Skip to main content
Log in

Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae)

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

In this paper, we examine how the Spartina system has helped our understanding of the genomic aspects of allopolyploid speciation in the context of biological invasion. More specifically the respective roles of hybridization and genome duplication in the success of newly formed allopolyploid species are explored. Hybridization appears to have triggered genetic and epigenetic changes in the two recently formed European homoploid hybrids S. × towsendii and S. × neyrautii. Deviation from parental structural additivity is observed in both hybrids, with different patterns when considering transposable element insertions or AFLP and methylation alteration. No important changes are observed in the invasive allopolyploid Spartina anglica that inherited the identical genome to S. × townsendii. The repeated rRNA genes are not homogenized in the allopolyploid, and both parental repeats are expressed in the populations examined. Transcriptomic changes suggest possible gene silencing in both hybrids and allopolyploid. In the long-term of evolutionary time, older hexaploid Spartina species (Spartina alterniflora, Spartina maritima and Spartina foliosa) appear to have selectively retained differential homeologous copies of nuclear genes. Waxy gene genealogies suggest a hybrid (allopolyploid) origin of this hexaploid lineage of Spartina. Finally, nuclear and chloroplast DNA data indicate a reticulate origin (alloheptaploid) of the invasive Spartina densiflora. All together these studies stress hybridization as a primary stimulus in the invasive success of polyploid Spartina species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott RW, Lowe AJ (2004) Origins, establishment and evolution of new polyploid species: Senecio cambrensis and S. eboranensis in the British isles. Biol J Linn Soc 82:467–474

    Google Scholar 

  • Adams KL, Wendel JF (2004) Exploring the genomic mysteries of polyploidy in cotton. Biol J Linn Soc 82:573–581

    Google Scholar 

  • Adams KL, Wendel JF (2005) Allele-specific, bidirectional silencing of an alcohol dehydrogenase gene in different organs of interspecific diploid cotton hybrids. Genetics 171:2139–2142

    PubMed  CAS  Google Scholar 

  • Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100:4649–4654

    PubMed  CAS  Google Scholar 

  • Ainouche ML, Baumel A, Salmon A (2004a) Spartina anglica schreb. a natural model system for analysing early evolutionary changes that affect allopolyploid genomes. Biol J Linn Soc 82:475–484

    Google Scholar 

  • Ainouche ML, Baumel A, Salmon A, Yannic G (2004b) Hybridization, polyploidy and speciation in Spartina Schreb. (Poaceae). New Phytol 161:165–172

    CAS  Google Scholar 

  • Ainouche M, Baumel A, Bayer R, Fukunaga K, Cariou T (2004c) Speciation, genetic and genomic evolution in Spartina. In: Third international conference on invasive Spartina, San Francisco, CA, 8–10 Nov 2004

  • Albertin W, Balliau T, Brabant P, Chèvre A-M, Eber F, Malosse C, Thiellement H (2006) Numerous and rapid nonstochastic modifications of gene products in newly synthesized Brassica napus allotetraploids. Genetics 173:1101–1113

    PubMed  CAS  Google Scholar 

  • Alvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434

    PubMed  CAS  Google Scholar 

  • An S, Zhou S, Wang Z, Deng Z, Chen L (2004) Spartina in China: introduction, history, current status and recent research. In: Third international conference on invasive Spartina, San Francisco, CA, 8–10 Nov 2004

  • Antilla K, Daehler CC, Rank NE, Strong D (1998) Greater male fitness of a rare invader (Spartina alterniflora, Poaceae) threatens a common native (Spartina foliosa) with hybridization. Am J Bot 85(11):1597–1601

    Google Scholar 

  • Antilla CK, King RA, Ferris C, Ayres DR, Strong DR (2000) Reciprocal hybrid formation of Spartina in San Francisco Bay. Mol Ecol 9:765–770

    Google Scholar 

  • Ayres DR, Lee AKF (2004) Spartina densiflora × foliosa hybrids found in San Francisco Bay. In: Third international conference on invasive Spartina, San Francisco, CA, 8–10 Nov 2004

