ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

The Mechanism of ACV Synthetase

View Author Information
The Oxford Centre for Molecular Sciences and Dyson Perrins Laboratory, South Parks Road, Oxford OX1 3QY U.K.
Cite this: Chem. Rev. 1997, 97, 7, 2631–2650
Publication Date (Web):November 10, 1997
https://doi.org/10.1021/cr960018l
Copyright © 1997 American Chemical Society

    Article Views

    1706

    Altmetric

    -

    Citations

    77
    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

     Present address:  Pharmaceutical Research Institute, The National Defense Medical Centre P.O. Box 90048-512, Taipei, Taiwan R.O.C.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Cited By

    This article is cited by 77 publications.

    1. Gina L. Morgan, Kelin Li, Drake M. Crawford, Jeffrey Aubé, Bo Li. Enzymatic Synthesis of Diverse Heterocycles by a Noncanonical Nonribosomal Peptide Synthetase. ACS Chemical Biology 2021, 16 (12) , 2776-2786. https://doi.org/10.1021/acschembio.1c00623
    2. Reto D. Zwahlen, Carsten Pohl, Roel A. L. Bovenberg, Arnold J. M. Driessen. Bacterial MbtH-like Proteins Stimulate Nonribosomal Peptide Synthetase-Derived Secondary Metabolism in Filamentous Fungi. ACS Synthetic Biology 2019, 8 (8) , 1776-1787. https://doi.org/10.1021/acssynbio.9b00106
    3. Esta Tamanaha, Bo Zhang, Yisong Guo, Wei-chen Chang, Eric W. Barr, Gang Xing, Jennifer St. Clair, Shengfa Ye, Frank Neese, J. Martin Bollinger, Jr., and Carsten Krebs . Spectroscopic Evidence for the Two C–H-Cleaving Intermediates of Aspergillus nidulans Isopenicillin N Synthase. Journal of the American Chemical Society 2016, 138 (28) , 8862-8874. https://doi.org/10.1021/jacs.6b04065
    4. Christopher T. Walsh . Blurring the Lines between Ribosomal and Nonribosomal Peptide Scaffolds. ACS Chemical Biology 2014, 9 (8) , 1653-1661. https://doi.org/10.1021/cb5003587
    5. Christopher T. Walsh, Stuart W. Haynes, Brian D. Ames, Xue Gao, and Yi Tang . Short Pathways to Complexity Generation: Fungal Peptidyl Alkaloid Multicyclic Scaffolds from Anthranilate Building Blocks. ACS Chemical Biology 2013, 8 (7) , 1366-1382. https://doi.org/10.1021/cb4001684
    6. Elizabeth A. Felnagle, Emily E. Jackson, Yolande A. Chan, Angela M. Podevels, Andrew D. Berti, Matthew D. McMahon and Michael G. Thomas. Nonribosomal Peptide Synthetases Involved in the Production of Medically Relevant Natural Products. Molecular Pharmaceutics 2008, 5 (2) , 191-211. https://doi.org/10.1021/mp700137g
    7. Michael A. Fischbach, Christopher T. Walsh. Assembly-Line Enzymology for Polyketide and Nonribosomal Peptide Antibiotics:  Logic, Machinery, and Mechanisms. Chemical Reviews 2006, 106 (8) , 3468-3496. https://doi.org/10.1021/cr0503097
    8. Kenan A. J. Bozhüyük, Leonard Präve, Carsten Kegler, Leonie Schenk, Sebastian Kaiser, Christian Schelhas, Yan-Ni Shi, Wolfgang Kuttenlochner, Max Schreiber, Joshua Kandler, Mohammad Alanjary, T. M. Mohiuddin, Michael Groll, Georg K. A. Hochberg, Helge B. Bode. Evolution-inspired engineering of nonribosomal peptide synthetases. Science 2024, 383 (6689) https://doi.org/10.1126/science.adg4320
