracahipes-Santos, A. C. Abadia, J. A. do Prado Júnior, E. L. Mendonça Machado, A. P. Dias Gonzaga, M. de Castro Nunes Santos Terra, J. M. de Mello, J. R. Soares Scolforo, J. R. Rodrigues Pinto, A. Alencar, Mapping the stock and spatial distribution of aboveground woody biomass in the native vegetation of the Brazilian Cerrado biome. For. Ecol. Manage. 499, 119615 (2021).
241
P. S. Morandi, B. S. Marimon, B. H. Marimon-Junior, J. A. Ratter, T. R. Feldpausch, G. R. Colli, C. B. R. Munhoz, M. C. da Silva Júnior, E. de Souza Lima, R. F. Haidar, L. Arroyo, A. A. Murakami, F. de Góis Aquino, B. M. T. Walter, J. F. Ribeiro, R. Françoso, F. Elias, E. A. de Oliveira, S. M. Reis, B. de Oliveira, E. C. das Neves, D. S. Nogueira, H. S. Lima, T. P. de Carvalho, S. A. Rodrigues, D. Villarroel, J. M. Felfili, O. L. Phillips, E. C. das Neves, D. S. Nogueira, H. S. Lima, T. P. de Carvalho, S. A. Rodrigues, D. Villarroel, J. M. Felfili, O. L. Phillips, Tree diversity and above-ground biomass in the South America Cerrado biome and their conservation implications. Biodivers. Conserv. 29, 1519–1536 (2020).
242
H. S. Barros, P. M. Fearnside, Soil carbon stock changes due to edge effects in central Amazon forest fragments. For. Ecol. Manage. 379, 30–36 (2016).
243
A. C. Staver, S. Archibald, S. A. Levin, The Global Extent and Determinants of Savanna and Forest as Alternative Biome States. Science 334, 230– 232 (2011).
244
Y. Malhi, L. E. O. C. Aragão, D. Galbraith, C. Huntingford, R. Fisher, P. Zelazowski, S. Sitch, C. McSweeney, P. Meir, Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl. Acad. Sci. U.S.A. 106, 20610–20615 (2009).
245
M. Drüke, W. von Bloh, B. Sakschewski, N. Wunderling, S. Petri, M. Cardoso, H. M. J. Barbosa, K. Thonicke, Climate-induced hysteresis of the tropical forest in a fire-enabled Earth system model. Eur. Phys. J. Spec. Top. 230, 3153–3 1-62 (2021).
246
C. Ciemer, N. Boers, M. Hirota, J. Kurths, F. Müller-Hansen, R. S. Oliveira, R. Winkelmann, Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 12, 174–179 (2019).
247
T. Kukla, A. Ahlström, S. Y. Maezumi, M. Chevalier, Z. Lu, M. J. Winnick, C. P. Chamberlain, The resilience of Amazon tree cover to past and present drying. Global Planet. Change 202, 103520 (2021).
248
A. Levermann, J. Schewe, V. Petoukhov, H. Held, Basic mechanism for abrupt monsoon transitions. Proc. Natl. Acad. Sci. U.S.A. 106, 20572–20577 (2009).
249
K. Zickfeld, B. Knopf, V. Petoukhov, H. J. Schellnhuber, Is the Indian summer monsoon stable against global change?Geophys. Res. Lett. 32, 2005GL022771 (2005).
250
A. Levermann, V. Petoukhov, J. Schewe, H. J. Schellnhuber, Abrupt monsoon transitions as seen in paleorecords can be explained by moisture-advection feedback. Proc. Natl. Acad. Sci. U.S.A. 113, E2348–E2349 (2016).
251
W. R. Boos, T. Storelvmo, Reply to Levermann et al.: Linear scaling for monsoons based on well-verified balance between adiabatic cooling and latent heat release. Proc. Natl. Acad. Sci. U.S.A. 113, E2350–E2351 (2016).
252
A. Katzenberger, J. Schewe, J. Pongratz, A. Levermann, Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP-6 models. Earth Syst. Dyn., 12, 367–386 (2021).
253
A. J. Watson, T. M. Lenton, B. J. W. Mills, Ocean deoxygenation, the global phosphorus cycle and the possibility of human-caused large-scale ocean anoxia. Philos. Trans. R. Soc. A 375, 20160318 (2017).
254
H. C. Jenkyns, Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosyst. 11, 2009GC002788 (2010).
255
T. P. Kemena, A. Landolfi, A. Oschlies, K. Wallmann, A. W. Dale, Ocean phosphorus inventory: Large uncertainties in future projections on millennial timescales and their consequences for ocean deoxygenation. Earth Syst. Dyn. 10, 539–553 (2019).
256
D. Niemeyer, T. P. Kemena, K. J. Meissner, A. Oschlies, A model study of warming-induced phosphorus-oxygen feedbacks in open-ocean oxygen minimum zones on millennial timescales. Earth Syst. Dyn. 8, 357–367 (2017).
257
V. Lago, M. H. England, Projected Slowdown of Antarctic Bottom Water Formation in Response to Amplified Meltwater Contributions. J. Clim. 32, 6319–6335 (2019).
258
J. Bjordal, T. Storelvmo, K. Alterskjær, T. Carlsen, Equilibrium climate sensitivity above 5 °C plausible due to state-dependent cloud feedback. Nat. Geosci. 13, 718–721 (2020).
259
I. Tan, T. Storelvmo, M. D. Zelinka, Observational constraints on mixed-phase clouds imply higher climate sensitivity. Science 352, 224–227 (2016).
260
J. Zhu, C. J. Poulsen, On the Increase of Climate Sensitivity and Cloud Feedback With Warming in the Community Atmosphere Models. Geophys. Res. Lett. 47, 1–10 (2020).
261
G. V. Cesana, A. D. Del Genio, Observational constraint on cloud feedbacks suggests moderate climate sensitivity. Nat. Clim. Chang. 11, 213–218 (2021).
262
J. Zhu, C. J. Poulsen, B. L. Otto-Bliesner, High climate sensitivity in CMIP6 model not supported by paleoclimate. Nat. Clim. Chang. 10, 378–379 (2020).
263
C. Senf, R. Seidl, Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63–70 (2021).
264
S. Netherer, B. Panassiti, J. Pennerstorfer, B. Matthews, Acute Drought Is an Important Driver of Bark Beetle Infestation in Austrian Norway Spruce Stands. Front. For. Glob. Chang. 2, ffgc.2019.00039 (2019).
265
G. Forzieri, M. Girardello, G. Ceccherini, J. Spinoni, L. Feyen, H. Hartmann, P. S. A. Beck, G. Camps-Valls, G. Chirici, A. Mauri, A. Cescatti, Emergent vulnerability to climate-driven disturbances in European forests. Nat. Commun. 12, 1081 (2021).
266
C. Senf, A. Buras, C. S. Zang, A. Rammig, R. Seidl, Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11, 6200 (2020).
267
C. Senf, J. Sebald, R. Seidl, Increasing canopy mortality affects the future demographic structure of Europe’s forests. One Earth 4, 749–755 (2021).
268
B. Schuldt, A. Buras, M. Arend, Y. Vitasse, C. Beierkuhnlein, A. Damm, M. Gharun, T. E. E. Grams, M. Hauck, P. Hajek, H. Hartmann, E. Hiltbrunner, G. Hoch, M. Holloway-Phillips, C. Körner, E. Larysch, T. Lübbe, D. B. Nelson, A. Rammig, A. Rigling, L. Rose, N. K. Ruehr, K. Schumann, F. Weiser, C. Werner, T. Wohlgemuth, C. S. Zang, A. Kahmen, A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103 (2020).
269
A. Buras, A. Rammig, C. S. Zang, Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences 17, 1655–1672 (2020).
270
W. Peters, A. Bastos, P. Ciais, A. Vermeulen, A historical, geographical and ecological perspective on the 2018 European summer drought. Philos. Trans. R. Soc. B. 375, 20190505 (2020).
271
K. Albrich, W. Rammer, R. Seidl, Climate change causes critical transitions and irreversible alterations of mountain forests. Glob. Change Biol. 26, 4013–4027 (2020).
272
E. M. Lansu, C. C. van Heerwaarden, A. I. Stegehuis, A. J. Teuling, Atmospheric Aridity and Apparent Soil Moisture Drought in European Forest During Heat Waves. Geophys. Res. Lett. 47, (2020).