  • Ayres DR, Strong DR (2001) Origin and genetic diversity of Spartina anglica (Poaceae) using nuclear DNA markers. Am J Bot 88:1863–1867

    CAS  Google Scholar 

  • Ayres DR, Garcia-Rossi D, Davis HG, Strong DR (1999) Extent and degree of hybridization between exotic (Spartina alterniflora) and native (S. foliosa) cordgrass (Poaceae) in California, USA determined by randomly amplified polymorphic DNA (RAPDs). Mol Ecol 8:1179–1186

    Google Scholar 

  • Ayres DR, Strong DR, Baye P (2003) Spartina foliosa—a common species on the road to rarity? Madroño 50:209–213

    Google Scholar 

  • Ayres DR, Smith DL, Zaremba K, Klohr S, Strong DR (2004) Spread of exotic cordgrass and hybrids (Spartina sp.) in the tidal marshes of San-Francisco Bay, CA, USA. Biol Invasions 6:221–231

    Google Scholar 

  • Ayres DA, Zaremba K, Sloop CM, Strong DR (2007) Sexual reproduction of cordgrass hybrids (Spartina foliosa × alterniflora) invading tidal marshes in San Francisco Bay. Divers Distrib 14(2):187–195. doi:10.1111/j.1472-4642.2007.00414.x

    Article  Google Scholar 

  • Ayres DR, Grotkopp EK, Zaremba K et al (2008) Hybridization between invasive Spartina densiflora (poaceae) and native S. foliosa in San Francisco Bay, California, USA. Am J Bot 95:713–719

    Google Scholar 

  • Barrett SCH, Richardson BJ (1986) Genetic attributes of invading species. In: Groves RH, Burdon JJ (eds) Ecology of biological invasions. Cambridge University Press, Melbourne, pp 21–33

    Google Scholar 

  • Baumel A (2001) Contexte phylogénétique et conséquences génomiques de l’hybridation et de la polyploïdie: Les enseignements de la jeune espèce Spartina anglica C.E. Hubbard (Poacées). Thèse de Doctorat de l’Université de Rennes 1, France, 166 pp

  • Baumel A, Ainouche ML, Levasseur JE (2001) Molecular investigations in populations of Spartina anglica C.E. Hubbard (Poaceae) invading coastal Brittany (France). Mol Ecol 10:1689–1701

    PubMed  CAS  Google Scholar 

  • Baumel A, Ainouche ML, Kalendar R, Schulman AH (2002a) Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica C.E. Hubbard (Poaceae). Mol Biol Evol 19:1218–1227

    PubMed  CAS  Google Scholar 

  • Baumel A, Ainouche ML, Bayer RJ, Ainouche AK, Misset MT (2002b) Molecular phylogeny of hybridizing species from the genus Spartina Schreb. (Poaceae). Mol Phylogenet Evol 22:303–314

    PubMed  CAS  Google Scholar 

  • Baumel A, Ainouche ML, Misset MT, Gourret JP, Bayer RJ (2003) Genetic evidence for hybridization between the native Spartina maritima and the introduced Spartina alterniflora (Poaceae) in south-west France: Spartina neyrautii re-examined. Plant Syst Evol 237:87–97

    CAS  Google Scholar 

  • Bortolus A (2006) The austral cordgrass Spartina densiflora Brong.: its taxonomy, biogeography and natural history. J Biogeogr 33:158–168

    Google Scholar 

  • Boumat T, De Vries MB, Low E, Peralta G, Tanczos C, Van de Koppel J, Herman PMJ (2005) Trade-offs related to ecosystem engineering: a case study on stiffness from emerging macrophytes. Ecology 86(8):2187–2199

    Google Scholar 

  • Brown AHD, Marshall DR (1981) Evolutionary changes accompanying colonization in plant. In: Scudder GCE, Reveal JL (eds) Colonization, succession and stability. Blackwell Scientific Publications, Oxford, pp 351–363

    Google Scholar 

  • Chantret N, Salse J, Sabot F, Rahman S, Bellec A, Laubin B, Dubois I, Dossat C, Sourdille P, Joudrier P, Gautier M-F, Cattolico F, Beckert M, Aubourg S, Weissenbach J, Caboche M, Bernard M, Leroy P, Chalhoub B (2005) Molecular basis of evolutionary events that shaped the Hardness locus in diploid and polyploid wheat species (Triticum and Aegilops). Plant Cell 17:1033–1045