    9. Alison H. Araten, Rachel S. Brooks, Sarah D. W. Choi, Laura L. Esguerra, Diana Savchyn, Emily J. Wu, Gabrielle Leon, Katherine J. Sniezek, Mark P. Brynildsen. Cephalosporin resistance, tolerance, and approaches to improve their activities. The Journal of Antibiotics 2024, 77 (3) , 135-146. https://doi.org/10.1038/s41429-023-00687-y
    10. Juan F. Martín, Carlos García-Estrada, Paloma Liras. Insights into the molecular mechanisms of β-lactam antibiotic synthesizing and modifying enzymes in fungi. 2023, 199-228. https://doi.org/10.1016/B978-0-443-19059-9.00015-3
    11. . Peptide Natural Products II: Nonribosomal Peptides. 2022, 150-191. https://doi.org/10.1039/BK9781839165641-00150
    12. Xi-Wei Chen, Li Rao, Jia-Li Chen, Yi Zou. Unexpected assembly machinery for 4(3H)-quinazolinone scaffold synthesis. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-34340-3
    13. Ermal Ismalaj, Wim De Borggraeve. Penicillins. 2022, 116-158. https://doi.org/10.1016/B978-0-12-818655-8.00141-4
    14. Riccardo Iacovelli, Roel A L Bovenberg, Arnold J M Driessen. Nonribosomal peptide synthetases and their biotechnological potential in Penicillium rubens. Journal of Industrial Microbiology and Biotechnology 2021, 48 (7-8) https://doi.org/10.1093/jimb/kuab045
    15. Kenan A. J. Bozhueyuek, Jonas Watzel, Nadya Abbood, Helge B. Bode. Synthetic Zippers as an Enabling Tool for Engineering of Non‐Ribosomal Peptide Synthetases**. Angewandte Chemie 2021, 133 (32) , 17672-17679. https://doi.org/10.1002/ange.202102859
    16. Kenan A. J. Bozhueyuek, Jonas Watzel, Nadya Abbood, Helge B. Bode. Synthetic Zippers as an Enabling Tool for Engineering of Non‐Ribosomal Peptide Synthetases**. Angewandte Chemie International Edition 2021, 60 (32) , 17531-17538. https://doi.org/10.1002/anie.202102859
    17. Trevor A. Zandi, Craig A. Townsend. Competing off-loading mechanisms of meropenem from an l,d -transpeptidase reduce antibiotic effectiveness. Proceedings of the National Academy of Sciences 2021, 118 (27) https://doi.org/10.1073/pnas.2008610118
    18. Yuxuan Ye, Haigen Fu, Todd K Hyster. Activation modes in biocatalytic radical cyclization reactions. Journal of Industrial Microbiology and Biotechnology 2021, 48 (3-4) https://doi.org/10.1093/jimb/kuab021
    19. Sankaran Radhika, Mohan Neetha, Gopinathan Anilkumar. Green in Pharmaceutical Chemistry. 2021, 131-147. https://doi.org/10.1007/978-981-33-6897-2_8
    20. Yun Ding, Joey Paolo Ting, Jinsha Liu, Shams Al-Azzam, Priyanka Pandya, Sepideh Afshar. Impact of non-proteinogenic amino acids in the discovery and development of peptide therapeutics. Amino Acids 2020, 52 (9) , 1207-1226. https://doi.org/10.1007/s00726-020-02890-9
    21. Xiumei Luo, Tingting Tian, Xue Tan, Yixuan Zheng, Chengjian Xie, Ya Xu, Xingyong Yang. VdNPS, a Nonribosomal Peptide Synthetase, Is Involved in Regulating Virulence in Verticillium dahliae. Phytopathology® 2020, 110 (8) , 1398-1409. https://doi.org/10.1094/PHYTO-02-20-0031-R
    22. P.S. Sears. ligases. 2020https://doi.org/10.1002/9783527809080.cataz09806
    23. Dorota Jakubczyk, Francois Dussart. Selected Fungal Natural Products with Antimicrobial Properties. Molecules 2020, 25 (4) , 911. https://doi.org/10.3390/molecules25040911
    24. Christopher T. Walsh. Historic Overview—Peptide Natural Products: Perspectives on Nascent Scaffold Morphings. 2020, 3-16. https://doi.org/10.1016/B978-0-12-409547-2.14506-8