273
S. Wang, Y. Zhang, W. Ju, A. Porcar-Castell, S. Ye, Z. Zhang, C. Brümmer, M. Urbaniak, I. Mammarella, R. Juszczak, K. Folkert Boersma, Warmer spring alleviated the impacts of 2018 European summer heatwave and drought on vegetation photosynthesis. Agric. For. Meteorol. 295, 108195 (2020).
274
A. J. Teuling, A hot future for European droughts. Nat. Clim. Chang. 8, 364–365 (2018).
275
L. Samaniego, S. Thober, R. Kumar, N. Wanders, O. Rakovec, M. Pan, M. Zink, J. Sheffield, E. F. Wood, A. Marx, Anthropogenic warming exacerbates European soil moisture droughts. Nat. Clim. Chang. 8, 421–426 (2018).
276
C. Gohr, J. S. Blumröder, D. Sheil, P. L. Ibisch, Quantifying the mitigation of temperature extremes by forests and wetlands in a temperate landscape. Ecol. Inform. 66, 101442 (2021).
277
G. Lasslop, V. Brovkin, C. H. Reick, S. Bathiany, S. Kloster, Multiple stable states of tree cover in a global land surface model due to a fire-vegetation feedback. Geophys. Res. Lett. 43, 6324–6331 (2016).
278
P. Zhang, J. H. Jeong, J. H. Yoon, H. Kim, S. Y. Simon Wang, H. W. Linderholm, K. Fang, X. Wu, D. Chen, Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science 370, 1095–1099 (2020).
279
Y. van der Velde, A. J. A. M. Temme, J. J. Nijp, M. C. Braakhekke, G. A. K. van Voorn, S. C. Dekker, A. J. Dolman, J. Wallinga, K. J. Devito, N. Kettridge, C. A. Mendoza, L. Kooistra, M. B. Soons, A. J. Teuling, Emerging forest-peatland bistability and resilience of European peatland carbon stores. Proc. Natl. Acad. Sci. U.S.A. 118, e2101742118 (2021).
280
R. M. Varney, S. E. Chadburn, P. Friedlingstein, E. J. Burke, C. D. Koven, G. Hugelius, P. M. Cox, A spatial emergent constraint on the sensitivity of soil carbon turnover to global warming. Nat. Commun. 11, 5544 (2020).
281
D. T. Shindell, D. Rind, P. Lonergan, Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations. Nature 392, 589–592 (1998).
282
D. L. Hartmann, J. M. Wallace, V. Limpasuvan, D. W. J. Thompson, J. R. Holton, Can ozone depletion and global warming interact to produce rapid climate change?Proc. Natl. Acad. Sci. U.S.A. 97, 1412–1417 (2000).
283
J. Austin, D. Shindell, S. R. Beagley, C. Brühl, M. Dameris, E. Manzini, T. Nagashima, P. Newman, S. Pawson, G. Pitari, E. Rozanov, C. Schnadt, T. G. Shepherd, Uncertainties and assessments of chemistry-climate models of the stratosphere. Atmos. Chem. Phys. 3, 1–27 (2003).
284
B. Weatherhead, A. Tanskanen, A. Stevermer, S. B. Andersen, A. Arola, J. Austin, G. Bernhard, H. Browman, V. Fioletov, V. Grewe, J. Herman, W. Josefsson, A. Kylling, E. Kyrö, A. Lindfors, D. Shindell, P. Taalas, D. Tarasick, in “Arctic Climate Impact Assessment Report” C. Symon, L. Arris, B. Heal, Eds. (Cambridge Univ. Press, 2005; http://www.acia.uaf.edu/pages/scientific.html), pp. 151–182.
285
V. Eyring, N. P. Gillett, K. M. A. Rao, R. Barimalala, M. Barreiro Parrillo, N. Bellouin, C. Cassou, P. J. Durack, Y. Kosaka, S. McGregor, S. Min, O. Morgenstern, Y. Sun, “Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change” V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou, Eds. (Cambridge Univ. Press, 2021); https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_03.pdf
286
J. A. Francis, S. J. Vavrus, Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 10, 014005 (2015).
287
R. Blackport, J. A. Screen, Weakened evidence for mid-latitude impacts of Arctic warming. Nat. Clim. Chang. 10, 1065–1066 (2020).
288
F. J. Doblas-Reyes, A. A. Sörensson, M. Almazroui, A. Dosio, W. J. Gutowski, R. Haarsma, R. Hamdi, B. Hewitson, W.-T. Kwon, B. L. Lamptey, D. Maraun, T. S. Stephenson, I. Takayabu, L. Terray, A. Turner, Z. Zuo, “Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change” V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, B. Zhou, Eds. (Cambridge Univ. Press, 2020).
289
D. Archer, B. Buffett, V. Brovkin, Ocean methane hydrates as a slow tipping point in the global carbon cycle. Proc. Natl. Acad. Sci. U.S.A. 106, 20596–20601 (2009).
290
G. R. Dickens, Down the Rabbit Hole: Toward appropriate discussion of methane release from gas hydrate systems during the Paleocene-Eocene thermal maximum and other past hyperthermal events. Clim. Past 7, 831–846 (2011).
291
G. R. Dickens, J. R. O. Neil, D. K. Rea, R. M. Owen, Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography 10, 965–971 (1995).
292
T. A. Minshull, H. Marín-Moreno, D. I. Armstrong McKay, P. A. Wilson, Mechanistic insights into a hydrate contribution to the Paleocene-Eocene carbon cycle perturbation from coupled thermohydraulic simulations. Geophys. Res. Lett. 43, 8637–8644 (2016).
293
D. J. Lunt, A. Ridgwell, A. Sluijs, J. Zachos, S. Hunter, A. Haywood, A model for orbital pacing of methane hydrate destabilization during the Palaeogene. Nat. Geosci. 4, 775–778 (2011).
294
D. I. Armstrong McKay, T. M. Lenton, Reduced carbon cycle resilience across the Palaeocene–Eocene Thermal Maximum. Clim. Past 14, 1515–1527 (2018).
295
J. C. Zachos, G. R. Dickens, R. E. Zeebe, An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).
296
S. Kender, K. Bogus, G. K. Pedersen, K. Dybkjær, T. A. Mather, E. Mariani, A. Ridgwell, J. B. Riding, T. Wagner, S. P. Hesselbo, M. J. Leng, Paleocene/Eocene carbon feedbacks triggered by volcanic activity. Nat. Commun. 12, 5186 (2021).
297
M. Gutjahr, A. Ridgwell, P. F. Sexton, E. Anagnostou, P. N. Pearson, H. Pälike, R. D. Norris, E. Thomas, G. L. Foster, Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum. Nature 548, 573–577 (2017).
298
H. Marín-Moreno, T. A. Minshull, G. K. Westbrook, B. Sinha, S. Sarkar, The response of methane hydrate beneath the seabed offshore Svalbard to ocean warming during the next three centuries. Geophys. Res. Lett. 40, 5159–5163 (2013).
299
E. J. Burke, C. D. Jones, C. D. Koven, Estimating the Permafrost-Carbon Climate Response in the CMIP5 Climate Models Using a Simplified Approach. J. Clim. 26, 4897–4909 (2013).
300
P. de Vrese, T. Stacke, T. Kleinen, V. Brovkin, Diverging responses of high-latitude CO2 and CH4 emissions in idealized climate change scenarios. Cryosphere 15, 1097–1130 (2021).
301
P. Friedlingstein, M. W. Jones, M. O’Sullivan, R. M. Andrew, J. Hauck, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, C. Le Quéré, D. C. E. Bakker, J. G. Canadell, P. Ciais, R. B. Jackson, P. Anthoni, L. Barbero, A. Bastos, V. Bastrikov, M. Becker, L. Bopp, E. Buitenhuis, N. Chandra, F. Chevallier, L. P. Chini, K. I. Currie, R. A. Feely, M. Gehlen, D. Gilfillan, T. Gkritzalis, D. S. Goll, N. Gruber, S. Gutekunst, I. Harris, V. Haverd, R. A. Houghton, G. Hurtt, T. Ilyina, A. K. Jain, E. Joetzjer, J. O. Kaplan, E. Kato, K. Klein Goldewijk, J. I. Korsbakken, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, S. Lienert, D. Lombardozzi, G. Marland, P. C. McGuire, J. R. Melton, N. Metzl, D. R. Munro, S.-I. Nakaoka, C. Neill, A. M. Omar, T. Ono, A. Peregon, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, C. Rödenbeck, R. Séférian, J. Schwinger, N. Smith, P. P. Tans, H. Tian, B. Tilbrook, F. N. Tubiello, G. R. van der Werf, A. J. Wiltshire, S. Zaehle, D. C. E. Bakker, J. G. Canadell, P. Ciais, R. B. Jackson, P. Anthoni, L. Barbero, A. Bastos, V. Bastrikov, M. Becker, L. Bopp, E. Buitenhuis, N. Chandra, F. Chevallier, L. P. Chini, K. I. Currie, R. A. Feely, M. Gehlen, D. Gilfillan, T. Gkritzalis, D. S. Goll, N. Gruber, S. Gutekunst, I. Harris, V. Haverd, R. A. Houghton, G. Hurtt, T. Ilyina, A. K. Jain, E. Joetzjer, J. O. Kaplan, E. Kato, K. K. Goldewijk, J. I. Korsbakken, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, S. Lienert, D. Lombardozzi, G. Marland, P. C. McGuire, J. R. Melton, N. Metzl, D. R. Munro, S. I. Nakaoka, C. Neill, A. M. Omar, T. Ono, A. Peregon, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, C. Rödenbeck, R. Séférian, J. Schwinger, N. Smith, P. P. Tans, H. Tian, B. Tilbrook, F. N. Tubiello, G. R. Van Der Werf, A. J. Wiltshire, S. Zaehle, Global carbon budget 2019. Earth Syst. Sci. Data 11, 1783–1838 (2019).
302
W. S. Broecker, T.-H. Peng, Lamont-Doherty Geological Observatory, Tracers in the sea (Eldigio Press, 1982).
303
J. Segschneider, J. Bendtsen, Temperature-dependent remineralization in a warming ocean increases surface pCO2 through changes in marine ecosystem composition. Global Biogeochem. Cycles 27, 1214–1225 (2013).
304
D. I. Armstrong McKay, S. E. Cornell, K. Richardson, J. Rockström, Resolving ecological feedbacks on the ocean carbon sink in Earth system models. Earth Syst. Dyn. 12, 797–818 (2021).
305
C. Heinze, T. Blenckner, H. Martins, D. Rusiecka, R. Döscher, M. Gehlen, N. Gruber, E. Holland, Ø. Hov, F. Joos, J. B. R. Matthews, R. Rødven, S. Wilson, The quiet crossing of ocean tipping points. Proc. Natl. Acad. Sci. U.S.A. 118, e2008478118 (2021).
306
D. H. Rothman, Thresholds of catastrophe in the Earth system. Sci. Adv. 3, e1700906 (2017).
307
D. H. Rothman, Characteristic disruptions of an excitable carbon cycle. Proc. Natl. Acad. Sci. U.S.A. 116, 14813–14822 (2019).
308
T. Smith, D. Traxl, N. Boers, Empirical evidence for recent global shifts in vegetation resilience. Nat. Clim. Chang. 12, 477–484 (2022).
309
S. Wang, Y. Zhang, W. Ju, J. M. Chen, P. Ciais, A. Cescatti, J. Sardans, I. A. Janssens, M. Wu, J. A. Berry, E. Campbell, M. Fernández-Martínez, R. Alkama, S. Sitch, P. Friedlingstein, W. K. Smith, W. Yuan, W. He, D. Lombardozzi, M. Kautz, D. Zhu, S. Lienert, E. Kato, B. Poulter, T. G. M. Sanders, I. Krüger, R. Wang, N. Zeng, H. Tian, N. Vuichard, A. K. Jain, A. Wiltshire, V. Haverd, D. S. Goll, J. Peñuelas, Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295– 1300 (2020).
310
A. J. Winkler, R. B. Myneni, G. A. Alexandrov, V. Brovkin, Earth system models underestimate carbon fixation by plants in the high latitudes. Nat. Commun. 10, 885 (2019).
311
T. Tagesson, G. Schurgers, S. Horion, P. Ciais, F. Tian, M. Brandt, A. Ahlström, J. P. Wigneron, J. Ardö, S. Olin, L. Fan, Z. Wu, R. Fensholt, Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020).
312
K. A. Duffy, C. R. Schwalm, V. L. Arcus, G. W. Koch, L. L. Liang, L. A. Schipper, How close are we to the temperature tipping point of the terrestrial biosphere?Sci. Adv. 7, eaay1052 (2021).

