Skip to main content
Log in

Ectomycorrhizas and water relations of trees: a review

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

There is plenty of evidence for improved nutrient acquisition by ectomycorrhizas in trees; however, their role in water uptake is much less clear. In addition to experiments showing improved performance during drought by mycorrhizal plants, there are several studies showing reduced root hydraulic conductivity and reduced water uptake in mycorrhizal roots. The clearest direct mechanism for increased water uptake is the increased extension growth and absorbing surface area, particularly in fungal species with external mycelium of the long-distance exploration type. Some studies have found increased aquaporin function and, consequently, increased root hydraulic conductivity in ectomycorrhizal plants while other studies showed no effect of ectomycorrhizal associations on root water flow properties. The aquaporin function of the fungal hyphae is also likely to be important for the uptake of water by the ectomycorrhizal plant, but more work needs to be done in this area. The best-known indirect mechanism for mycorrhizal effects on water relations is improved nutrient status of the host. Others include altered carbohydrate assimilation via stomatal function, possibly mediated by changes in growth regulator balance; increased sink strength in mycorrhizal roots; antioxidant metabolism; and changes in osmotic adjustment. None of these possibilities has been sufficiently explored. The mycorrhizal structure may also reduce water movement because of different fine root architecture (thickness), cell wall hydrophobicity or the larger number of membranes that water has to cross on the way from the soil to the xylem. In future studies, pot experiments comparing mycorrhizal and nonmycorrhizal plants will still be useful in studying well-defined physiological details. However, the quantitative importance of ectomycorrhizas for tree water uptake and water relations can only be assessed by field studies using innovative approaches. Hydraulic redistribution can support nutrient uptake during prolonged dry periods. In large trees with deep root systems, it may turn out that the most important function of mycorrhizas during drought is to facilitate nutrient acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler PR, Wilcox GE, Markhart AH III (1996) Ammonium decreases muskmelon root system hydraulic conductivity. J Plant Nutr 19:1395–1403

    CAS  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae—a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Google Scholar 

  • Allen MF (2007) Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone J 6:291–297

    Google Scholar 

  • Allen MF (2009) Bidirectional water flows through the soil–fungal–plant mycorrhizal continuum. Commentary. New Phytol 182:290–293

    PubMed  Google Scholar 

  • Allen EB, Allen MF, Helm FJ, Trappe JM, Molina R, Rincon E (1995) Patterns and regulation of mycorrhizal plant and fungal diversity. Plant Soil 170:47–62

    CAS  Google Scholar 

  • Alvarez M, Huygens D, Fernandez C, Gacitua Y, Olivares E, Saavedra I, Alberdi M, Valenzuela E (2009a) Effect of ectomycorrhizal colonization and drought on reactive oxygen species metabolism of Nothofagus dombeyi roots. Tree Physiol 29:1047–1057

    CAS  PubMed  Google Scholar 

  • Alvarez M, Huygens D, Olivares E, Saavedra I, Alberdi M, Valenzuela E (2009b) Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities. Physiol Plant 136:426–436

    CAS  PubMed  Google Scholar 

  • Amir R, Steudle E, Levanon D, Hadar Y, Chet I (1995) Turgor changes in Morchella esculenta during translocation and sclerotial formation. Exp Mycol 19:129–136

    Google Scholar 

  • Andersen CP, Sucoff EI, Dixon RK, Markhart AH III (1989) Effects of phosphorus deficiency on root hydraulic conductivity in Fraxinus pennsylvanica. Can J Bot 67:472–476

    Google Scholar 

  • Aphalo PJ, Lahti M, Lehto T, Repo T, Rummukainen A, Mannerkoski H, Finér L (2006) Responses of silver birch saplings to low soil temperature. Silva Fenn 40:429–442

    Google Scholar 

  • Aroca R, Bago A, Sutka M, Paz JA, Cano C, Amodeo G, Ruiz-Lozano JM (2009) Expression analysis of the first arbuscular mycorrhizal fungi expression between salt-stressed and nonstressed mycelium. MPMI 22:1169–1178

    CAS  PubMed  Google Scholar 

  • Augé R (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Google Scholar 

  • Augé R (2004) Arbuscular mycorrhizae and soil/plant water relations. Can J Soil Sci 84:373–381

    Google Scholar 

  • Bakker MR, Augusto L, Achat DL (2006) Fine root distribution of trees and understory in mature stands of maritime pine (Pinus pinaster) on dry and humid sites. Plant Soil 286:37–51

    CAS  Google Scholar 

  • Beniwal RS, Langenfeld-Heyser R, Polle A (2010) Ectomycorrhiza and hydrogel protect hybrid poplar from water deficit and unravel plastic responses of xylem anatomy. Environ Exp Bot 69:189–197

    Google Scholar 

  • Bergh J, Linder S, Lundmark T, Elfving B (1999) The effect of water and nutrient availability on the productivity of Norway spruce in northern and southern Sweden. Forest Ecol Manage 119:51–62