    25. Patrick Rabe, Jos J. A. G. Kamps, Christopher J. Schofield, Christopher T. Lohans. Roles of 2-oxoglutarate oxygenases and isopenicillin N synthase in β-lactam biosynthesis. Natural Product Reports 2018, 35 (8) , 735-756. https://doi.org/10.1039/C8NP00002F
    26. . Peptide Derived Natural Products. 2017, 126-193. https://doi.org/10.1039/BK9781788010764-00126
    27. Juan F. Martín, Paloma Liras. Insights into the Structure and Molecular Mechanisms of β-Lactam Synthesizing Enzymes in Fungi. 2017, 215-241. https://doi.org/10.1016/B978-0-12-803725-6.00009-1
    28. Craig A Townsend. Convergent biosynthetic pathways to β-lactam antibiotics. Current Opinion in Chemical Biology 2016, 35 , 97-108. https://doi.org/10.1016/j.cbpa.2016.09.013
    29. Min Xu, Yemin Wang, Zhilong Zhao, Guixi Gao, Sheng-Xiong Huang, Qianjin Kang, Xinyi He, Shuangjun Lin, Xiuhua Pang, Zixin Deng, Meifeng Tao, . Functional Genome Mining for Metabolites Encoded by Large Gene Clusters through Heterologous Expression of a Whole-Genome Bacterial Artificial Chromosome Library in Streptomyces spp.. Applied and Environmental Microbiology 2016, 82 (19) , 5795-5805. https://doi.org/10.1128/AEM.01383-16
    30. . Four‐Membered Heterocyclic Rings and Their Fused Derivatives. 2015, 277-378. https://doi.org/10.1002/9781118960554.ch4
    31. Stefan Müller, Shwan Rachid, Thomas Hoffmann, Frank Surup, Carsten Volz, Nestor Zaburannyi, Rolf Müller. Biosynthesis of Crocacin Involves an Unusual Hydrolytic Release Domain Showing Similarity to Condensation Domains. Chemistry & Biology 2014, 21 (7) , 855-865. https://doi.org/10.1016/j.chembiol.2014.05.012
    32. Sandra Bloemendal, Ulrich Kück. Cephalosporins. 2014, 43-64. https://doi.org/10.1007/978-1-4939-1191-2_3
    33. Refaat B. Hamed, J. Ruben Gomez-Castellanos, Luc Henry, Christian Ducho, Michael A. McDonough, Christopher J. Schofield. The enzymes of β-lactam biosynthesis. Nat. Prod. Rep. 2013, 30 (1) , 21-107. https://doi.org/10.1039/C2NP20065A
    34. Qi Wu, Junhua Tao. Biocatalysis. 2012, 217-240. https://doi.org/10.1002/9780470711828.ch8
    35. Junhua Tao, Alex Chu. Biological Synthesis of Pharmaceuticals. 2012, 233-255. https://doi.org/10.1002/9783527628698.hgc079
    36. Ying-Xiu Cao, Bin Qiao, Hua Lu, Yao Chen, Ying-Jin Yuan. Comparison of the secondary metabolites in Penicillium chrysogenum between pilot and industrial penicillin G fermentations. Applied Microbiology and Biotechnology 2011, 89 (4) , 1193-1202. https://doi.org/10.1007/s00253-010-2910-y
    37. Allison P. Heath, George N. Bennett, Lydia E. Kavraki. Identifying Branched Metabolic Pathways by Merging Linear Metabolic Pathways. 2011, 70-84. https://doi.org/10.1007/978-3-642-20036-6_9
    38. Emily J. Parker, Andrew J. Pratt. Amino Acid Biosynthesis. 2010, 1-82. https://doi.org/10.1002/9783527631803.ch1
    39. Morgan A. Wyatt, Wenliang Wang, Christelle M. Roux, Federico C. Beasley, David E. Heinrichs, Paul M. Dunman, Nathan A. Magarvey. Staphylococcus aureus Nonribosomal Peptide Secondary Metabolites Regulate Virulence. Science 2010, 329 (5989) , 294-296. https://doi.org/10.1126/science.1188888
    40. Juan F. Martín, Ricardo V. Ullán, Carlos García‐Estrada. Regulation and compartmentalization of β‐lactam biosynthesis. Microbial Biotechnology 2010, 3 (3) , 285-299. https://doi.org/10.1111/j.1751-7915.2009.00123.x