    PubMed  CAS  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    PubMed  CAS  Google Scholar 

  • Chen ZJ, Ni Z (2006) Mechanisms of gene rearrangements and gene expression changes in plant polyploids. Bioessays 28:240–252

    PubMed  Google Scholar 

  • Clifford M (2002) Dense-flowered cordgrass (Spartina densiflora) in Humboldt Bay. Summary and literature review. A report for the California State Coastal Conservancy, Oakland. California State Coastal Conservancy, Oakland

    Google Scholar 

  • Comai L (2000) Genetic and epigenetic interactions in allopolyploid plants. Plant Mol Biol 43:387–399

    PubMed  CAS  Google Scholar 

  • Comai L, Madlung L, Josefsson C, Tyagi A (2003) Do the different parental ‘heteromes’ cause genomic shock in newly formed allopolyploids? Philos Trans R Soc B Biol Sci 358:1149–1155

    CAS  Google Scholar 

  • Cornette JC, Triplet P, Sournia A, Fagit C (2001) Le contrôle de la spartine en Baie de Somme: contribution à la réflexion. In: Drévès L, Chaussepied M (eds) Restauration des écosystèmes côtiers. IFREMER, Brest, France, pp 212–229

    Google Scholar 

  • Cottet M, De Montaudouin X, Blanchet H, Lebleu P (2007) Spartina anglica eradication experiment and in situ monitoring assess structuring strength of habitat complexity on marine macrofauna at high tidal level. Estuar Coast Shelf Sci 71:629–640

    Google Scholar 

  • Cui L, Wall PK, Leebens-Mack JH, Lindsay BG, Soltis DE, Doyle JJ, Soltis PS, Carlson JE, Arumuganathan K, Barakat A, Albert VA, Ma H, de Pamphilis CW (2006) Widespread genome duplications throughout the history of flowering plants. Genome Res 16:738–749

    PubMed  CAS  Google Scholar 

  • Dadejová M, Lim YK, Soucková-Skalická K, Matyásek R, Grandbastien M-A, Leitch AR, Kovarík A (2007) Transcription activity of rRNA genes correlates with their tendency towards intergenomic homogenisation in Nicotiana allotetraploids. New Phytol 174:658–668

    PubMed  Google Scholar 

  • Daehler CC, Strong DR (1997) Hybridization between introduced smooth cordgrass (Spartina alterniflora; Poaceae) and native California cordgrass (S. foliosa) in San Francisco Bay, California, USA. Am J Bot 81:307–313

    Google Scholar 

  • Dilkes BP, Comai L (2004) A differential dosage hypothesis for parental effects in seed development. Plant Cell 16:3174–3180

    PubMed  Google Scholar 

  • Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species–environment relationships. Freshw Biol 31:277–294

    Google Scholar 

  • Doody JP (1990) Spartina—friend or foe? a conservation viewpoint. In: Gray A, Benham P (eds) Spartina anglica—a research review. Institut of Terrestrial Ecology, Natural Environment Research Council, pp 77–79

  • Faber PM (2000) Good intentions gone awry. Calif Coast Ocean 16:14–17

    Google Scholar 

  • Ferris C, King RA, Gray AJ (1997) Molecular evidence for the maternal parentage in the hybrid origin of Spartina anglica C.E. Hubbard. Mol Ecol 6:185–187

    CAS  Google Scholar 

  • Fortuné PM, Schierenbeck K, Ainouche A, Jacquemin J, Wendel JF, Ainouche ML (2007) Evolutionary dynamics of Waxy and the origin of hexaploid Spartina species. Mol Phylogenet Evol 43:1040–1055

    PubMed  Google Scholar 

  • Fortuné PM, Schierenbeck K, Ayres D, Bortolus A, Clatrice O, Ainouche ML (2008) The enigmatic invasive Spartina densiflora: a history of hybridizations in a polyploidy context. Mol Ecol 17:4304–4316

    PubMed  Google Scholar 

  • Foucaud (1897) Un Spartina inédit. Ann Soc Sci Nat Char Inf 32:220–222

    Google Scholar 

  • Gray A (2004) Will Spartina anglica invade northwards with changing climate? In: Third international conference on invasive Spartina, San Francisco, CA, 8–10 Nov 2004

  • Gray AJ, Benham PEM, Raybould AF (1990) Spartina anglica—the evolutionary and ecological background. In: Gray AJ, Benham PEM (eds) Spartina anglica—a research review. Institut of Terrestrial Ecology, Natural Environment Research Council, pp 5–10

  • Gray AJ, Raybould AF, Brown SL (1997) The environmental impact of Spartina anglica: past, present and predicted. In Proceedings of the second international Spartina conference, Washington State University, pp 39–45

  • Groves H, Groves J (1880) Spartina townsendii nobis. Rep Bot Soc Exch Club Br Id 1:37

    Google Scholar 

  • Guénégou MC, Levasseur JE (1993) La nouvelle espèce amphidiploïde Spartina anglica C.E. Hubbard: son origine, argumentation et implications. Biogeographica 69:125–133

    Google Scholar 

  • Guénégou MC, Citharel J, Levasseur JE (1988) The hybrid status of Spartina anglica (Poaceae). Enzymatic analysis of the species and the presumed parents. Can J Bot 66:1830–1833

    Google Scholar 

  • Hacker SD, Heimer D, Hellquist CE, Reeder TG, Reeves B, Riordan TJ Jr, Dethier MN (2001) A marine plant (Spartina anglica) invades widely varying habitats: potential mechanisms of invasion and control. Biol Invasions 3:211–217

    Google Scholar 

  • Hammond MER, Cooper A (2002) Spartina anglica eradication and intertidal recovery in Northern Ireland estuaries. In: Veitch CR, Clout MN (eds) Turning the tide: the eradication of invasive species. IUCN, Gland, pp 124–131

    Google Scholar 

  • Hedge P, Shepherd C, Dyke K (2004) Implementing the strategy for the management of rice grass, Spartina anglica in Tasmania, Australia. In: Third international conference on invasive Spartina, San Francisco, CA, 8–10 Nov 2004

  • Hubbard JCE (1965) Spartina marshes in southern England: VI. Pattern of invasion in Poole harbour. J Ecol 53:799–813

    Google Scholar 

  • Hubbard JCE (1968) Grasses, 2nd edn. Penguin Books, London

    Google Scholar 

  • Hubbard JCE, Grimes BH, Marchant CJ (1978) Some observations on the ecology and taxonomy of Spartina × neyrautii and Spartina alterniflora growing in France and Spain and comparison with Spartina × townsendii and Spartina anglica. Doc Phyto 2:273–282

    Google Scholar 

  • Huskins CL (1930) The origin of Spartina × townsendii. Genetica 12:531–538

    Google Scholar 

  • IUCN (2000) World’s worst invasive alien species. In: IUCN The World Conservation Union. http://iucn.org

  • Joly R, Rauscher JT, Sherman-Broyles SL, Brown AHD, Doyle JJ (2004) Evolutionary dynamics and preferential expression of homeologous 18S–5.8S–26S nuclear ribosomal genes in natural and artificial glycine allopolyploids. Mol Biol Evol 21(7):1409–1421

    PubMed  CAS  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Google Scholar 

  • Josefsson C, Dilkes B, Comai L (2006) Parent-dependent loss of gene silencing during interspecies hybridization. Curr Biol 16:1322–1328

    PubMed  CAS  Google Scholar 

  • Jovet P (1941) Notes systématiques et écologiques sur les Spartines du Sud-Ouest. Bull Soc Bot Fr 88:115–123

    Google Scholar 

  • Kalendar R, Grob RMT, Suoniemi A, Schulman AH (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor App Genet 98:704–711

    CAS  Google Scholar 

  • Kittelson PM, Boyd MJ (1997) Mechanisms of expansion for an introduced species of cordgrass, Spartina densiflora, in Humboldt Bay, California. Estuaries 20:770–778