    Google Scholar 

  • Biela A, Grote K, Otto B, Hoth S, Hedrich R, Kaldenhoff R (1999) The Nicotiana tabacum plasma membrane aquaporin NtAQP1 is mercury-insensitive and permeable for glycerol. Plant J 18:565–570

    CAS  PubMed  Google Scholar 

  • Bogeat-Triboulot M-B, Bartoli F, Garbaye J, Marmeisse R, Tagu D (2004) Fungal ectomycorrhizal community affect root hydraulic properties and soil adherence to roots of Pinus pinaster seedlings. Plant Soil 267:213–223

    CAS  Google Scholar 

  • Boyd R (1987) The role of ectomycorrhiza in the water relations of plants. Ph.D. thesis, University of Sheffield, UK, p 136

  • Boyd R, Furbank RT, Read DJ (1986) Ectomycorrhiza and the water relations of trees. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetic aspects of mycorrhizae. INRA, Paris, pp 689–694

    Google Scholar 

  • Boyle CD, Hellenbrand KE (1991) Assessment of the effect of mycorrhizal fungi on drought tolerance of conifer seedlings. Can J Bot 69:1764–1771

    Google Scholar 

  • Brownlee C, Duddridge JA, Malibari A, Read DJ (1983) The structure and function of mycelia systems of ectomycorrhizal roots with special reference to their role in forming inter-plant connections and providing pathways for assimilate and water transport. Plant Soil 71:433–443

    Google Scholar 

  • Cairney JWG (1992) Translocation of solutes in ectomycorrhizal and saprotrophic rhizomorphs. Mycol Res 96:135–141

    CAS  Google Scholar 

  • Cairney JWG (2005) Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycol Res 109:7–20

    PubMed  Google Scholar 

  • Cajander AK (1949) Forest site types and their significance. Acta For Fenn 56:1–71

    Google Scholar 

  • Calvo-Polanco M, Zwiazek JJ, Voicu MC (2008) Responses of ectomycorrhizal American elm (Ulmus americana) seedlings to salinity and soil compaction. Plant Soil 308:189–200

    CAS  Google Scholar 

  • Calvo-Polanco M, Jones MD, Zwiazek JJ (2009) Effects of pH on NaCl resistance of American elm (Ulmus americana) seedlings inoculated with Hebeloma crustuliniforme and Laccaria bicolor. Acta Physiol Plant 31:515–522

    CAS  Google Scholar 

  • Carvajal M, Cooke DT, Clarkson DT (1996) Responses of wheat plants to nutrient deprivation may involve regulation of water-channel function. Planta 199:372–381

    CAS  Google Scholar 

  • Coleman MD, Bledsoe CS, Smit-Spinks B (1987) Ectomycorrhizae decrease Douglas-fir root hydraulic conductivity. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. Practical applications and research priorities. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, p 243

    Google Scholar 

  • Coleman MD, Bledsoe CS, Lopushinsky W (1989) Pure culture response of ectomycorrhizal fungi to imposed water stress. Can J Bot 67:29–39

    Google Scholar 

  • Coleman MD, Bledsoe CS, Smit B (1990) Root hydraulic conductivity and xylem sap levels of zeatin riboside and abscisic acid in ectomycorrhizal Douglas fir seedlings. New Phytol 115:275–284

    CAS  Google Scholar 

  • Crowe JH (2007) Trehalose as a “chemical chaperone”: facts and fantasy. Adv Exp Med Biol 594:143–158

    PubMed  Google Scholar 

  • Cudlín P, Kieliszewska-Rokicka B, Rudawska M, Grebenc T, Alberton O, Lehto T, Bakker M, Børja I, Konopka B, Leski T, Kraigher H, Kuyper T (2007) Fine roots and ectomycorrhizas as indicators of environmental change. Plant Biosystems 141:406–425

    Google Scholar 

  • Davies FT, Svenson SE, Cole JC, Phavaphutanon L, Duray SA, Olalde-Portugal V, Meier CE, Bo SH (1996) Non-nutritional stress acclimation of mycorrhizal woody plants exposed to drought. Tree Physiol 16:985–993

    Google Scholar 

  • Diebolt K, Mudge KW (1987) Do ectomycorrhizae influence host plant response to drought. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. Practical applications and research priorities. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, p 246

    Google Scholar 

  • di Pietro M, Churin J-L, Garbaye J (2007) Differential ability of ectomycorrhizas to survive drying. Mycorrhiza 17:547–550

    PubMed  Google Scholar 

  • Dixon RK, Wright GM, Behrns GT, Tesky RO, Hinckley TM (1980) Water deficits and root growth of ectomycorrhizal white oak seedlings. Can J For Res 10:545–548

    Google Scholar 

  • Dixon RK, Pallardy SK, Garrett HE, Cox GS, Sander IL (1983) Comparative water relations of container-grown and bare-root ectomycorrhizal and nonmyocorrhizal Quercus velutina seedlings. Can J Bot 61:1559–1565

