Advertisement

Abstract

Since the mid-1980s, our understanding of nutrient limitation of oceanic primary production has radically changed. Mesoscale iron addition experiments (FeAXs) have unequivocally shown that iron supply limits production in one-third of the world ocean, where surface macronutrient concentrations are perennially high. The findings of these 12 FeAXs also reveal that iron supply exerts controls on the dynamics of plankton blooms, which in turn affect the biogeochemical cycles of carbon, nitrogen, silicon, and sulfur and ultimately influence the Earth climate system. However, extrapolation of the key results of FeAXs to regional and seasonal scales in some cases is limited because of differing modes of iron supply in FeAXs and in the modern and paleo-oceans. New research directions include quantification of the coupling of oceanic iron and carbon biogeochemistry.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (boyd.som.pdf)

References and Notes

1
J. H. Martin, Paleoceanography5, 1 (1990).
2
J. H. Martin, R. M. Gordon, S. E. Fitzwater, Limnol. Oceanogr.36, 1793 (1991).
3
D. M. Sigman, E. A. Boyle, Nature407, 859 (2000).
4
S. W. Chisholm, F. M. M. Morel, Limnol. Oceanogr.36, 1507 (1991).
5
A. Watson, P. Liss, R. Duce, Limnol. Oceanogr.36, 1960 (1991).
6
J. H. Martin et al., Nature371, 123 (1994).
7
The design of FeAXs has involved single or multiple infusion (time scale of days) of iron, as a salt dissolved in acidified seawater, and concurrent addition(s) of SF6 to the surface mixed layer of initial areal extent (50 to 225 km2). The use of the SF6 conservative tracer was essential to track this mesoscale region of iron-enriched surface ocean and avoids the uncertainty imposed by fixed-point sampling in Eulerian studies. This design (in particular the amount of Fe added) has changed little between FeAXs because of the need to ensure a large measurable biogeochemical signal during a relatively short period in a logistically challenging and dynamic environment.
8
H. J. W. de Baar et al., J. Geophys. Res.110, C09S16 (2005) and references therein.
9
FeNXs have examined naturally occurring blooms within HNLC waters near the Galapagos [see (4)], within the Antarctic Circumpolar Current (8), and recently near the Southern Ocean islands Crozet and Kerguelen, where the studies Crozex (Crozet Circulation, Iron Fertilization and Export Production Experiment) and KEOPS (Kerguelen: Etude Comparée de l'Océan et du Plateau en Surface et Subsurface) took place from November 2004 to January 2005 and during January and February 2005, respectively (8).
10
K. Banse, Limnol. Oceanogr.36, 1886 (1991).
11
G. B. Mitchell, E. A. Brody, O. Holm-Hansen, C. McClain, J. Bishop, Limnol. Oceanogr.36, 1662 (1991).
12
The model in (11) was based on an adaptation of Sverdrup's critical depth theory (i.e., the relationship between the respective depths of the mixed and euphotic zones) for Southern Ocean waters.
13
M. T. Maldonado et al., Limnol. Oceanogr.46, 1802 (2001).
14
A. J. Watson, D. C. E. Bakker, A. J. Ridgewell, P. W. Boyd, C. S. Law, Nature407, 730 (2000).
15
D. A. Hutchins, K. W. Bruland, Nature393, 561 (1998).
16
W. O. Smith Jr., R. F. Andreson, J. K. Moore, L. A. Codispoti, J. M. Morrison, Deep Sea Res. II47, 3073 (2000).
17
P. W. Boyd et al., Limnol. Oceanogr.50, 1872 (2005).
18
K. O. Buesseler et al., Deep Sea Res. II50, 579 (2003).
19
F. M. M. Morel, J. G. Reuter, N. M. Price, Oceanography4, 56 (1990).
20
P. W. Boyd, S. Doney, in Ocean Biogeochemistry—The Role of the Ocean Carbon Cycle in Global Change (JGOFS), M. J. R. Fasham, Ed. (Springer-Verlag, Berlin, 2003), pp. 157–187.
21
A. R. Bowie et al., Deep Sea Res. II47, 1708 (2001).
22
M. L. Wells, Mar. Chem.82, 101 (2003).
23