    Google Scholar 

  • Kovarik A, Matyasek R, Lim KY, Skalicka K, Koukalova B, Knapp S, Chase M, Leitch AR (2004) Concerted evolution of 18–5.8–26S rDNA repeats in Nicotiana allotetraploids. Biol J Linn Soc 82:615–663

    Google Scholar 

  • Kovarik A, Pires JC, Leitch AR, Lim KY, Sherwood AM, Matyasek R, Rocca J, Soltis DE, Soltis PS (2005) Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics 169:931–944

    PubMed  CAS  Google Scholar 

  • Lee RW (2003) Physiological adaptations of the invasive cordgrass Spartina anglica to reducing sediments: rhizome metabolic gas fluxes and enhanced O2 and H2S transport. Mar Biol 143:9–15

    CAS  Google Scholar 

  • Levine DA (2003) Ecological speciation: lessons from invasive species. Syst Bot 28:643–650

    Google Scholar 

  • Levy AA, Feldman M (2004) Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidisation. Biol J Linn Soc 82(4):607–613

    Google Scholar 

  • Lim KY, Matyasek M, Kovarik A, Leitch AR (2004) Genome evolution in allotetraploid Nicotiana. Biol J Linn Soc 82:599–606

    Google Scholar 

  • Lim KY, Kovarik A, Matyasek R, Chase MW, Clarkson JJ, Grandbastien M-A, Leitch AR (2007) Near complete genome turnover in five million years of plant evolution. New Phytol 175:756–763

    PubMed  CAS  Google Scholar 

  • Liu B, Wendel JF (2003) Epignetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol 29:365–379

    PubMed  CAS  Google Scholar 

  • Liu B, Vega JM, Segal G, Abbo S, Rodova M, Feldman M (1998) Rapid genomic changes in newly synthetized amphiploids of Triticum and Aegilops. I. Changes in low-copy noncoding DNA sequences. Genome 41:272–277

    CAS  Google Scholar 

  • Liu B, Brubaker CL, Mergeai G, Cronn RC, Wendel JF (2001) Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome 44:321–330

    PubMed  CAS  Google Scholar 

  • Loebl M, Van Beusekom JEE, Reise K (2006) Is spread of the neophyte Spartina anglica recently enhanced by increased temperatures? Aquat Ecol 40:315–324

    Google Scholar 

  • Long SP, Incoll LD, Woolhouse HW (1975) C4 photosynthesis in plants from cool temperate regions, with particular reference to Spartina townsendii. Nature 257:622–624

    CAS  Google Scholar 

  • Lynch M, Conery JS (2000) The evolutionary fate and consequences of duplicate genes. Science 290:1151–1155

    PubMed  CAS  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473

    PubMed  CAS  Google Scholar 

  • Marchant CJ (1963) Corrected chromosome numbers for Spartina × townsendii and its parent species. Nature 199:929

    Google Scholar 

  • Marchant CJ (1968) Evolution in Spartina (Gramineae). II. Chromosomes, basic relationships and the problem of Spartina × townsendii agg. Bot J Linn Soc 60:381–409

    Google Scholar 

  • Maricle BR, Lee RW (2002) Aerenchyma development and oxygen transport in the estuarine cordgrasses Spartina alterniflora and S. anglica. Aquat Bot 74:109–120

    Google Scholar 

  • Maricle BR, Crosier JJ, Bussiere BC, Lee RW (2006) Respiratory enzyme activities correlate with anoxia tolerance in saltmarsh grasses. J Exp Mar Biol Ecol 337:30–37

    CAS  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 256:792–801

    Google Scholar 

  • McLysaght A, Hokamp K, Wolfe KH (2002) Extensive genomic duplication during early chordate evolution. Nat Genet 31(2):200–204

    PubMed  CAS  Google Scholar 

  • Mobberley DG (1956) Taxonomy and distribution of the genus Spartina. Iowa State Coll J Sci 30:471–574

    Google Scholar 

  • Nicolas SD, Le Mignon G, Eber F, Coriton O, Monod H, Clouet V, Huteau V, Lostanlen A, Delourme R, Chalhoub B, Ryder CD, Chèvre AM, Jenczewski E (2007) Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of Brassica napus haploids. Genetics 175:487–503