    Google Scholar 

  • Dordas C, Brown PH (2001) Evidence of channel mediated transport of boric acid in squash (Cucurbita pepo). Plant Soil 235:95–103

    CAS  Google Scholar 

  • Dosskey MG, Ballard TM (1980) Resistance to water uptake by Douglas-fir seedlings in soils of different texture. Can J For Res 10:530–534

    Google Scholar 

  • Dosskey MG, Boersma L, Linderman RG (1991) Role for the photosynthate demand of ectomycorrhizas in the response of Douglas fir seedlings to drying soil. New Phytol 117:327–334

    Google Scholar 

  • Douhan GW, Rizzo DM (2005) Phylogenetic divergence in a local population of the ectomycorrhizal fungus Cenococcum geophilum. New Phytol 166:263–271

    CAS  PubMed  Google Scholar 

  • Dowd C, Wilson LW, McFadden H (2004) Gene expression profile changes in cotton root and hypocotyls tissues in response to infection with Fusarium oxysporum f. sp vasinfectum. Mol Plant-Microb Interact 17:654–667

    CAS  Google Scholar 

  • Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287:834–836

    Google Scholar 

  • Dunabeitia MK, Hormilla S, Garcia-Plazaola JI, Txarterina K, Arteche U, Becerril JM (2004) Differential response of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don Mycorrhiza 14:11–18

    Google Scholar 

  • Egerton-Warburton LM, Graham RC, Hubbert KR (2003) Spatial variability in mycorrhizal hypae and nutrient and water availability in a soil–weathered bedrock profile. Plant Soil 249:331–342

    CAS  Google Scholar 

  • Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot 58:1473–1483

    CAS  PubMed  Google Scholar 

  • Fitter AH, Heinemeyer A, Staddon PL (2000) The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol 147:179–187

    CAS  Google Scholar 

  • Fransson PMA, Taylor AFS, Finlay RD (2000) Effects of continuous optimal fertilization on belowground ectomycorrhizal community structure in a Norway spruce forest. Tree Physiol 20:599–606

    PubMed  Google Scholar 

  • Gao YX, Li Y, Yang XX, Li HL, Shen QR, Guo SW (2010) Ammonium nutrition increases water absorption in rice seedlings (Oryza sativa L.) under water stress. Plant Soil 331:183–201

    Google Scholar 

  • Gaul D, Hertel D, Borken W, Matzner E, Leuschner C (2008) Effects of experimental drought on the fine root system of mature Norway spruce. Forest Ecol Manage 256:1151–1159

    Google Scholar 

  • Garbaye J (2000) The role of ectomycorrhizal symbiosis in the resistance of forests to water stress. Outlook Agric 29:63–69

    Google Scholar 

  • Garbaye J, Churin JL (1997) Growth stimulation of young oak plantations inoculated with the ectomycorrhizal fungus Paxillus involutus with special reference to summer drought. Forest Ecol Manage 98:221–228

    Google Scholar 

  • Gehring CA, Mueller RC, Whitham TG (2006) Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods. Oecologia 149:158–164

    PubMed  Google Scholar 

  • Gerbeau P, Amodeo G, Henzler T, Santoni V, Ripoche P, Maurel C (2002) The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH. Plant J 30:71–81

    CAS  PubMed  Google Scholar 

  • Giesler R, Högberg M, Högberg P (1998) Soil chemistry and plants in Fennoscandian boreal forest as exemplified by a local gradient. Ecology 79:119–137

    Google Scholar 

  • Glosser V, Zwieniecki MA, Orians CM, Holbrook NM (2007) Dynamic changes in root hydraulic properties in response to nitrate availability. J Exp Bot 58:2409–2415

    Google Scholar 

  • Guehl JM, Garbaye J (1990) The effects of ectomycorrhizal status on carbon-dioxide assimilation capacity, water-use efficiency and response to transplanting in seedlings of Pseudotsuga menziesii (Mirb.) Franco. Ann Sci For 47:551–563

    Google Scholar 

  • Guehl JM, Mousain D, Falconnet G, Gruez J (1990) Growth, carbon dioxide assimilation capacity and water-use efficiency of Pinus pinea L. seedlings inoculated with different ectomycorrhizal fungi. Ann Sci For 47:91–100

    Google Scholar 

  • Haberer K, Herbinger K, Alexou M, Rennenberg H, Tausz M (2008) Effects of drought and canopy ozone exposure on antioxidants in fine roots of mature European beech (Fagus sylvatica). Tree Physiol 28:713–719

    CAS  PubMed  Google Scholar 

  • Helmisaari H-S, Ostonen I, Lõhmus K, Derome J, Lindroos A-J, Merilä P, Nöjd P (2009) Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests. Tree Physiol 29:445–456

