Skip to main content

CodonExplorer: An Interactive Online Database for the Analysis of Codon Usage and Sequence Composition

  • Protocol
  • First Online:
Bioinformatics for DNA Sequence Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 537))

Abstract

The analysis of DNA composition and codon usage reveals many factors that influence the evolution of genes and genomes. In this chapter, we show how to use CodonExplorer, a web tool and interactive database that contains millions of genes, to better understand the principles governing evolution at the single gene and whole-genome level. We present principles and practical procedures for using analyses of GC content and codon usage frequency to identify highly expressed or horizontally transferred genes and to study the relative contribution of different types of mutation to gene and genome composition. CodonExplorer’s combination of a user-friendly web interface and a comprehensive genomic database makes these diverse analyses fast and straightforward to perform. CodonExplorer is thus a powerful tool that facilitates and automates a wide range of compositional analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nirenberg, M. W., and Matthaei, J. H. (1961) The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc Natl Acad Sci USA 47, 1588–602.

    Article  PubMed  CAS  Google Scholar 

  2. Soll, D., Ohtsuka, E., Jones, D. S., Lohrmann, R., Hayatsu, H., Nishimura, S., and Khorana, H. G. (1965) Studies on polynucleotides, XLIX. Stimulation of the binding of aminoacyl-sRNA’s to ribosomes by ribotrinucleotides and a survey of codon assignments for 20 amino acids. Proc Natl Acad Sci USA 54, 1378–85.

    Article  PubMed  CAS  Google Scholar 

  3. Sueoka, N. (1961) Compositional correlation between deoxyribonucleic acid and protein. Cold Spring Harb Symp Quant Biol 26, 35–43.

    Article  PubMed  CAS  Google Scholar 

  4. Efstratiadis, A., Kafatos, F. C., and Maniatis, T. (1977) The primary structure of rabbit beta-globin mRNA as determined from cloned DNA. Cell 10, 571–85.

    Article  PubMed  CAS  Google Scholar 

  5. Sanger, F., Nicklen, S., and Coulson, A. R. (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74, 5463–7.

    Article  PubMed  CAS  Google Scholar 

  6. Sonneborn, T. M. (1965) Nucleotide sequence of a gene: first complete specification. Science 148, 1410.

    Article  PubMed  CAS  Google Scholar 

  7. Ikemura, T., and Ozeki, H. (1983) Codon usage and transfer RNA contents: organism-specific codon-choice patterns in reference to the isoacceptor contents. Cold Spring Harb Symp Quant Biol 47 Pt 2, 1087–97.

    Article  PubMed  CAS  Google Scholar 

  8. Crick, F. H. (1966) Codon – anticodon pairing: the wobble hypothesis. J Mol Biol 19, 548–55.

    Article  PubMed  CAS  Google Scholar 

  9. Agris, P. F., Vendeix, F. A., and Graham, W. D. (2007) tRNA’s wobble decoding of the genome: 40 years of modification. J Mol Biol 366, 1–13.

    Article  PubMed  CAS  Google Scholar 

  10. Ikemura, T. (1981) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. J Mol Biol 151, 389–409.

    Article  PubMed  CAS  Google Scholar 

  11. Ikemura, T. (1981) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol 146, 1–21.

    Article  PubMed  CAS  Google Scholar 

  12. Ikemura, T. (1982) Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. Differences in synonymous codon choice patterns of yeast and Escherichia coli with reference to the abundance of isoaccepting transfer RNAs. J Mol Biol 158, 573–97.

    Article  PubMed  CAS  Google Scholar 

  13. Moriyama, E. N., and Powell, J. R. (1997) Codon usage bias and tRNA abundance in Drosophila. J Mol Evol 45, 514–23.

    Article  PubMed  CAS  Google Scholar 

  14. Sharp, P. M., and Li, W. H. (1987) The codon Adaptation Index – a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15, 1281–95.

    Article  PubMed  CAS  Google Scholar 

  15. Kane, J. F. (1995) Effects of rare codon clusters on high-level expression of heterologous proteins in Escherichia coli. Curr Opin Biotechnol 6, 494–500.

    Article  PubMed  CAS  Google Scholar 

  16. Muto, A., and Osawa, S. (1987) The guanine and cytosine content of genomic DNA and bacterial evolution. Proc Natl Acad Sci USA 84, 166–9.

    Article  PubMed  CAS  Google Scholar 

  17. Knight, R. D., Freeland, S. J., and Landweber, L. F. (2001) A simple model based on mutation and selection explains trends in codon and amino-acid usage and GC composition within and across genomes. Genome Biol 2, RESEARCH0010.

    Google Scholar 

  18. Gupta, S. K., and Ghosh, T. C. (2001) Gene expressivity is the main factor in dictating the codon usage variation among the genes in Pseudomonas aeruginosa. Gene 273, 63–70.

    Article  PubMed  CAS  Google Scholar 

  19. Sueoka, N. (1999) Translation-coupled violation of Parity Rule 2 in human genes is not the cause of heterogeneity of the DNA G+C content of third codon position. Gene 238, 53–8.

    Article  PubMed  CAS  Google Scholar 

  20. Sueoka, N. (2002) Wide intra-genomic G+C heterogeneity in human and chicken is mainly due to strand-symmetric directional mutation pressures: dGTP-oxidation and symmetric cytosine-deamination hypotheses. Gene 300, 141–54.

    Article  PubMed  CAS  Google Scholar 

  21. Sueoka, N. (1988) Directional mutation pressure and neutral molecular evolution. Proc Natl Acad Sci USA 85, 2653–7.

    Article  PubMed  CAS  Google Scholar 

  22. Bernardi, G. (1993) The vertebrate genome: isochores and evolution. Mol Biol Evol 10, 186–204.

    PubMed  CAS  Google Scholar 

  23. Costantini, M., Clay, O., Auletta, F., and Bernardi, G. (2006) An isochore map of human chromosomes. Genome Res 16, 536–41.

    Article  PubMed  CAS  Google Scholar 

  24. Sueoka, N. (1999) Two aspects of DNA base composition: G+C content and translation-coupled deviation from intra-strand rule of A = T and G = C. J Mol Evol 49, 49–62.

    Article  PubMed  CAS  Google Scholar 

  25. Lobry, J. R., and Sueoka, N. (2002) Asymmetric directional mutation pressures in bacteria. Genome Biol 3, RESEARCH0058.

    Article  Google Scholar 

  26. Sueoka, N. (1995) Intrastrand parity rules of DNA base composition and usage biases of synonymous codons. J Mol Evol 40, 318–25.

    Article  PubMed  CAS  Google Scholar 

  27. Karlin, S., Mrazek, J., and Campbell, A. M. (1998) Codon usages in different gene classes of the Escherichia coli genome. Mol Microbiol 29, 1341–55.

    Article  PubMed  CAS  Google Scholar 

  28. Lawrence, J. G., and Ochman, H. (1997) Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol 44, 383–97.

    Article  PubMed  CAS  Google Scholar 

  29. Groisman, E. A., Sturmoski, M. A., Solomon, F. R., Lin, R., and Ochman, H. (1993) Molecular, functional, and evolutionary analysis of sequences specific to Salmonella. Proc Natl Acad Sci USA 90, 1033–7.

    Article  PubMed  CAS  Google Scholar 

  30. Nakamura, Y., Itoh, T., Matsuda, H., and Gojobori, T. (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 36, 760–6.

    Article  PubMed  CAS  Google Scholar 

  31. Lobry, J. R. (1997) Influence of genomic G+C content on average amino-acid composition of proteins from 59 bacterial species. Gene 205, 309–16.

    Article  PubMed  CAS  Google Scholar 

  32. Faith, J. J., and Pollock, D. D. (2003) Likelihood analysis of asymmetrical mutation bias gradients in vertebrate mitochondrial genomes. Genetics 165, 735–45.

    PubMed  CAS  Google Scholar 

  33. Hacker, J., and Kaper, J. B. (2000) Pathogenicity islands and the evolution of microbes. Annu Rev Microbiol 54, 641–79.

    Article  PubMed  CAS  Google Scholar 

  34. Hsiao, W. W., Ung, K., Aeschliman, D., Bryan, J., Finlay, B. B., and Brinkman, F. S. (2005) Evidence of a large novel gene pool associated with prokaryotic genomic islands. PLoS Genet 1, e62.

    Article  PubMed  Google Scholar 

  35. Rudner, R., Karkas, J. D., and Chargaff, E. (1969) Separation of microbial deoxyribonucleic acids into complementary strands. Proc Natl Acad Sci USA 63, 152–9.

    Article  PubMed  CAS  Google Scholar 

  36. Sueoka, N. (1962) On the genetic basis of variation and heterogeneity of DNA base composition. Proc Natl Acad Sci USA 48, 582–92.

    Article  PubMed  CAS  Google Scholar 

  37. Sharp, P. M., and Devine, K. M. (1989) Codon usage and gene expression level in Dictyostelium discoideum: highly expressed genes do ‘prefer’ optimal codons. Nucleic Acids Res 17, 5029–39.

    Article  PubMed  CAS  Google Scholar 

  38. Peden, J. F. (1999) Analysis of codon usage. (Ph.D. Thesis), Department of Genetics, University of Nottingham, Nottingham, UK.

    Google Scholar 

  39. Thioulouse, J., Chessel, D., Dolédec, S., and Olivier, J. M. (1996) ADE-4: a multivariate analysis and graphical display software. . Stat Comput 7, 75–83.

    Article  Google Scholar 

  40. Roten, C. A., Gamba, P., Barblan, J. L., and Karamata, D. (2002) Comparative Genometrics (CG): a database dedicated to biometric comparisons of whole genomes. Nucleic Acids Res 30, 142–4.

    Article  PubMed  CAS  Google Scholar 

  41. Wu, G., Bashir-Bello, N., and Freeland, S. J. (2006) The synthetic gene designer: a flexible web platform to explore sequence manipulation for heterologous expression. Protein Expr Purif 47, 441–5.

    Article  PubMed  CAS  Google Scholar 

  42. Nakamura, Y., Gojobori, T., and Ikemura, T. (1997) Codon usage tabulated from the international DNA sequence databases. Nucleic Acids Res 25, 244–5.

    Article  PubMed  CAS  Google Scholar 

  43. Sharp, P. M., and Li, W. H. (1986) Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons. Nucleic Acids Res 14, 7737–49.

    Article  PubMed  CAS  Google Scholar 

  44. Kyte, J., and Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Biophysics and SCR training grants T32GM08759 and T32GM065103 from NIH. CodonExplorer is hosted on the W.M. Keck Foundation Bioinformatics Facility at the University of Colorado, Boulder.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zaneveld, J., Hamady, M., Sueoka, N., Knight, R. (2009). CodonExplorer: An Interactive Online Database for the Analysis of Codon Usage and Sequence Composition. In: Posada, D. (eds) Bioinformatics for DNA Sequence Analysis. Methods in Molecular Biology, vol 537. Humana Press. https://doi.org/10.1007/978-1-59745-251-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-251-9_10

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-910-9

  • Online ISBN: 978-1-59745-251-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics