Skip to main content

Advertisement

Log in

Changes in occurrence, richness, and biological traits of dragonflies and damselflies (Odonata) in California and Nevada over the past century

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Increases in water demand, urbanization, and severity of drought threaten freshwater ecosystems of the arid western United States. Historical assessments of change in assemblages over time can help determine the effects of these stressors but, to date, are rare. In the present study, we resurveyed 45 sites originally sampled in 1914–1915 for Odonata (dragonflies and damselflies) adults throughout central California and northwestern Nevada, USA. We examined changes in species occurrence rates, taxonomic richness, and biological trait composition in relation to climate changes and human population increases. While species richness at individual sites did not change significantly, we found that odonate assemblages have become more similar across sites. Homogenization is a result of the expansion of highly mobile habitat generalists, and the decline of both habitat specialists and species with an overwintering diapause stage. Using a multi-species mixed-effects model, we found that overall occurrences of Odonata increased with higher minimum temperatures. Habitat specialists and species with a diapause stage, however, occurred less often in warmer regions and more often in areas with higher precipitation. Habitat specialists occurred less often in highly populated sites. Life history traits of Odonata, such as dispersal ability, habitat specialization, and diapause, are useful predictors of species-specific responses to urbanization and climate change in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alcock J (1990) Oviposition resources, territoriality and male reproductive tactics in the dragonfly Paltothemis lineatipes (Odonata, Libellulidae). Behaviour 113:251–263

    Article  Google Scholar 

  • Barbour MT, Gerritsen J, Snyder BD, Stribling JB (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: perifphyton, benthic macroinvertebrates and Fish, Second Edition. EPA 841-B-99-002. US EPA, Washington DC

  • Bartomeus I, Park MG, Gibbs J, Danforth BN, Lakso AN, Winfree R (2013) Biodiversity ensures plant–pollinator phenological synchrony against climate change. Ecol Lett 16:1331–1338

    Article  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2013) lme4: linear mixed-effects models using Eigen and S4. R package version 3.0.1. http://CRAN.R-project.org/package=lme4

  • Bêche LA, Mcelravy EP, Resh VH (2006) Long-term seasonal variation in the biological traits of benthic-macroinvertebrates in two Mediterranean-climate streams in California, USA. Freshw Biol 51:56–75

    Article  Google Scholar 

  • Beketov MA, Kefford BJ, Schäfer RB, Liess M (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proc Natl Acad Sci USA 110:11039–11043

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bojkova J, Komprdova K, Soldan T, Zahradkova S (2012) Species loss of stoneflies (Plecoptera) in the Czech Republic during the 20th century. Freshw Biol 57:2550–2567

    Article  Google Scholar 

  • Burkle LA, Marlin JC, Knight TM (2013) Plant–pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339:1611–1615

    Article  CAS  PubMed  Google Scholar 

  • Butchart SHM, Walpole M, Collen B et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168

    Article  CAS  PubMed  Google Scholar 

  • California Department of Finance (2010) Historical census populations of counties and incorporated cities in California, 1850–2010. Retrieved 10 Jan 2013, from http://www.dof.ca.gov/research/demographic/state_census_data_center/historical_census_1850-2010/view.php

  • Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci USA 108:662–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chang FH, Lawrence JE, Rios-Touma B, Resh VH (2014) Tolerance values of benthic macroinvertebrates for stream biomonitoring: assessment of assumptions underlying scoring systems worldwide. Environ Monit Assess 186:2135–2149

    Article  CAS  PubMed  Google Scholar 

  • Clausnitzer V (2003) Dragonfly communities in coastal habitats of Kenya: indication of biotope quality and the need of conservation measures. Biodivers Conserv 12:333–356

    Article  Google Scholar 

  • Corbet PS (2004) Dragonflies: behavior and ecology of Odonata. Harley Books, Colchester

    Google Scholar 

  • Corbet PS, Suhling F, Soendgerath D (2006) Voltinism of Odonata: a review. Int J Odonatol 9:1–44

  • Dewalt RE, Favret C, Webb DW (2005) Just how imperiled are aquatic insects? A case study of stoneflies (Plecoptera) in Illinois. Ann Entomol Soc Am 98:941–950

    Article  Google Scholar 

  • Dewalt RE, Cao Y, Hinz L, Tweddale T (2009) Modelling of historical stonefly distributions using museum specimens. Aquat Insect 31:253–267

    Article  Google Scholar 

  • Dingemanse NJ, Kalkman VJ (2008) Changing temperature regimes have advanced the phenology of Odonata in the Netherlands. Ecol Entomol 33:394–402

    Article  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163–182

    Article  PubMed  Google Scholar 

  • Dupont YL, Damgaard C, Simonsen V (2011) Quantitative historical change in bumblebee (Bombus spp.) Assemblages of red clover fields. PLoS One 6:1–7

    Google Scholar 

  • Favret C, Dewalt RE (2002) Comparing the Ephemeroptera and Plecoptera specimen databases at the Illinois Natural History Survey and using them to document changes in the Illinois fauna. Ann Entomol Soc Am 95:35–40

    Article  Google Scholar 

  • Fochetti R, De Figueroa JMT (2006) Notes on diversity and conservation of the European fauna of Plecoptera (Insecta). J Nat Hist 40:2361–2369

    Article  Google Scholar 

  • Gaston KJ (2011) Common ecology. Bioscience 61:354–362

    Article  Google Scholar 

  • Goertzen D, Suhling F (2013) Promoting dragonfly diversity in cities: major determinants and implications for urban pond design. J Insect Conserv 17:399–409

    Google Scholar 

  • Harrington R, Fleming RA, Woiwod IP (2001) Climate change impacts on insect management and conservation in temperate regions: can they be predicted? Agric For Entomol 3:233–240

    Article  Google Scholar 

  • Hassall C, Thompson DJ (2008) The effects of environmental warming on Odonata: a review. Int J Odonatol 11:131–153

    Article  Google Scholar 

  • Hassall C, Thompson DJ (2010) Accounting for recorder effort in the detection of range shifts from historical data. Methods Ecol Evol 1:343–350

    Article  Google Scholar 

  • Hickling R, Roy DB, Hill JK, Fox R, Thomas CD (2006) The distributions of a wide range of taxonomic groups are expanding polewards. Glob Change Biol 12:450–455

    Article  Google Scholar 

  • Hijmans RJ (2013) raster: Geographic data analysis and modeling. R package version 2.1-49. http://CRAN.R-project.org/package=raster

  • Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future ranges. P R Soc B 269:2163–2171

    Article  CAS  Google Scholar 

  • Houghton DC, Holzenthal RW (2010) Historical and contemporary biological diversity of Minnesota caddisflies: a case study of landscape-level species loss and trophic composition shift. J N Am Benthol Soc 29:480–495

    Article  Google Scholar 

  • Julliard R, Jiguet F, Couvet D (2004) Common birds facing global changes: what makes a species at risk? Glob Change Biol 10:148–154

    Article  Google Scholar 

  • Kennedy CH (1917) Notes on the life history and ecology of the dragonflies (Odonata) of Central California and Nevada. Proc US Natl Mus 52:483–635

    Article  Google Scholar 

  • Korkeamaki E, Suhonen J (2002) Distribution and habitat specialization of species affect local extinction in dragonfly Odonata populations. Ecography 25:459–465

    Article  Google Scholar 

  • Lavergne S, Molina J, Debussche M (2006) Fingerprints of environmental change on the rare Mediterranean flora: a 115-year study. Glob Change Biol 12:1466–1478

    Article  Google Scholar 

  • Lunde KB, Resh VH (2012) Development and validation of a macroinvertebrate index of biotic integrity (IBI) for assessing urban impacts to Northern California freshwater wetlands. Environ Monit Assess 184:3653–3674

    Article  CAS  PubMed  Google Scholar 

  • Manolis T (2003) Dragonflies and damselflies of California. University of California Press, Berkeley

    Google Scholar 

  • Marchetti MP, Light T, Feliciano J, Armstrong T, Hogan Z, Viers J, Moyle PB (2001) Homogenization of California’s fish fauna through abiotic change. In: Lockwood JL, McKinney ML (eds) Biotic homogenization. Kluwer Academic/Plenum Publishers, New York, pp 259–278

    Chapter  Google Scholar 

  • May M (2013) A critical overview of progress in studies of migration of dragonflies (Odonata: Anisoptera), with emphasis on North America. J Insect Conserv 17:1–15

  • McKinney ML (2002) Urbanization, biodiversity, and conservation. Bioscience 52:883–890

    Article  Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260

    Article  Google Scholar 

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosyst 11:161–176

    Article  Google Scholar 

  • McPeek MA (1998) The consequences of changing the top predator in a food web: a comparative experimental approach. Ecol Monogr 68:1–23

    Google Scholar 

  • Menendez R, Megias AG, Hill JK et al (2006) Species richness changes lag behind climate change. Proc R Soc B Biol Sci 273:1465–1470

    Article  Google Scholar 

  • Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264

    Article  CAS  PubMed  Google Scholar 

  • Mount JE (1995) California rivers and streams: the conflict between fluvial process and land use. University of California Press, Berkeley

    Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the worlds: a new map of life on Earth. Bioscience 51:933–938

    Article  Google Scholar 

  • Patton TM, Rahel FJ, Hubert WA (1998) Using historical data to assess changes in Wyoming’s fish fauna. Conserv Biol 12:1120–1128

    Article  Google Scholar 

  • Pimm SL, Russell GJ, Gittleman JL, Brooks TM (1995) The future of biodiversity. Science 269:347–350

    Article  CAS  PubMed  Google Scholar 

  • Poyry J, Luoto M, Heikkinen RK, Kuussaari M, Saarinen K (2009) Species traits explain recent range shifts of Finnish butterflies. Glob Change Biol 15:732–743

    Article  Google Scholar 

  • Prism Climate Group (2013) Prism climate data. Oregon State University, Retrieved 1 Oct 2013, from http://prism.oregonstate.edu

  • Rahel FJ (2002) Homogenization of freshwater faunas. Annu Rev Ecol Syst 33:291

    Article  Google Scholar 

  • Resh VH (2008) Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environ Monit Assess 138:131–138

    Article  PubMed  Google Scholar 

  • Resh VH, Unzicker JD (1975) Water-quality monitoring and aquatic organisms—importance of species identification. J Water Pollut Control Fed 47:9–19

    CAS  PubMed  Google Scholar 

  • Ricciardi A, Rasmussen JB (1999) Extinction rates of North American freshwater fauna. Conserv Biol 13:1220–1222

    Article  Google Scholar 

  • Rosset V, Oertli B (2011) Freshwater biodiversity under climate warming pressure: identifying the winners and losers in temperate standing waterbodies. Biol Conserv 144:2311–2319

    Article  Google Scholar 

  • Rowe RJ, Finarelli JA, Rickart EA (2010) Range dynamics of small mammals along an elevational gradient over an 80-year interval. Glob Change Biol 16:2930–2943

    Google Scholar 

  • Rubidge EM, Monahan WB, Parra JL, Cameron SE, Brashares JS (2011) The role of climate, habitat, and species co-occurrence as drivers of change in small mammal distributions over the past century. Glob Change Biol 17:696–708

    Article  Google Scholar 

  • Ruesink JL (2005) Global analysis of factors affecting the outcome of freshwater fish introductions. Conserv Biol 19:1883–1893

    Article  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Samways MJ, Steytler NS (1996) Dragonfly (Odonata) distribution patterns in urban and forest landscapes, and recommendations for riparian management. Biol Conserv 78:279–288

    Article  Google Scholar 

  • Sawchyn WW, Gillott C (1974) Life-history of Lestes congener (Odonata: Zygoptera) on Canadian prairies. Can Entomol 106:367–376

    Article  Google Scholar 

  • Silva DD, De Marco P, Resende DC (2010) Adult odonate abundance and community assemblage measures as indicators of stream ecological integrity: a case study. Ecol Indic 10:744–752

    Article  CAS  Google Scholar 

  • Smith J, Samways MJ, Taylor S (2007) Assessing riparian quality using two complementary sets of bioindicators. Biodivers Conserv 16:2695–2713

    Article  Google Scholar 

  • Suhling F, Sahlen G, Martens A, Marais E, Schutte C (2006) Dragonfly assemblages in arid tropical environments: a case study from Western Namibia. Biodivers Conserv 15:311–332

    Article  Google Scholar 

  • R Development Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available at: http://www.R-project.org

  • US Census Bureau (1913) Thirteenth census of the United States taken in the year 1910: Nebraska–Wyoming, Alaska, Hawaii, and Porto Rico. US Census Bureau, Washington, DC

    Google Scholar 

  • US Census Bureau (1922) Fourteenth census of the United States taken in the year 1920. US Census Bureau, Washington, DC

    Google Scholar 

  • US Census Bureau (2002) 2000 census of population and housing: summary population and housing characteristics, PHC-1-30. Retrieved 10 Jan 2012, from http://www.census.gov/prod/cen2000/phc-1-30.pdf

  • US Census Bureau (2013) State and county Quickfacts: Nevada. Retrieved 10 Jan 2012, from http://quickfacts.census.gov/qfd/index.html

  • Vall-llosera M, Sol D (2009) A global risk assessment for the success of bird introductions. J Appl Ecol 46:787–795

    Article  Google Scholar 

  • Warren MS, Hill JK, Thomas JA et al (2001) Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414:65–69

    Article  CAS  PubMed  Google Scholar 

  • White PJT, Kerr JT (2007) Human impacts on environment–diversity relationships: evidence for biotic homogenization from butterfly species richness patterns. Global Ecol Biogeogr 16:290–299

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Science Foundation under Grant No. DBI 0956389, and the Margaret C. Walker Fund for teaching and research in systematic entomology. LKM was supported by a Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship. We thank Dennis Paulson, Rosser Garrison, Timothy Manolis, and Giovanni Rapacciuolo for their advice on aspects of the work. We also thank Norm Penny and Mark O’Brien for their assistance with C. H. Kennedy’s original Odonata specimens at the California Academy of Sciences and the University of Michigan Museum of Zoology, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan E. Ball-Damerow.

Additional information

Communicated by B.D. Hoffmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ball-Damerow, J.E., M’Gonigle, L.K. & Resh, V.H. Changes in occurrence, richness, and biological traits of dragonflies and damselflies (Odonata) in California and Nevada over the past century. Biodivers Conserv 23, 2107–2126 (2014). https://doi.org/10.1007/s10531-014-0707-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-014-0707-5

Keywords

Navigation