    CAS  PubMed  Google Scholar 

  • Holm LM, Jahn TP, Moller AL, Schjoerring JK, Ferri D et al (2005) NH3 and NH +4 permeability in aquaporin-expressing Xenopus oocytes. Pflügers Arch 450:415–428

    CAS  PubMed  Google Scholar 

  • Huesken D, Steudle E, Zimmermann U (1978) Pressure probe technique for measuring water relations of cells in higher plants. Plant Physiol 61:158–163

    Google Scholar 

  • Hunt GA, Fogel R (1983) Fungal hyphal dynamics in a Western Oregon Douglas-fir stand. Soil Biol Biochem 15:641–649

    Google Scholar 

  • Jany JL, Martin F, Garbaye J (2003) Respiration activity of ectomycorrhizas from Cenococcum geophilum and Lactarius sp. in relation to soil water potential in five beech forests. Plant Soil 255:487–494

    CAS  Google Scholar 

  • Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    CAS  Google Scholar 

  • Johansson I, Karlsson M, Shukla VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell 10:451–460

    CAS  PubMed  Google Scholar 

  • Jones H (2004) What is water use efficiency? In: Bacon MA (ed) Water use efficiency in plant biology. Blackwell, Oxford, pp 27–41. ISBN 1-4051-1434-7

    Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1998) Comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytol 140:125–134

    Google Scholar 

  • Jonsson L, Dahlberg A, Brandrud T-E (2000) Spatiotemporal distribution of an ectomycorrhizal community in an oligotrophic Swedish Picea abies forest subjected to experimental nitrogen addition: above- and below-ground views. Forest Ecol Manage 132:143–156

    Google Scholar 

  • Karlsson M, Fotiadis D, Sjövall S, Johansson I, Hedfalk K, Engel E, Kjellbomm P (2003) Reconstitution of water channel function of an aquaporin overexpressed and purified from Pichia pastoris. FEBS Lett 537:69–72

    Google Scholar 

  • Kojima S, Bohner A, von Wirén N (2006) Molecular mechanisms of urea transport in plants. J Membr Biol 212:83–91

    CAS  PubMed  Google Scholar 

  • Kotze DJ, Johnson CA, O’Hara RB, Vepsäläinen K, Fowler MS (2004) Editorial. JNR 1:1–15

  • Kramer PJ (1988) Changing concepts regarding plant water relations. Plant, Cell Environ 11:565–568

    Google Scholar 

  • Kramer PJ, Bullock HC (1966) Seasonal variations in the proportions of suberized and unsuberized roots of trees in relation to the absorption of water. Amer J Bot 53:200–204

    Google Scholar 

  • Lahti M, Aphalo PJ, Finér L, Lehto T, Leinonen I, Mannerkoski H, Ryyppö A (2002) Soil temperature, gas exchange and nitrogen status of 5-year-old Norway spruce seedlings. Tree Physiol 22:1311–1316

    CAS  PubMed  Google Scholar 

  • Lambers H, Chapin FSIII, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York

  • Lamhamedi MS, Bernier PY, Fortin JA (1992a) Growth, nutrition and response to water stress of Pinus pinaster inoculated with ten dikaryotic strains of Pisolithus sp. Tree Physiol 10:153–167

    PubMed  Google Scholar 

  • Lamhamedi MS, Bernier PY, Fortin JA (1992b) Hydraulic conductance and soil water potential at the soil–root interface of Pinus pinaster seedlings inoculated with different dikaryons of Pisolithus sp. Tree Physiol 10:231–244

    PubMed  Google Scholar 

  • Landhäusser SM, Muhsin TM, Zwiazek JJ (2002) The effect of ectomycorrhizae on water relations in aspen (Populus tremuloides) and white spruce (Picea glauca) at low soil temperatures. Can J Bot 80:684–689

    Google Scholar 

  • Lee J-E, Oliveira RS, Dawson TE, Fung I (2005) Root functioning modifies seasonal climate. Proc Natl Acad Sci USA 102:17576–17581

    CAS  PubMed  Google Scholar 

  • Lee SH, Zwiazek JJ, Chung GC (2008) Light-induced transpiration alters cell water relations in figleaf gourd (Cucurbita ficifolia) seedlings exposed to low root temperatures. Physiol Plant 133:354–362

    CAS  PubMed  Google Scholar 

  • Lee SH, Calvo Polanco M, Chung GC, Zwiazek JJ (2010) Cell water flow properties in root cortex of ectomycorrhizal (Pinus banksiana) seedlings. Plant Cell Environ 33:769–780

    CAS  PubMed  Google Scholar 

  • Lehto J (1956) Studies on the natural reproduction of Scots pine on the upland soils of Southern Finland. Acta For Fenn 66:1–106

    Google Scholar 

  • Lehto T (1992a) Mycorrhizas and drought resistance of Picea sitchensis. I. In nutrient deficient conditions. New Phytol 122:661–668

    CAS  Google Scholar 

  • Lehto T (1992b) Mycorrhizas and drought resistance of Picea sitchensis. II. In conditions of adequate nutrition. New Phytol 122:669–673

    CAS  Google Scholar 

  • Lehto T (1992c) Effect of drought on Picea sitchensis seedlings inoculated with mycorrhizal fungi. Scand J For Res 7:177–182

    Google Scholar 

  • Lehto T, Brosinsky A, Heinonen-Tanski H, Repo T (2008) Freezing tolerance of ectomycorrhizal fungi in pure culture. Mycorrhiza 18:385–392

    PubMed  Google Scholar 

  • Lilleskov EA, Bruns TD, Dawson TE, Camacho FJ (2009) Water sources and controls of water-loss rates of epigeous ectomycorrhizal fungal sporocarps during summer drought. New Phytol 182:483–494

    PubMed  Google Scholar 

  • Linder MB, Szilvay GR, Nakari-Setälä T, Penttilä ME (2005) Hydrophobins: the protein-amphiphiles of filamentous fungi. FEMS Microbiol Rev 29:877–896

    CAS  PubMed  Google Scholar 

  • Loqué D, Ludewig U, Yuan L, vonWirén N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671–680

    PubMed  Google Scholar 

  • Lovisolo C, Secchi F, Nardini A, Salleo S, Buffa R, Schubert A (2007) Expression of PIP1 and PIP2 aquaporins is enhanced in olive dwarf genotypes and is related to root and leaf hydraulic conductance. Physiol Plant 130:543–552

    CAS  Google Scholar 

  • Lucash MS, Eissenstat DM, Joslin JD, McFarlane KJ, Yanai RD (2007) Estimating nutrient uptake by mature tree roots under field conditions: challenges and opportunities. Trees 21:593–603

    CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S et al (2006) A silicon transporter in rice. Nature 440:688–691

    CAS  PubMed  Google Scholar 

  • Majdi H (2001) Changes in fine root production and longevity in relation to water and nutrient availability in a Norway spruce stand in northern Sweden. Tree Physiol 21:1057–1061

    CAS  PubMed  Google Scholar 

  • Marjanović Ž (2004) Impact of mycorrhiza formation and drought stress on the expression and function of aquaporins in Norway spruce (Picea abies (L.) Karst.) and hybrid aspen (Populus tremula L. × Populus tremuloides Mich.) Ph.D. thesis, Karl-Eberhard Universität Tübingen, Germany

  • Marjanović Ž, Uehlein N, Kaldenhoff R, Zwiazek JJ, Weiß M, Hampp R, Nehls U (2005a) Aquaporins in poplar: what a difference a symbiont makes! Planta 222:258–268

    PubMed  Google Scholar 

  • Marjanović Z, Nehls U, Hampp R (2005b) Mycorrhiza formation enhances adaptive response of hybrid poplar to drought. Ann NY Acad Sci 1048:496–499

    PubMed  Google Scholar 

  • Martin F, Díez J, Dell B, Delaruelle C (2002) Phylogeography of the ectomycorrhizal Pisolithus species as inferred from nuclear ribosomal DNA ITS sequences. New Phytol 153:345–357

    CAS  Google Scholar 

  • Marulanda A, Azcon R, Chaumont F, Ruiz-Lozano JM, Aroca R (2010) Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta 232:533–543

    CAS  PubMed  Google Scholar 

  • Marx DH, Cordell CE, Kenney DS, Mexal JG, Artman JD, Riffle JW, Molina RJ (1984) Commercial vegetative inoculums of Pisolithus tinctorius and inoculation techniques for development of ectomycorrhizae on bare-root tree seedlings. Forest Sci Monograph 25 (Suppl to vol 30)

  • Maurel C, Verdoucq L, Luu D-T, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    CAS  PubMed  Google Scholar 

  • Maurel C, Santoni V, Luu D-T, Wudick MM, Verdoucq L (2009) The cellular dynamics of plant aquaporin expressions and functions. Curr Opin Plant Biol 12:690–698

    CAS  PubMed  Google Scholar 

  • Meyer FH (1974) Physiology of mycorrhiza. Ann Rev Plant Physiol 25:567–586

    CAS  Google Scholar 

  • McHugh TA, Gehring CA (2006) Below-ground interactions with arbvuscular mycorrhizal shrubs decrease the performance of pinyon pine and the abundance of its ectomycorrhizas. New Phytol 171:171–178

    PubMed  Google Scholar 

  • Mexal J, Reid CPP (1973) The growth of selected mycorrhizal fungi in response to induced water stress. Can J Bot 51:1579–1588

    Google Scholar 

  • Mikola P (1965) Studies on the ectendotrophic mycorrhiza on pine. Acta For Fenn 79(2):1–56

    Google Scholar 

  • Money NP (1990) Measurement of hyphal turgor. Exp Mycol 14:416–425

    Google Scholar 

  • Muhsin TM, Zwiazek JJ (2002a) Ectomycorrhizas increase apoplastic water transport and hydraulic conductivity in Ulmus americana seedlings. New Phytol 153:153–158