    41. . N-(5-Amino-5-carboxypentanoyl)-L-cysteinyl-D-valine synthase. 2010, 600-605. https://doi.org/10.1007/978-3-540-85707-5_124
    42. Wei Ge, Ian J. Clifton, Jeanette E. Stok, Robert M. Adlington, Jack E. Baldwin, Peter J. Rutledge. The crystal structure of an lll -configured depsipeptide substrate analogue bound to isopenicillin N synthase. Org. Biomol. Chem. 2010, 8 (1) , 122-127. https://doi.org/10.1039/B910170E
    43. Liangcheng Du, Lili Lou. PKS and NRPS release mechanisms. Nat. Prod. Rep. 2010, 27 (2) , 255-278. https://doi.org/10.1039/B912037H
    44. Loknath Gidijala, Jan A.K.W. Kiel, Roel AL Bovenberg, Ida J. Van Der Klei, Marco A Van Den Berg. Biosynthesis of active pharmaceuticals: β-lactam biosynthesis in filamentous fungi. Biotechnology and Genetic Engineering Reviews 2010, 27 (1) , 1-32. https://doi.org/10.1080/02648725.2010.10648143
    45. Michael A Fischbach. Antibiotics from microbes: converging to kill. Current Opinion in Microbiology 2009, 12 (5) , 520-527. https://doi.org/10.1016/j.mib.2009.07.002
    46. Katarina Kosalková, Carlos García-Estrada, Ricardo V. Ullán, Ramiro P. Godio, Raúl Feltrer, Fernando Teijeira, Elba Mauriz, Juan Francisco Martín. The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 2009, 91 (2) , 214-225. https://doi.org/10.1016/j.biochi.2008.09.004
    47. James D. White, Takuya Furuta. Regioselective Ring Expansion of 3,3-Dimethylaziridin-2-carboxylate and a Photochemical Entry to the Penem Nucleus. HETEROCYCLES 2009, 79 (1) , 347. https://doi.org/10.3987/COM-08-S(D)15
    48. Carlos García-Estrada, Ricardo V. Ullán, Tania Velasco-Conde, Ramiro P. Godio, Fernando Teijeira, Inmaculada Vaca, Raúl Feltrer, Katarina Kosalková, Elba Mauriz, Juan F. Martín. Post-translational enzyme modification by the phosphopantetheinyl transferase is required for lysine and penicillin biosynthesis but not for roquefortine or fatty acid formation in Penicillium chrysogenum. Biochemical Journal 2008, 415 (2) , 317-324. https://doi.org/10.1042/BJ20080369
    49. Michael D. Burkart, Junhua Tao. Multi‐Modular Synthases as Tools of the Synthetic Chemist. 2008, 137-158. https://doi.org/10.1002/9783527623389.ch7
    50. Sara Lejon, Jacqueline Ellis, Karin Valegård. The Last Step in Cephalosporin C Formation Revealed: Crystal Structures of Deacetylcephalosporin C Acetyltransferase from Acremonium chrysogenum in Complexes with Reaction Intermediates. Journal of Molecular Biology 2008, 377 (3) , 935-944. https://doi.org/10.1016/j.jmb.2008.01.047
    51. Elizabeth S. Sattely, Michael A. Fischbach, Christopher T. Walsh. Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways. Natural Product Reports 2008, 25 (4) , 757. https://doi.org/10.1039/b801747f
    52. Carlos García-Estrada, Inmaculada Vaca, Mónica Lamas-Maceiras, Juan Francisco Martín. In vivo transport of the intermediates of the penicillin biosynthetic pathway in tailored strains of Penicillium chrysogenum. Applied Microbiology and Biotechnology 2007, 76 (1) , 169-182. https://doi.org/10.1007/s00253-007-0999-4
    53. Eva Arrebola, Francisco M. Cazorla, Diego Romero, Alejandro Pérez-García, Antonio de Vicente. A Nonribosomal Peptide Synthetase Gene ( mgoA ) of Pseudomonas syringae pv. syringae Is Involved in Mangotoxin Biosynthesis and Is Required for Full Virulence. Molecular Plant-Microbe Interactions® 2007, 20 (5) , 500-509. https://doi.org/10.1094/MPMI-20-5-0500