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 377 | Issue 6611
9 September 2022

Submission history

Received: 21 December 2021
Accepted: 27 July 2022
Published in print: 9 September 2022

Permissions

Request permissions for this article.

Acknowledgments

R.W. gratefully acknowledges support by the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No. 820575 (TiPACCs) and Grant Agreement No. 869304 (PROTECT), by Deutsche Forschungsgemeinschaft (DFG) through grants WI4556/3-1 and WI4556/5-1 and by the PalMod project (FKZ: 01LP1925D), supported by the German Federal Ministry of Education and Research (BMBF) as a Research for Sustainability initiative (FONA).
Funding: This work was initiated and supported by the European Research Council Advanced Investigator project “Earth Resilience in the Anthropocene” ERC-2016-ADG-743080 (to D.I.A.M., A.S., S.C., I.F., and J.R.). This work is part of the Earth Commission which is hosted by Future Earth and is the science component of the Global Commons Alliance. The Global Commons Alliance is a sponsored project of Rockefeller Philanthropy Advisors, with support from Oak Foundation, MAVA, Porticus, Gordon and Betty Moore Foundation, Herlin Foundation, and the Global Environment Facility. (to D.I.A.M., J.F.A., R.W., B.S., S.L., and J.R.). This work was also supported by the Leverhulme Trust RPG-2018-046 (to T.M.L. and D.I.A.M.) and the Turing Fellowship (to T.M.L.).
Author contributions: Conceptualization: D.I.A.M., A.S., I.F., S.E.C., and T.M.L. Methodology: D.I.A.M. and T.M.L. Investigation: D.I.A.M. Validation: A.S., J.F.A., R.W., B.S., I.F., and T.M.L. Visualization: J.F.A., B.S., and S.L. Funding acquisition: J.R. Data curation: D.I.A.M. Writing – original draft: D.I.A.M. and T.M.L. Writing – review and editing: D.I.A.M., A.S., J.F.A., R.W., B.S., S.L., I.F., S.E.C., J.R., and T.M.L.
Competing interests: The authors declare no competing financial interests.
Data and materials availability: All data are available in the manuscript or the supplementary materials.
License information: Copyright © 2022 the authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original US government works. https://www.sciencemag.org/about/science-licenses-journal-article-reuse