    PubMed  CAS  Google Scholar 

  • Nieva FJJ (1996) Aspectos ecologicos de Spartina densiflora Brong. Master’s Thesis, University of Seville, Seville, Spain, 241 pp

  • Nieva FJJ, Castellanos EM, Figueroa ME (2002) Distribucion Peninsular y habitats ocupados por el neofito sudamericano Spartina densiflora Brong. (Gramineae). In: Panareda JM, Pinto J (eds) Temas en Biogeografia. Aster, Terrasa

    Google Scholar 

  • Novak SJ, Soltis DE, Soltis PS (1991) Ownbey’s Tragopogons: 40 years later. Am J Bot 78:1586–1600

    Google Scholar 

  • Ohno S (1970) Evolution by gene duplication. Springer, New York

    Google Scholar 

  • Osborn TC, Pires JC, Birchler JA, Auger DL, Chen ZJ, Lee HS, Comai L, Madlung A, Doerge RW, Colot V, Martienssen RA (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genet 19:141–147

    PubMed  CAS  Google Scholar 

  • Pandit MK, Tan HTW, Bisht MS (2006) Polyploidy in invasive plant species of Singapore. Biol J Linn Soc 151:395–403

    Google Scholar 

  • Paterson A, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908

    PubMed  CAS  Google Scholar 

  • Petit M, Lim KY, Julio E, Poncet C, Dorlhac de Borne F, Kovarik K, Leitch AR, Grandbastien MA, Mhiri C (2007) Differential impact of retrotransposon populations on the genome of allotetraploid tobacco (Nicotiana tabacum). Mol Genet Genomics 278:1–15

    PubMed  CAS  Google Scholar 

  • Pires JC, Lim KY, Kovarik A, Matyasek R, Boyd A, Leitch AR, Leitch IJ, Bennett MD, Soltis PS, Soltis DE (2004) Molecular cytogenetic analysis of recently evolved Tragopogon (Asteraceae) allopolyploids reveal a karyotype that is additive of the diploid progenitors. Am J Bot 91(7):1022–1035

    CAS  Google Scholar 

  • Rauscher J, Doyle JJ, Brown AHD (2004) Multiple origin and internal transcribed spacer homeologue evolution in the Glycine tomentella (Leguminoseae) allopolyploid complex. Genetics 166:987–998

    PubMed  CAS  Google Scholar 

  • Raybould AF, Gray AJ, Lawrence MJ, Marshall DF (1991a) The evolution of Spartina anglica C.E. Hubbard (Gramineae): origin and genetic variability. Biol J Linn Soc 43:111–126

    Google Scholar 

  • Raybould AF, Gray AJ, Lawrence MJ, Marshall DF (1991b) The evolution of Spartina anglica C.E. Hubbard (Gramineae): genetic variation and status of the parental species in Britain. Biol J Linn Soc 44:369–380

    Google Scholar 

  • Riddle NC, Birchler JA (2003) Effects of reunited diverged regulatory hierarchies in allopolyploids and species hybrids. Trends Genet 19:597–600

    PubMed  CAS  Google Scholar 

  • Salmon A, Ainouche ML, Wendel JF (2005) Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 14:1163–1175

    PubMed  CAS  Google Scholar 

  • Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, Grosberg RK, Hastings A, Holt RD, Mayfield MM, O’Connor MI, Rice W (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evol 22(9):465–471

    PubMed  Google Scholar 

  • Schierenbeck K, Ainouche ML (2006) The role of evolutionary genetics in the study of plant invasions. In: Cadotte M, Mc Mahon SM, Fukami T (eds) Conceptual ecology and invasion biology: reciprocal approaches to nature. Kluwer, Dordrecht, pp 201–229

    Google Scholar 

  • Skalická K, Lim KY, Matyasek R, Matzke M, Leitch AR, Kovarick A (2005) Preferential elimination of repeated DNA sequences from the paternal, Nicotiana tomenstosiformis genome donor of a synthetic alotetraploid tobacco. New Phytol 166:291–303