P.W. Boyd, G. A. Jackson, A. M. Waite, Geophys. Res. Lett.29, (2002).
24
Y. Le Clainche et al., J. Geophys. Res.111, C01011 (2005).
25
T. D. Jickells et al., Science308, 67 (2005).
26
K. Lochte, H. W. Ducklow, M. J. R. Fasham, C. Stienen, Deep Sea Res. II40, 91 (1993).
27
A. Abelmann, R. Gersonde, G. Cortese, G. Kuhn, V. Smetacek, Paleoceanography21, PA1013 (2006).
28
D. A. Hutchins, W. X. Wang, N. S. Fisher, Limnol. Oceanogr.40, 989 (1995).
29
B. W. Frost, Nature383, 475 (1996).
30
K. H. Coale, Nature383, 495 (1996).
31
A. R. Baker, T. D. Jickells, M. Witt, K. L. Linge, Mar. Chem.98, 43 (2006).
32
T. D. Jickells, Mar. Chem.68, 5 (1999).
33
B. A. Bergquist, E. A. Boyle, Global Biogeochem. Cycles20, GB1015 (2006).
34
J. Wu, E. Boyle, W. Sunda, L.-S. Wen, Science292, 847 (2001).
35
K. Johnson et al., Eos86 (Ocean Sci. Meet. Suppl.), abstract OS11N-02 (2006).
36
P. Parekh, M. J. Follows, E. A. Boyle, Global Biogeochem. Cycles19, GB2020 (2005).
37
J. K. B. Bishop, R. E. Davis, J. T. Sherman, Science298, 817 (2003).
38
K. S. Johnson et al., Global Biogeochem. Cycles17, (2003).
39
E. W. Wolff et al., Nature440, (2006).
40
N. Lefevre, A. J. Watson, Global Biogeochem. Cycles13, 727 (1999).
41
L. Bopp, K. E. Kohfeld, C. Le Quéré, O. Aumont, Paleoceanography18, (2003).
42
R. D. Frew et al., Global Biogeochem. Cycles20, (2006).
43
W. G. Sunda, Mar. Chem.57, 169 (1997).
44
A. Gnanadesikan, J. L. Sarmiento, R. D. Slater, Global Biogeochem. Cycles17, (2003).
45
R. Strzepek et al., Global Biogeochem. Cycles20, (2006).
46
L. J. Hoffmann, I. Peeken, K. Lochte, P. Assmy, M. Veldhuis, Limnol. Oceanogr.51, 1217 (2006).
47
J. Bell, J. Betts, E. Boyle, Deep Sea Res. I49, 2103 (2002).
48
H. E. Garcia, R. A. Locarnini, T. P. Boyer, J. I. Antonov, in World Ocean Atlas 2005, vol. 4, Nutrients, S. Levitus, Ed. (U.S. Government Printing Office, Washington, DC, 2006).
49
P. W. Boyd et al., Nature407, 695 (2000).
50
B. S. Twining, S. B. Baines, N. S. Fisher, Limnol. Oceanogr.49, 2115 (2004).
51
J. H. Martin, S. E. Fitzwater, R. M. Gordon, C. N. Hunter, S. J. Tanner, Deep Sea Res. II40, 115 (1993).
52
P. W. Boyd et al., Deep Sea Res. II46, 2761 (1999).
53
W. G. Sunda, S. A. Huntsman, Mar. Chem.50, 189 (1995).
54
K. O. Buesseler, J. E. Andrews, S. M. Pike, M. A. Charette, Science304, 414 (2004).
55
P. Boyd, unpublished data from SERIES.
56
F. Gervais, U. Riebesell, M. Y. Gorbunov, Limnol. Oceanogr.47, 1324 (2002).
57
S. Takeda, A. Tsuda, Prog. Oceanogr.64, 95 (2004).
58
K. H. Coale et al., Science304, 408 (2004).
59
SEEDS II took place in July 2004, SAGE in March–April 2004, and FeeP in May 2004. For more details, contact [email protected], [email protected], and [email protected], respectively.
60
The workshop “A Synthesis of Mesoscale Iron-Enrichments,” held in Wellington in November 2005, was supported by the Surface Ocean–Lower Atmosphere Study, NSF, NIWA, the New Zealand Royal Society, the UK Royal Society, Belgian Federal Science Policy, and the Natural Sciences and Engineering Research Council of Canada. We thank E. McKay and K. Richardson for the graphics, and two anonymous reviewers for their helpful comments and insights. This manuscript is dedicated to the memory of R.B.

(0)eLetters

eLetters is a forum for ongoing peer review. eLetters are not edited, proofread, or indexed, but they are screened. eLetters should provide substantive and scholarly commentary on the article. Embedded figures cannot be submitted, and we discourage the use of figures within eLetters in general. If a figure is essential, please include a link to the figure within the text of the eLetter. Please read our Terms of Service before submitting an eLetter.

Log In to Submit a Response

No eLetters have been published for this article yet.

Information & Authors

Information

Published In

Science
Volume 315 | Issue 5812
2 February 2007

Submission history

Published in print: 2 February 2007

Permissions

Request permissions for this article.

Notes

Supporting Online Material
www.sciencemag.org/cgi/content/full/315/5812/612/DC1
Tables S1 to S3
References

Authors

Affiliations

P. W. Boyd* [email protected]
National Institute for Water and Atmospheric Research (NIWA) Centre for Chemical and Physical Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand.
T. Jickells
School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
C. S. Law
NIWA, Evans Bay Parade, Kilbirnie, Wellington, New Zealand.
S. Blain
Laboratoire d'Océanographie et de Biogéochimie, Campus de Luminy, Case 901, F-16288 Marseille Cedex 09, France.
E. A. Boyle
Department of Earth, Atmosphere and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
K. O. Buesseler
Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
K. H. Coale
Moss Landing Marine Laboratories, 8272 Moss Landing Road, Moss Landing, CA 95039, USA.
J. J. Cullen
Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada.
H. J. W. de Baar
Royal Netherlands Institute for Sea Research, 1790 AB Den Burg, Netherlands.
M. Follows
Department of Earth, Atmosphere and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
M. Harvey
NIWA, Evans Bay Parade, Kilbirnie, Wellington, New Zealand.
C. Lancelot
Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium.
M. Levasseur
Département de Biologie (Québec-Océan), Université Laval, Ste-Foy, Québec G1K 7P4, Canada.
N. P. J. Owens
Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
R. Pollard
National Oceanography Centre, Southampton, University of Southampton, Southampton SO14 3ZH, UK.
R. B. Rivkin
Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, Newfoundland A1C 5S7, Canada.
J. Sarmiento
Atmospheric and Oceanic Sciences Program, Princeton University, Sayre Hall, Forrestal Campus, Princeton, NJ 08544, USA.
V. Schoemann
Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium.
V. Smetacek
Alfred Wegener Institute for Polar and Marine Research, 27570 Bremerhaven, Germany.
S. Takeda
Graduate School of Agricultural and Life Sciences, University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
A. Tsuda
Ocean Research Institute, University of Tokyo, Tokyo 113-8657, Japan.
S. Turner
School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK.
A. J. Watson
School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK.

Notes

*
To whom correspondence should be addressed. E-mail: [email protected]

Metrics & Citations

Metrics

Article Usage

Altmetrics

Citations

Cite as

Export citation

Select the format you want to export the citation of this publication.

Cited by

  1. Atmospheric nourishment of global ocean ecosystems, Science, 380, 6644, (515-519), (2023)./doi/10.1126/science.abq5252
    Abstract
  2. Response to Comment on "The Southern Ocean Biological Response to Aeolian Iron Deposition", Science, 319, 5860, (159-159), (2021)./doi/10.1126/science.1150011
    Abstract
  3. Comment on "The Southern Ocean Biological Response to Aeolian Iron Deposition", Science, 319, 5860, (159-159), (2021)./doi/10.1126/science.1149884
    Abstract
  4. The Southern Ocean Biological Response to Aeolian Iron Deposition, Science, 317, 5841, (1067-1070), (2021)./doi/10.1126/science.1144602
    Abstract
  5. Free-Drifting Icebergs: Hot Spots of Chemical and Biological Enrichment in the Weddell Sea, Science, 317, 5837, (478-482), (2021)./doi/10.1126/science.1142834
    Abstract
  6. Endocytosis-mediated siderophore uptake as a strategy for Fe acquisition in diatoms, Science Advances, 4, 5, (2018)./doi/10.1126/sciadv.aar4536
    Abstract
  7. Iron Fertilization of the Subantarctic Ocean During the Last Ice Age, Science, 343, 6177, (1347-1350), (2014)./doi/10.1126/science.1246848
    Abstract
  8. Ocean Iron Fertilization--Moving Forward in a Sea of Uncertainty, Science, 319, 5860, (162-162), (2008)./doi/10.1126/science.1154305
    Abstract
Loading...

View Options

Check Access

Log in to view the full text

AAAS ID LOGIN

AAAS login provides access to Science for AAAS Members, and access to other journals in the Science family to users who have purchased individual subscriptions.

Log in via OpenAthens.
Log in via Shibboleth.

More options

Purchase digital access to this article

Download and print this article for your personal scholarly, research, and educational use.

Purchase this issue in print

Buy a single issue of Science for just $15 USD.

View options

PDF format

Download this article as a PDF file

Download PDF

Full Text

FULL TEXT

Media

Figures

Multimedia

Tables

Share

Share

Share article link

Share on social media