Authors

Affiliations

Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.
Global Systems Institute, University of Exeter, Exeter, UK.
Georesilience Analytics, Leatherhead, UK.
Roles: Conceptualization, Data curation, Investigation, Methodology, Project administration, Writing - original draft, and Writing - review & editing.
Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.
Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, Netherlands.
Roles: Conceptualization, Investigation, Methodology, Validation, and Writing - review & editing.
Global Systems Institute, University of Exeter, Exeter, UK.
Roles: Investigation, Validation, Visualization, Writing - original draft, and Writing - review & editing.
Potsdam Institute for Climate Impact Research, Potsdam, Germany.
Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany.
Roles: Validation and Writing - review & editing.
Potsdam Institute for Climate Impact Research, Potsdam, Germany.
Roles: Validation, Visualization, and Writing - review & editing.
Potsdam Institute for Climate Impact Research, Potsdam, Germany.
Roles: Visualization, Writing - original draft, and Writing - review & editing.
Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.
Roles: Conceptualization, Validation, and Writing - review & editing.
Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden.
Roles: Conceptualization, Funding acquisition, Supervision, and Writing - review & editing.
Johan Rockström
Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
Potsdam Institute for Climate Impact Research, Potsdam, Germany.
Roles: Conceptualization, Funding acquisition, Project administration, Supervision, Validation, Visualization, Writing - original draft, and Writing - review & editing.
Global Systems Institute, University of Exeter, Exeter, UK.
Roles: Conceptualization, Methodology, Project administration, Validation, Writing - original draft, and Writing - review & editing.

Funding Information

H2020 European Research Council: ERC-2016-ADG-743080
H2020 European Research Council: ERC-2016-ADG-743080
H2020 European Research Council: ERC-2016-ADG-743080
H2020 European Research Council: ERC-2016-ADG-743080
H2020 European Research Council: ERC-2016-ADG-743080
Alan Turing Institute: Turing Fellowship
Leverhulme Trust: RPG-2018-046
Leverhulme Trust: RPG-2018-046
Earth Commission: N/A
Earth Commission: N/A
Earth Commission: N/A
Earth Commission: N/A
Earth Commission: N/A
Earth Commission: N/A

Notes

*
Corresponding author. Email: [email protected] (D.I.A.M.); [email protected] (T.M.L.)

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Physics-based early warning signal shows that AMOC is on tipping course, Science Advances, 10, 6, (2024)./doi/10.1126/sciadv.adk1189
    Abstract
  2. Food matters: Dietary shifts increase the feasibility of 1.5°C pathways in line with the Paris Agreement, Science Advances, 10, 13, (2024)./doi/10.1126/sciadv.adj3832
    Abstract
  3. Earth beyond six of nine planetary boundaries, Science Advances, 9, 37, (2023)./doi/10.1126/sciadv.adh2458
    Abstract
  4. Impact of Holocene environmental change on the evolutionary ecology of an Arctic top predator, Science Advances, 9, 45, (2023)./doi/10.1126/sciadv.adf3326
    Abstract
  5. The South American monsoon approaches a critical transition in response to deforestation, Science Advances, 9, 40, (2023)./doi/10.1126/sciadv.add9973
    Abstract
  6. Toward a cohesive understanding of ecological complexity, Science Advances, 9, 25, (2023)./doi/10.1126/sciadv.abq4207
    Abstract
  7. What set Siberia ablaze?, Science, 378, 6623, (944-945), (2022)./doi/10.1126/science.ade8673
    Abstract
Loading...

View Options

View options

PDF format

Download this article as a PDF file

Download PDF

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Register for free to read this article

As a service to the community, this article is available for free. Login or register for free to read this article.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media