    PubMed  Google Scholar 

  • Small RL, Wendel JF (2002) Differential evolutionary dynamics of duplicated paralogous Adh loci in allotetraploid cotton (Gossypium). Mol Biol Evol 19(5):597–607

    PubMed  CAS  Google Scholar 

  • Small RL, Cronn RC, Wendel JF (2004) Use of nuclear genes for phylogeny reconstruction in plants. Aust Syst Bot 17:145–170

    CAS  Google Scholar 

  • Soltis DE, Soltis PS (1999) Polyploidy: recurrent formation and genome evolution. Trends Ecol Evol 14:348–352

    PubMed  Google Scholar 

  • Soltis DE, Soltis PS, Pires JC, Kovarik A, Tate JA (2004) Recent and recurrent polyploidy in Tragopogon (Asteraceae): cytogenetic, genomic, and genetic comparisons. Biol J Linn Soc 82:485–501

    Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    PubMed  CAS  Google Scholar 

  • Spicher D, Josselyn M (1985) Spartina (Gramineae) in Northern California: distribution and taxonomic notes. Madrono 32:158–167

    Google Scholar 

  • Tate JA, Ni Z, Scheen AC, Koh J, Gilbert CA, Chen ZJ, Soltis PS, Soltis DE (2006) Evolution and expression of homoeologous loci in Tragopogon miscellus (Asteraceae), a recent and reciprocally formed allopolyploid. Genetics 173:1599–1611

    PubMed  CAS  Google Scholar 

  • Thompson JD (1991) The biology of an invasive plant. What makes Spartina anglica so successful? Bioscience 41:393–401

    Google Scholar 

  • Thompson JD, McNeilly T, Gray AJ (1991a) Population variation in Spartina anglica C.E. Hubbard. I. Evidence from a common garden experiment. New Phytol 117:115–128

    Google Scholar 

  • Thompson JD, McNeilly T, Gray AJ (1991b) Population variation in Spartina anglica C.E. Hubbard. II Reciprocal transplants among three successional populations. New Phytol 117:129–139

    Google Scholar 

  • Tiffin P, Olson MS, Moyle LC (2001) Asymmetrical crossing barriers in angiosperms. Proc R Soc Lond B Biol Sci 268:861–867

    CAS  Google Scholar 

  • Urbanska KM, Hurka H, Landolt E, Neufler B, Mummenhoff K (1997) Hybridization and evolution in Cardamine (Brassicaceae) at Urnerboden, central Swtitzerland: biosystematic and molecular evidence. Plant Syst Evol 204:233–256

    Google Scholar 

  • Vicari RL, Fischer S, Madanes N, Bonaventura SM, Pancotto V (2002) Tiller population dynamics and production on Spartina densiflora (Brong) on the floodplain of the Parana River, Argentina. Wetlands 22:347–354

    Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    PubMed  CAS  Google Scholar 

  • Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci USA 92:280–284

    PubMed  CAS  Google Scholar 

  • Wolfe KH (2001) Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet 2:333–341

    PubMed  CAS  Google Scholar 

  • Yannic G, Baumel A, Ainouche ML (2004) Uniformity of the nuclear and chloroplast genomes of Spartina maritima (Poaceae) a salt marshes species in decline along the Western European Coast. Heredity 93:182–188

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the French National Research Agency (A.N.R.) biodiversity programme “effects of polyploidy on plant genome evolution and biodiversity”, and by CNRS funds (UMR CNRS 6553 Ecobio, Centre Armoricain de Recherches en Environnement CAREN). P. M. Fortuné benefited from a PhD grant (Ecole Normale Supérieure). C. Parisod and K. Fukunaga were funded by postdoctoral grants from the A.N.R. and the French Ministry of Research, respectively. K. Schierenbeck and D. Ayres are thanked for stimulating scientific exchanges on hybridization and invasion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Ainouche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ainouche, M.L., Fortune, P.M., Salmon, A. et al. Hybridization, polyploidy and invasion: lessons from Spartina (Poaceae). Biol Invasions 11, 1159–1173 (2009). https://doi.org/10.1007/s10530-008-9383-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-008-9383-2

Keywords

Navigation