    54. Mark Skipsey, Benjamin G. Davis, Robert Edwards. Diversification in substrate usage by glutathione synthetases from soya bean ( Glycine max ), wheat ( Triticum aestivum ) and maize ( Zea mays ). Biochemical Journal 2005, 391 (3) , 567-574. https://doi.org/10.1042/BJ20050718
    55. Shubha Gopal, Ilya Borovok, Amos Ofer, Michaela Yanku, Gerald Cohen, Werner Goebel, Jürgen Kreft, Yair Aharonowitz. A Multidomain Fusion Protein in Listeria monocytogenes Catalyzes the Two Primary Activities for Glutathione Biosynthesis. Journal of Bacteriology 2005, 187 (11) , 3839-3847. https://doi.org/10.1128/JB.187.11.3839-3847.2005
    56. Robert Finking, Mohamed A. Marahiel. Biosynthesis of Nonribosomal Peptides. Annual Review of Microbiology 2004, 58 (1) , 453-488. https://doi.org/10.1146/annurev.micro.58.030603.123615
    57. Stephan Gruenewald, Henning D. Mootz, Per Stehmeier, Torsten Stachelhaus. In Vivo Production of Artificial Nonribosomal Peptide Products in the Heterologous Host Escherichia coli. Applied and Environmental Microbiology 2004, 70 (6) , 3282-3291. https://doi.org/10.1128/AEM.70.6.3282-3291.2004
    58. Takahiro Kawai, Takaaki Kubota, Jun Hiraki, Yoshikazu Izumi. Biosynthesis of ε-poly-l-lysine in a cell-free system of Streptomyces albulus. Biochemical and Biophysical Research Communications 2003, 311 (3) , 635-640. https://doi.org/10.1016/j.bbrc.2003.10.033
    59. Ronald Bentley. Diastereoisomerism, contact points, and chiral selectivity: a four-site saga. Archives of Biochemistry and Biophysics 2003, 414 (1) , 1-12. https://doi.org/10.1016/S0003-9861(03)00169-3
    60. Liangcheng Du, Yi-Qiang Cheng, Gudrun Ingenhorst, Gong-Li Tang, Yong HuangBen, Ben Shen. Hybrid Peptide-Polyketide Natural Products: Biosynthesis and Prospects Towards Engineering Novel Molecules. 2003, 227-267. https://doi.org/10.1007/978-1-4615-0073-5_11
    61. Christopher D. Reeves. The Enzymology of Combinatorial Biosynthesis. Critical Reviews in Biotechnology 2003, 23 (2) , 95-147. https://doi.org/10.1080/713609311
    62. Hans von Döhren, , . Non‐ribosomal Biosynthesis of Linear and Cyclic Oligopeptides. 2002https://doi.org/10.1002/3527600035.bpol7003
    63. Xuemei M. He, Hung-wen Liu. Formation of Unusual Sugars: Mechanistic Studies and Biosynthetic Applications. Annual Review of Biochemistry 2002, 71 (1) , 701-754. https://doi.org/10.1146/annurev.biochem.71.110601.135339
    64. Thomas A. Keating, David E. Ehmann, Rahul M. Kohli, C. Gary Marshall, John W. Trauger, Christopher T. Walsh. Chain Termination Steps in Nonribosomal Peptide Synthetase Assembly Lines: Directed Acyl-S-Enzyme Breakdown in Antibiotic and Siderophore Biosynthesis. ChemBioChem 2001, 2 (2) , 99-107. https://doi.org/10.1002/1439-7633(20010202)2:2<99::AID-CBIC99>3.0.CO;2-3
    65. Richard D. Firn, Clive G. Jones. The evolution of secondary metabolism – a unifying model. Molecular Microbiology 2000, 37 (5) , 989-994. https://doi.org/10.1046/j.1365-2958.2000.02098.x
    66. Wibke Kallow, Jonathan Kennedy, Bahram Arezi, Geoffrey Turner, Hans von Döhren. Thioesterase domain of δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase: alteration of stereospecificity by site-directed mutagenesis. