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Abstract

Background: Quantifying the burden of multimorbidity for healthcare research using administrative data has been
constrained. Existing measures incompletely capture chronic conditions of relevance and are narrowly focused on
risk-adjustment for mortality, healthcare cost or utilization. Moreover, the measures have not undergone a rigorous
review for how accurately the components, specifically the International Classification of Diseases, Ninth Revision
(ICD-9) codes, represent the chronic conditions that comprise the measures. We performed a comprehensive,
structured literature review of research studies on the accuracy of ICD-9 codes validated using external sources
across an inventory of 81 chronic conditions. The conditions as a weighted measure set have previously been
demonstrated to impact not only mortality but also physical and mental health-related quality of life.

Methods: For each of 81 conditions we performed a structured literature search with the goal to identify 1) studies
that externally validate ICD-9 codes mapped to each chronic condition against an external source of data, and 2)
the accuracy of ICD-9 codes reported in the identified validation studies. The primary measure of accuracy was the
positive predictive value (PPV). We also reported negative predictive value (NPV), sensitivity, specificity, and kappa
statistics when available. We searched PubMed and Google Scholar for studies published before June 2019.

Results: We identified studies with validation statistics of ICD-9 codes for 51 (64%) of 81 conditions. Most of the
studies (47/51 or 92%) used medical chart review as the external reference standard. Of the validated using medical
chart review, the median (range) of mean PPVs was 85% (39-100%) and NPVs was 91% (41-100%). Most conditions
had at least one validation study reporting PPV 270%.

Conclusions: To help facilitate the use of patient-centered measures of multimorbidity in administrative data, this
review provides the accuracy of ICD-9 codes for chronic conditions that impact a universally valued patient-
centered outcome: health-related quality of life. These findings will assist health services studies that measure
chronic disease burden and risk-adjust for comorbidity and multimorbidity using patient-centered outcomes in
administrative data.
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Background

Health system tools for quantifying the burden of multi-
morbidity (multiple coexisting chronic conditions) have
frequently been limited to mortality-based measures
such as the Charlson-Deyo comorbidity index and Elix-
hauser comorbidity score [1-4]. These measures select
from a narrow inventory of conditions based on in-
patient diagnoses that may not be suitable for capturing
the full breadth and depth of multimorbidity across the
total healthcare system, including community-dwelling
adults receiving ambulatory care. Further, these mea-
sures have not undergone a rigorous review for how ac-
curately their components, specifically the International
Classification of Diseases, Ninth Revision (ICD-9) codes,
represent the clinical presence or absence of a chronic
condition.

Modern administrative data-based measures of multimor-
bidity are needed, along with a firm understanding of the ac-
curacy of the ICD-9 code components used in measures.
Among the most comprehensive of multimorbidity measures
is an index consisting of 81 chronic conditions assessed lon-
gitudinally with repeated measures of self-reported chronic
conditions among community-dwelling adults [5]. This
multimorbidity-weighted index was developed from three
large cohorts of community-dwelling adults with repeated
measures of highly reliable self-reported physician-diagnosed
chronic conditions and physical health-related quality of life
(HRQOL). The index was externally validated in the
nationally-representative Health and Retirement Study, with
additional physical and cognitive functioning outcomes
assessed to demonstrate construct validity [6]. Finally, the
conditions were mapped to ICD-9 codes and validated in
HRS-Medicare data to facilitate use in claims data [7]. These
81 conditions also predict mortality, HRQOL, social partici-
pation, and disability [6, 8—12]. Compared with existing indi-
ces, this measure captures a wider breadth of chronic
conditions that are prevalent among patients with multimor-
bidity and spans the widest distribution of multimorbidity at
both the low and high extremes of disease burden [6, 8—11].

We aimed to perform a comprehensive array of litera-
ture searches to quantify the accuracy of ICD-9 codes
used to identify the presence or absence of chronic con-
ditions that impact HRQOL for use in measuring multi-
morbidity. For each condition, we reviewed the literature
to identify: 1) studies that externally validate ICD-9
codes for each condition against an external source of
clinical data such as patient interview or medical chart
review, and 2) the range of accuracies reported in these
validation studies.