    Google Scholar 

  • Muhsin TM, Zwiazek JJ (2002b) Ectomycorrhizae increase water conductance and protect white spruce (Picea glauca) seedlings against salt stress. Plant Soil 238:217–225

    CAS  Google Scholar 

  • Nadezhdina N, Ferreira MI, Silva R, Pacheco CA (2008) Seasonal variation of water uptake of a Quercus suber tree in Central Portugal. Plant Soil 305:105–119

    CAS  Google Scholar 

  • Nardini A, Salleo S, Tyree MT, Vertovec M (2000) Influence of the ectomycorrhizas formed by Tuber melanosporum Vitt. on hydraulic conductance and water relations of Quercus ilex L. seedlings. Ann For Sci 57:305–312

    Google Scholar 

  • Nilsen P, Børja I, Knutsen H, Brean R (1998) Nitrogen and drought effects on ectomycorrhizae of Norway spruce [Picea abies L. (Karst.)]. Plant Soil 198:179–184

    CAS  Google Scholar 

  • Nylund J-E (1987) The ectomycorrhizal infection zone and its relation to acid polysaccharides of cortical cell walls. New Phytol 106:505–516

    Google Scholar 

  • Oertli JJ (1991) Transport of water in the rhizosphere and in roots. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York

  • Ortega U, Duñabeitia A, Menendez S, Gonzalez-Murua C, Majada J (2004) Effectiveness of mycorrhizal inoculation in the nursery on growth and water relations of Pinus radiata in different water regimes. Tree Physiol 24:65–73

    CAS  PubMed  Google Scholar 

  • Pallardy SG, Parker WC, Dixon RK, Garrett HE (1983) Tissue water relations of roots and shoots of droughted ectomycorrhizal shortleaf pine seedlings. In: Thielges BA (ed) Proceedings of the 7th North American Forest Biology Workshop “Physiology and Genetics of intensive culture”. University of Kentucky, Lexington, KY, pp 386–373

  • Parke JL, Linderman RG, Black CH (1983) The role of ectomycorrhizas in drought tolerance of Douglas-fir seedlings. New Phytol 95:83–95

    Google Scholar 

  • Pettersson N, Filipsson C, Becit E, Brive L, Hohmann S (2005) Aquaporins in yeasts and filamentous fungi. Biol Cell 97:487–500

    CAS  PubMed  Google Scholar 

  • Peuke AD, Rennenberg H (2004) Carbon, nitrogen, phosphorus, and sulphur concentration and partitioning in beech ecotypes (Fagus sylvatica L.): phosphorus most affected by drought. Trees 18:639–648

    CAS  Google Scholar 

  • Pigott CD (1982) Survival of mycorrhiza formed by Cenococcum geophilum Fr. in dry soils. New Phytol 92:513–517

    Google Scholar 

  • Plamboeck AH, Dawson TE, Egerton-Warburton LE, North M, Bruns TD, Querejeta JI (2007) Water transfer via ectomycorrhizal fungal hyphae to conifer seedlings. Mycorrhiza 17:439–447

    PubMed  Google Scholar 

  • Pratt RB, Jacobsen AL, North GB, Sack L, Schenk HJ (2008) Plant hydraulics: new discoveries in the pipeline. New Phytol 179:590–593

    PubMed  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2003) Direct nocturnal transfer from oaks to their mycorrhizal symbionts during severe soil drying. Oecologia 134:55–64

    PubMed  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2007) Hydraulic lift may buffer rhizosphere hyphae against the negative effects of severe soil drying in a California Oak savanna. Soil Biol Biochem 39:409–417

    CAS  Google Scholar 

  • Querejeta JI, Egerton-Warburton LM, Allen MF (2009) Topographic position modulates the mycorrhizal response of oak trees to interannual rainfall variability. Ecology 90:649–662

    PubMed  Google Scholar 

  • Radin JW, Boyer JS (1982) Control of leaf expansion by nitrogen nutrition in sunflower plants. Role of hydraulic conductivity and turgor. Plant Physiol 69:771–775

    CAS  PubMed  Google Scholar 

  • Radin JW, Eidenbock MP (1984) Hydraulic conductance as a factor limiting leaf expansion of phosphorus-deficient cotton plants. Plant Physiol 75:372–377

    CAS  PubMed  Google Scholar 

  • Read DJ (1984) The structure and function of the vegetative mycelium of mycorrhizal roots. In: Jennings DH, Rayner ADM (eds) The ecology and physiology of the fungal mycelium. Cambridge University Press, Cambridge, pp 215–240

    Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47:376–391

    Google Scholar 

  • Read DJ, Malibari A (1979) Water transport through mycelial strands to ectomycorrhizal roots of pine. In: Riedacker A, Cagnair-Michard J (eds) Root physiology and symbiosis. CNFR, Nancy, France, pp 410–423

  • Read DJ, Boyd R (1986) Water relations of mycorrhizal fungi and their host plants. In: Ayres PG, Boddy L (eds) Water, fungi and plants. Cambridge University Press, Cambridge, pp 215–240

    Google Scholar 

  • Reid CPP (1979) Mycorrhizae and water stress. In: Riedacker A, Gagnaire-Michard J (eds) Root physiology and symbiosis. Proceedings of the IUFRO symposium. Nancy, France, pp 392–409

  • Reid CPP, Bowen GD (1979) Effect of water stress on phosphorus uptake by mycorrhizas of Pinus radiata. New Phytol 83:103–107

    CAS  Google Scholar 

  • Richards JH, Caldwell MM (1987) Hydraulic lift: substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73:486–489

    Google Scholar 

  • Rosling A, Landeweert R, Lindahl BD (2003) Vertical distribution of ectomycorrhizal fungal taxa in a podzol soil profile. New Phytol 159:775–783

    CAS  Google Scholar 

  • Sade N, Vincour BJ, Diber A, Shatil A, Ronen G, Nissan H, Wallach R, Karchi H, Moshelion M (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SITIP2;2 a key to isohydric to anisohydric conversion? New Phytol 181:651–661

    CAS  PubMed  Google Scholar 

  • Sade N, Gebretsadik K, Seligmann R, Scwartz A, Wallach R, Moshelion M (2010) The role of tobacco aquaporin 1 in improving water use efficiency, hydraulic conductivity and yield production under salt stress. Plant Physiol 152:245–254

    CAS  PubMed  Google Scholar 

  • Sands R, Theodorou C (1978) Water uptake by mycorrhizal roots of radiata pine seedlings. Aust J Plant Physiol 5:301–309

    Google Scholar 

  • Sands R, Fiscus EL, Reid CPP (1982) Hydraulic properties of pine and bean roots with varying degrees of suberization, vascular differentiation and mycorrhizal infection. Aust J Plant Physiol 9:559–569

    Google Scholar 

  • Schier GA, McQuattle CJ (2000) Effect of water stress on aluminium toxicity in pitch pine seedlings. J Plant Nutr 23:637–647

    CAS  Google Scholar 

  • Schoonmaker AL, Teste FP, Simard SW, Guy RD (2007) Tree proximity, soil pathways and common mycorrhizal networks: their influence on the utilization of redistributed water by understory seedlings. Oecologia 154:455–466

    PubMed  Google Scholar 

  • Schwinning S (2010) The ecohydrology of roots in rocks. Ecohydrol 3:238–245

    Google Scholar 

  • Shi L, Guttenberger M, Kottke I, Hampp R (2002) The effect of drought on mycorrhizas of beech (Fagus sylvatica L): changes in community structure, and the content of carbohydrates and nitrogen storage bodies of the fungi. Mycorrhiza 12:303–311

    CAS  PubMed  Google Scholar 

  • Siemens AJ, Zwiazek JJ (2008) Root hydraulic properties and growth of balsam poplar (Populus balsamifera) mycorrhizal with Hebeloma crustuliniforme and Wilcoxina mikolae var. mikolae. Mycorrhiza 18:393–401

    PubMed  Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrolds DD, Durall DM, Molina R (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582

    CAS  Google Scholar 

  • Shvaleva AL, Silva FCE, Breia E, Jouve L, Hausman JF, Almeidea MH, Maroco JP, Rodrigues ML, Pereira JS, Chaves MM (2006) Metabolic responses to water deficits in two Eucalyptus globulus clones with contrasting drought sensitivity. Tree Physiol 26:239–248

    CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd ed. Academic Press, p 603

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3 rd ed. Academic Press, p 787

  • Steudle E (1993) Pressure probe techniques: basic principles and application to studies of water and to studies of water and solute relations at cell, tissue and organ. In: Smith JAC, Griffiths H (eds) Water deficits: plant responses from cell to community. Bios Scientific Publishers Ltd., Oxford, pp 5–36

    Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    CAS  Google Scholar 

  • Sun Y-P, Unestam T, Lucas SD, Johanson KJ, Kenne L, Finlay RD (1999) Exudation-reabsorption in a mycorrhizal fungus, the dynamic interface for interaction with soil and soil microorganisms. Mycorrhiza 9:137–144

    CAS  Google Scholar 

  • Syvertsen JP, Graham JH (1985) Hydraulic conductivity of roots, mineral nutrition, and leaf gas exchange of Citrus rootstocks. J Amer Soc Hort Sci 110:865–869

    Google Scholar 

  • Swaty RL, Gehring CA, van Ert M, Theimer TC, Keim P, Whitham TG (1998) Temporal variation in temperature and rainfall differentially affects ectomycorrhizal colonization at two contrasting sites. New Phytol 139:733–739

    Google Scholar 

  • Teste FP, Simard SW, Durall DM, Guy RD, Jones MD, Schoonmaker AL (2009) Access to mycorrhizal networks and roots of trees: importance for seedling survival and resource transfer. Ecology 90:2808–2822

    PubMed  Google Scholar 

  • Theodorou C (1978) Soil moisture and the mycorrhizal association of Pinus radiata D.Don. Soil Biol Biochem 10:33–37

    CAS  Google Scholar 

  • Tyree MT, Jarvis PG (1982) Tissue water relations. In: Lange O, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Encyclopedia of plant physiology, new ser vol 12B. Springer, pp 34–78

  • Tyree MT, Patino S, Bennink J, Alexander J (1995) Dynamic measurements of root hydraulic conductance using a high-pressure flowmeter in the laboratory and field. J Exp Bot 46:83–94

    CAS  Google Scholar 

  • Uehlein N, Fileschi K, Eckert M, Bienert GP, Bertl A, Kaldenhoff R (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68:122–129

    CAS  PubMed  Google Scholar 

  • Unestam T (1991) Water repellency, mat formation and leaf-stimulated growth of some ectomycorrhizal fungi. Mycorrhiza 1:13–20

    Google Scholar 

  • Unestam T, Sun YP (1995) Extramatrical structures of hydrophobic and hydrophilic ectomycorrhizal fungi. Mycorrhiza 5:301–311

    Google Scholar 

  • Van Scholl L, Kuyper TW, Smits MM, Landeweert R, Hoffland E, van Breemen N (2008) Rock-eating mycorrhizas: their role in plant nutrition and biogeochemical cycles. Plant Soil 303:35–47

    Google Scholar 

  • Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (2004) Novel regulation of aquaporins during osmotic stress. Plant Physiol 135:2318–2329

    CAS  PubMed  Google Scholar 

  • Voicu MC, Zwiazek JJ (2004) Cycloxeximide inhibits root water flow and stomatal conductance in aspen (Populus tremuloides) seedlings. Plant Cell Environ 27:199–208

    CAS  Google Scholar 

  • Walker RF, West DC, McLaughlin SB, Amundsen CC (1989) Growth, xylem pressure potential and nutrient absorption of loblolly pine on a reclaimed surface mine as affected by an induced Pisolithus tinctorius infection. Forest Sci 35:569–581

    Google Scholar 

  • Wan X, Zwiazek JJ (1999) Mercuric chloride effects on root water transport in aspen (Populus tremuloides) seedlings. Plant Physiol 121:939–946

    CAS  PubMed  Google Scholar 

  • Wan X, Landhäusser SM, Zwiazek JJ, Lieffers VJ (1999) Root water flow and growth of aspen (Populus tremuloides) at low root temperatures. Tree Physiol 19:879–884

    PubMed  Google Scholar 

  • Warren JM, Meinzer FC, Brooks JR, Domec J-C, Coulombe R (2007) Hydraulic redistribution of soil water in two old-growth coniferous forests: quantifying patterns and controls. New Phytol 173:753–765

    PubMed  Google Scholar 

  • Warren JM, Brooks JR, Meinzer FC, Eberhart JL (2008) Hydraulic redistribution of water from Pinus ponderosa trees to seedlings: evidence for an ectomycorrhizal pathway. New Phytol 178:382–394

    CAS  PubMed  Google Scholar 

  • Weatherley PE (1982) Water uptake and flow in roots. In: Lange O, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology II. Encyclopedia of plant physiology, new ser vol 12B. Springer, New York, pp 79–108

  • Worley JF, Hacskaylo E (1959) The effect of available soil moisture on the mycorrhizal association of Virginia pine. Forest Sci 5:267–268

    Google Scholar 

  • Wu B, Watanabe I, Hayatsu M, Nioh I (1999) Effect of ectomycorrhizae on the growth and uptake and transport of N-15-labeled compounds by Pinus tabulaeformis seedlings under water-stressed conditions. Biol Fert Soils 28:136–138

    CAS  Google Scholar 

  • Wudick MM, Luu DT, Maurel C (2009) A look inside: localization patterns and functions of intracellular plant aquaporins. New Phytol 184:289–302

    CAS  PubMed  Google Scholar 

  • Yi H, Calvo-Polanco M, MacKinnon MD, Zwiazek JJ (2008) Responses of ectomycorrhizal Populus tremuloides and Betula papyrifera seedlings to salinity. Environ Exp Bot 62:357–363

    CAS  Google Scholar 

  • Zardoya R (2005) Phylogeny and evolution of the major intrinsic protein family. Biol Cell 97:397–414

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Pedro J. Aphalo for the constructive comments on the manuscript. The Academy of Finland (decision no.: 123637) provided funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarja Lehto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lehto, T., Zwiazek, J.J. Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21, 71–90 (2011). https://doi.org/10.1007/s00572-010-0348-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-010-0348-9

Keywords

Navigation