Methods

Candidate condition selection

We examined 81 chronic conditions in the multimorbidity-
weighted index that predicts HRQOL [5] and created a
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comprehensive mapping of ICD-9 codes for each of these
conditions [7] (Additional File, Table 1).

Study selection

Our primary goal was to conduct a literature search to
identify studies that provided validation statistics, i.e.,
positive predictive value (PPV), negative predictive value
(NPV), sensitivity, specificity, or kappa, for ICD-9 codes
corresponding to chronic conditions that impact
HRQOL. We used PubMed as the primary database,
using search terms “ICD-9” and “algorithm” or “valid-
ation” combined with each condition (e.g., “ICD-9” AND
“atrial fibrillation” AND “validation” OR “algorithm”)
through June 2019 (Fig. 1). If no articles were found in
PubMed, we searched Google Scholar using the same
search terms.

For remaining conditions whose searches failed to
identify validation studies, our last tier search (using only
“ICD-9” and the condition in PubMed) was to identify
studies that used algorithms of ICD-9 codes to identify
the chronic condition in administrative data. If the stud-
ies used the codes to find associations between the con-
dition with clinical outcomes, we considered that study
as evidence supporting construct validity for that ICD-9
algorithm. We reviewed article titles and abstracts to de-
termine if ICD-9 codes for each respective condition
might be included in the article, and if applicable,
reviewed the full text of the article.

Inclusion criteria

We had two inclusion criteria for included studies. The
first was for the validation of ICD-9 codes (test of inter-
est), and the second was for the reference standard used
for the validation (gold standard of interest) (Additional
file, Table 2).

Test of interest

Although some conditions can be further confirmed
using other types of administrative billing data (e.g,
Current Procedural Technology codes or pharmacy fill
data), these sources of data beyond ICD-9 diagnostic
codes are not relevant for all conditions and therefore
beyond the scope of these review. Therefore, if all algo-
rithms in a study required information beyond ICD-9
codes, we excluded that study.

Gold standard of interest

We identified studies that used medical chart review
(i.e., physician review of nursing, physician, and consult-
ation notes; admission and discharge reports; laboratory
and diagnostic test reports; surgical reports; and other
clinical and administrative documentation) as the exter-
nal reference standard because it is the most thorough
assessment of several sources of information to confirm
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Search in PubMed using
“ICD-9” + “algorithm” or “validation” + each of the 81 chronic conditions

Candidate articles found
for 39 conditions

No candidate articles found

for 42 conditions

v

Search in google scholar using
“ICD-9” + “algorithm” or “validation” + condition

for 10 conditions

Candidate articles found

No candidate articles found
for 32 conditions

for 30 conditions

Candidate articles found

v

Search in PubMed using
“ICD-9” + condition

No candidate articles found
for 2 conditions

Candidate articles
reviewed for 79 conditions

A4 v

52 conditions validated by
gold standard studies using
external standard*

27 conditions validated with
only alternative construct (eg.,
mortality)

2 conditions with no
validation articles found

Fig. 1 Structured Literature Review Flow Diagram. *We prioritize the articles with the following: 1) chart abstraction as gold standard; 2) self-
report, disease registry, or disease screening as gold standard; 3) systematic review. We excluded articles with an algorithm including other
criteria than just ICD-9 codes, such as ICD-10 codes, ICD-8 codes, Current Procedural Technology (CPT) codes, lab results, or medications, and
those validating ICD-9 codes for multiple conditions in a comorbidity index (e.g., Charlson comorbidity index)

the diagnosis of a chronic condition and its associated
ICD-9 code in a person. If validation with chart review
was unavailable for a given condition, we used those val-
idated by other standards. In order of priority, the sec-
ondary reference standards were: 1) self-report, 2)
disease registry, and 3) disease screening. For a few con-
ditions we found systematic reviews of validation studies.
To include these systematic reviews, we incorporated
the aggregate results reported by the study, such as
means and ranges.

Validation statistics

We reported the median and range of the PPV, NPV,
sensitivity, specificity, and kappa for each condition for
validation studies that provided these metrics.
Condition-specific medians were computed by calculat-
ing the median of each respective validation statistic of
all studies found for a specific condition. The range was
computed by reporting the minimum and maximum
values of each respective validation statistic of all studies
found for a specific condition. The PPV was computed
as the probability of being a case (true disease using
medical chart review) among those who had a positive
screening test (based on ICD-9 codes of interest). The

NPV was computed as the probability of not being a
case among those with a negative screening test. We
plotted the range of PPVs and sensitivities for each con-
dition in three separate graph panels: rare conditions (<
5% prevalence), common conditions (5-20% prevalence),
and highly prevalent conditions (>20% prevalence)
(Figs. 2, 3). We used 70% to denote a moderately accur-
ate PPV or sensitivity, for the purposes of displaying the
PPVs in Fig. 2 [13, 14] and the sensitivities in Fig. 3.
Prevalence was determined using any ICD-9 codes
available for each condition [7] from 8933 Health and
Retirement Study participants who provided access to
their Medicare outpatient, inpatient, or skilled nursing
facility claims in 2014. ICD-9 codes for the 10 most
prevalent conditions are summarized in Table 1.

Results

We considered 81 conditions mapped to ICD-9 codes
(Additional File, Table 1). We combined two condi-
tions (basal cell and squamous cell carcinoma) into
one group during the literature review once we found
no publications validating codes for these conditions
separately. This resulted in a final validation for 80
total conditions. After mapping all conditions to
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corresponding ICD-9 codes, we found articles provid-
ing validation statistics for codes for 51 (64%) of the
80 conditions. We also found articles with validating
through construct validity for 27 (34%) of the 80 con-
ditions. We did not find articles validating codes for

2 (2.5%) of the 80 conditions.

Medical chart review was the most common method
of ICD-9 code validation (47 of 51 conditions with valid-
ation statistics, 92%), followed by systematic review (5
conditions, 10%), self-report of condition (1 condition,
2%), disease registry (1 condition, 2%), and diagnostic
screening (1 condition, 2%), not mutually exclusive.
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Range of ICD-9 Code Sensitivities
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Of the 51 conditions reporting validation statistics, the
median and range for the accuracies were as follows:
sensitivity 83% (3—100%, n = 142 values), specificity 97%
(0-100%, n = 76), PPV 84% (0—100%, n = 175), NPV 90%
(32-100%, n=52), and kappa statistic 0.85 (0.45-0.92,
n=18) (Additional file, Table 1). The most common

validation measure reported was PPV (available for 46
conditions), followed by sensitivity (available for 43
conditions).

Most ICD-9 coded conditions had moderate to high
mean PPV and NPVs of at least 70% (37/46, 80%)
among studies that provided PPVs, and 19/24 (79%)
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Table 1 Multimorbidity-Weighted Index Conditions and the Accuracy, Source, and Type of Validation for Respective ICD-9 Codes for

the 10 Most Prevalent Conditions in Medicare claims; 2014

Organ system  Diagnosis ICD-9 codes found in Source of  Record Sample  Algorithm Accuracy
literature search Validation®  Type Size in (Sensitivity,
Study Specificity, PPV,
NPV, Kappa®)
Cardiovascular ~ Hypertension  401x-405xx Chart Disease 184 2 claims SENS: 65%
review registry SPEC: 90%
PPV: 95%
NPV: 50%
Kappa: 045 [15]
401 .x-405xx, 437.2; Chart Inpatient, 76 Any claim up to 9 claims PPV: 93% [16]
exclusion: 250.xx, 430-436,  review outpatient
437.1,437.9, 438xx
Endocrine Elevated 2720-2724 Chart Outpatient 1176 =1 outpatient SENS: 85%
cholesterol/ review SPEC: 85%
Hyperlipidemia Kappa: 0.70 [17]
2720-2724 Chart Disease 184 2 claims SENS: 95%
review registry SPEC: 90%
PPV: 90%
NPV: 95%
Kappa: 0.85 [15]
Ophthalmologic Cataract 366-366.4 Construct ~ N/A
validity
[18]
13.11,13.19, 13.20, 13.30, Construct ~ N/A
1341,1342, 1343, 1359, validity
13.69, 13.71 [19]
Endocrine Diabetes 250.xx Chart Outpatient 1176 21 outpatient claim SENS: 97%
review SPEC: 96%
Kappa: 0.92 [17]
250.xx Chart Disease 184 2 claims SENS: 91%
review registry SPEC: 100%
PPV: 100%
NPV: 90%
Kappa: 0.90 [15]
250.00-250.93 Chart Any 465 (1) One claim; (2) Two SENS: (1) 92%;
review encounter claims (2) 64%
SPEC: (1) 99%;
(2) 99%
PPV: (1) 94%;
(2) 95% [20]
Musculoskeletal ~ Osteoarthrosis ~— 715xx Construct ~ N/A
validity
[21]
Endocrine Hypothyroidism  244.0, 244.1, 244.9 Construct ~ N/A
validity
[22]
Renal Chronic kidney — 403.xx, 405X 1, 582.xx, Chart Outpatient 1176 21 outpatient claim SENS: 62%
disease, 583.xx, 585, 586, 593.9 review SPEC: 98%
polycystic Kappa: 0.62 [17]
kidney disease 585, 586 (chronic renal Chart Inpatient 7050 (1) Any claim; (2) Primary SENS: (1) 83%;
failure) review claim (2) 85%
PPV: (1) 70%;
(2) 61% [23]
585X, Chart Inpatient, 1186 Any claim PPV: 63%
403.xx, 404.xx, 583.81, review outpatient NPV: 54% [24]
581.81, 25040, 25042,
250.80, 250.82
753.12,753.13, 753.14 Chart Disease 184 2 claims SENS: 100%
(Polycystic kidney disease)  review registry SPEC: 90%

PPV: 90%
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Table 1 Multimorbidity-Weighted Index Conditions and the Accuracy, Source, and Type of Validation for Respective ICD-9 Codes for
the 10 Most Prevalent Conditions in Medicare claims; 2014 (Continued)

Organ system  Diagnosis ICD-9 codes found in Source of  Record Sample  Algorithm Accuracy
literature search Validation®  Type Size in (Sensitivity,
Study Specificity, PPV,
NPV, Kappab)
NPV: 100%
Kappa: 0.90 [15]
(1) 25040, 250.41, 25042, Chart Medicare 1852 Any claim SEN: (1) 3%;
25043 (diabetic review claims (2) 7%; (3) 5%;
nephropathy); (2) 403.xx, 4) 12%
404.xx (hypertensive SPEC: (1) 99%;
nephropathy); (3) 5724, (2) 99: (3) 100%;
580.xx, 584.xx, 580.0, 580.4, (4) 99%
580.89, 580.9, 5824, 791.2, PPV: (1) 86%;
791.3 (acute renal failure); (2) 95%;
(4) 582.xx, 583.xx, 585X, (3) 97%;
586, 587 (chronic renal (4) 97%
insufficiency) NPV: (1) 32%;
(2) 33%;
(3) 33%;
(4) 35% [25]
Pulmonary Chronic 491 xx-494.x, 496 Chart Inpatient 7050 (1) Any claim; (2) Primary SENS: (1) 85%;
obstructive review claim (2) 79%
pulmonary PPV: (1) 87%;
disease (COPD) (2) 68% [23]
491 xx, 492.x, 496 Chart Inpatient, 12,127 (1) 22 outpatient or 2 1 PPV: (1) 64%;
review outpatient inpatient; (2) 23 outpatient  (2) 72% [26]
or 2 2 inpatient
491 xx, 492.x, 496 Chart Inpatient 1221 Primary claim of 491, 492, PPV: 50% [17]
review or 496
490-492.x, 493.22, 496, Chart Inpatient (1)50; (1) Age =25, Primary claim  SENS: (1) 25%;
518.81,518.82, 51884, 799.1 review (2) 46;  of 490, 491.x, 492, 493.22,  (2) 24%;
(3) 29;  4960R Primary claim of (3) 15%;
(4)20  51881,51882,51884,799.1 (4) 12%
AND secondary claim of SPEC: (1) 100%;
490, 491.x, 492.x, 493.22, (2) 100%;
496; (2) Age 2 40, Primary (3) 100%;
claim of 491.x (except for (4) 100%
491.20), 492.x, 493.22, 496 PPV: (1) 81%;
OR primary claim of 51881,  (2) 85%;
51882, 518.84 AND (3) 86%;
secondary claim of 491.x (4) 97%
(except for 491.20), 492., NPV: (1) 94%;
493.22, 496; (3) Age 2 40, (2) 94%;
primary claim of 491, (3) 93%;
492.x, 496; (4) Age 2 40, (4) 93% [27]
primary claim of 491.21
490, 491.xx (all except Chart Outpatient 1176 21 outpatient claim SENS: 81%
491.8), 492X, 493.xx, 496 review SPEC: 92%
Kappa: 0.68 [28]
Cardiovascular ~ Congestive (1) 39891, 402.x1,404.x 1,  Chart Inpatient 908 (1) Any claim; SENS: (1A) 94%;
heart failure 404.% 3, or 428xx; (2) 428xx  review (2) Primary claim (1B) 55%;
(2A) 91%;
(2B) 48%
PPV: (1A) 43%;
(1B) 86%;
(2A) 43%;
(2B) 86% [29]
39891, 402.01, 402.11, Chart Inpatient 497 Primary claim SENS: 20%
402.91, 404.01, 404.03, review SPEC: 100%
40411, PPV: 79%

404.13, 404.91, 404.93,
425X, 428 xx

NPV: 94% [30]
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Table 1 Multimorbidity-Weighted Index Conditions and the Accuracy, Source, and Type of Validation for Respective ICD-9 Codes for
the 10 Most Prevalent Conditions in Medicare claims; 2014 (Continued)

Organ system  Diagnosis ICD-9 codes found in Source of  Record Sample  Algorithm Accuracy
literature search Validation®  Type Size in (Sensitivity,
Study Specificity, PPV,
NPV, Kappab)
39891, 402.01, 402.11, Chart Inpatient, 172 (1) Any claim in 12-month SENS: (1) 90%;
402.91, 404.01, 404.03, review outpatient window; (2) 90%
404.11, 404.13, 404.91, (2) Any claim in 24-month  SPEC: (1) 95%;
404.93, 4254-425.9, 428xx window (2) 94%
PPV: (1) 72%;
(2) 69%
NPV: (1) 99%;
(2) 98% [31]
(1) 428xx; (2) 402xx or Chart Inpatient 5083 Any claim SENS: (1) 63%;
428xx; (3) 39897, 402.x1, review (2) 66%;
404.xx, 415.0, 416.9, (3) 67%
4254, 428 xx, 4294, 514, SPEC: (1) 95%;
5184, 786.0x (2) 93%;
(3) 93%
PPV: (1) 84%;
(2) 79%;
(3) 77%
NPV: (1) 87%;
(2) 88%;
(3) 88% [32]
39891, 402.x1, 402.X3, Chart Inpatient, 400 21 Primary Discharge or 23 SENS: 62%
404.x 1, 404.x3, 422.90, review outpatient Secondary Discharge or22  SPEC: 99%
4254, 4259, 428 xx Outpatientor=23 EDor=2 PPV: 69%
Secondary Discharge + 21 NPV: 98% [33]
Outpatient Claim
39891, 402.01, 402.11, Chart Outpatient 1176 21 outpatient SENS: 77%
40291, 404.01, 404.03, review SPEC: 99%
404.11, 404.13, 404.91, Kappa: 0.74 [17]
404.93, 414.8, 428 xx
428.xx Chart Disease 184 2 claims SENS: 87%
review registry SPEC: 100%
PPV: 100%
NPV: 85%
Kappa: 0.85 [15]
402.01, 402.11, 402.91, Chart Inpatient 7050 (1) Any claim; SENS: (1) 89%;
428.0-428.9x review (2) Primary claim (2) 85%
PPV: (1) 71%;
(2) 87% [23]
(1) 428.xx; (2) 428 xx with Systematic  Inpatient, 35 Various algorithms due to PPV: (1) 84-100%;
other codes; (3) 402.01, review outpatient systematic review (2) 77-79%;
402.11, 425, 429.3, and (3) 14-30% [34]
514
Cardiovascular  Atrial fibrillation  427.31 (atrial fibrillation) or ~ Chart Inpatient, 300 1 inpatient or 2 outpatient ~ PPV: 96% [35]
42732 (atrial flutter) review outpatient, or emergency department
emergency
department
427.3x Chart Outpatient 1176 21 outpatient SENS: 80%
review SPEC: 99%
Kappa: 0.81 [17]
427.31,42732 Systematic  Inpatient, 16 Various algorithms due to SENS: 57-95%
review outpatient systematic review PPV: 70-96% [34]

°If the source of validation was a systematic review; the sample size refers to the number of studies included
PThe number within the bracket following the accuracy values indicates the citation number for the reference

among studies that provided NPVs). We observed vari-
ation in the reported accuracies, with the highest mean
PPV for wrist fracture (100%) compared with the lowest
mean PPV for depression (39%). The highest mean NPV

was for chronic hepatitis/hepatocellular disease (100%),
and the lowest was for Parkinson disease (41%).

We plotted the ranges of PPVs and sensitivities for
chronic conditions mapped to ICD codes from least to
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greatest disease prevalence (Figs. 2, 3). Of the 46 condi-
tions that provided PPV as a validation metric, 42 (91%)
had at least one publication reporting a PPV >70%. Myo-
cardial infarction had the widest range of PPVs (9—
100%). Of the 44 conditions that provided sensitivity, 33
(75%) had at least one publication reporting a sensitivity
of 270%. Myocardial infarction had the widest range of
sensitivities (6—94%).

For conditions that provided codes validated through
construct validity, we present the respective ICD-9 codes
based on mapping these conditions from ICD code map-
pings with CMS fiscal year 2015 (October 1, 2014 to
September 30, 2015) ICD-9-CM, a comprehensive list of
ICD-9 codes and corresponding conditions. Codes were
identified and checked independently for agreement by
four individuals (including authors MYW, JEL, CC). To
validate the accuracy of these mapped conditions with-
out validation studies and the overall mapping of ICD-9
codes to conditions in the multimorbidity-weighted
index, we examined the construct validity and conducted
direct comparisons of the ICD-coded multimorbidity-
weighted index with traditional metrics [7].

Discussion

This literature review provides evidence to support the
accuracy and validity of using ICD-9 diagnostic codes to
classify the presence or absence of 81 chronic conditions
to measure multimorbidity in administrative-based data.
The ICD-9 codes we studied had overall moderate to
high PPVs and NPVs (>70%) based on external stan-
dards for presence versus absence of each individual
condition. This may be attributed to several factors such
as different population samples, coding artifact [36, 37],
and different methodologic approaches and comprehen-
siveness with mapping ICD-9 codes to conditions.

The highest priority reference standard, medical chart
review, was available for 47 of 81 conditions.

This study provides researchers with a tool to code
many existing indices, as well as one using all 81 condi-
tions that has previously been demonstrated to predict
HRQOL [10]. We also feature an innovative approach to
the challenging task of synthesizing the results from 81
separate literature reviews by presenting results graphic-
ally by prevalence, for added context and face validity.
To our knowledge, a comprehensive review for this
scope of chronic conditions has not been performed pre-
viously. In addition, prior reviews [38] focus on largely
inpatient conditions that predict mortality, but this re-
view captures chronic conditions prevalent among
community-dwelling adults with multimorbidity that im-
pact physical and mental HRQOL.

Administrative and claims-based studies using ICD-9
codes have traditionally relied upon a few commonly
used measures for comorbidity adjustment that weight
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conditions to mortality risk, healthcare cost and
utilization. Measures such as the Charlson-Deyo and
Elixhauser comorbidity measures [1-3] have been read-
ily available in datasets, facilitating and perpetuating
their use. However, a possible unintended consequence
of convenience has been overextending their intended
application such as risk-adjustment for other outcomes
such as HRQOL.

Strengths and limitations

Although existing comorbidity indices are available for
use in administrative data and have frequently been ex-
trapolated to measure multimorbidity, this research pro-
vides a practical method to operationalize a modern
measure of multimorbidity that predicts a universal
health outcome, physical functioning. Previous comor-
bidity indices have been limited in the scope of included
conditions and are calibrated to outcomes of limited
relevance to disease survivors, such as inpatient mortal-
ity risk, healthcare cost and utilization [2—4, 39, 40]. This
inventory of 81 chronic conditions is one of the most
comprehensive multimorbidity indices and is a validated,
patient-centered measure of multimorbidity that assigns
disease severity based on the impact conditions have on
physical functioning, an outcome of particular relevance
for older adults. Additional strengths over existing indi-
ces include a broad distribution, greater precision in
quantifying multimorbidity, and rigorous validation for
predicting several downstream consequences of multi-
morbidity [6-10]. As patient-centered health outcomes
persist in importance and relevance for research and
policy, this review offers an additional tool to measure
and target outcomes for quality improvement. For ex-
ample, the ICD-9 codes presented in this study could be
used as a proxy for physical functioning, which is absent
in administrative data.

Our study has limitations. First, we focused only on
chronic condition diagnostic codes to define test vari-
ables. However, the accuracy of some conditions such as
diabetes might be further improved by adding laboratory
values available in an electronic health record. Other ad-
ministrative data, such as procedure codes and durable
medical equipment, could also potentially augment the
ICD codes, but were beyond the scope of this review.
Second, our literature search did not include articles
published in languages other than English or articles not
accessible through PubMed or Google Scholar. Google
Scholar can access 87% of all scholarly documents on-
line, including journal and conference papers, disserta-
tions, books, technical reports, and working papers and
identified more documents than PubMed, Web of Sci-
ence, and Microsoft Academic Search [41]. Third, these
validated ICD-9 codes apply to retrospective quality im-
provement efforts prior to 2016 using existing data
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available through the Centers for Medicare and Medic-
aid Services. Application to future prospective research
requires a cross-walk of the conditions to ICD-10 codes
and validation, which are underway. Finally, the overall
value of any measure of multimorbidity in administrative
data will depend on the completeness and accuracy of
documentation by providers, which is a limitation inher-
ent to all claims data. For example, financial incentives
have been suspected as the cause of biased coding prac-
tices over time [37].

Implications for further research

Our findings demonstrate that there is variation in the
quality and accuracy of ICD code mappings for chronic
conditions, including some conditions that lack external
validity. Future studies are needed to validate the accur-
acy of ICD codes for conditions that did not provide
these measures of accuracy design, analysis, interpret-
ation of results, and applications to clinical care and
health policy. To increase the accuracy of diagnoses with
ICD codes, one future direction for researchers would
be to include data beyond ICD codes such as medica-
tions, labs, and imaging studies when consistently avail-
able for specific chronic conditions.

Conclusion

Modern measures of multimorbidity that weight disease
severity by patient-centered outcomes have emerged and
are available for use in administrative studies. We pro-
vide a comprehensive inventory of diagnostic codes
mapped to chronic conditions that impact HRQOL. This
research demonstrates moderate to high accuracies and
validation for most but not all diagnostic codes. Based
on our comprehensive literature reviews, researchers can
apply with a fuller understanding of the validity of diag-
nostic codes for specific chronic diseases to identify pop-
ulations with multimorbidity or risk-adjust for
comorbidity using a comprehensive and patient-centered
measure.
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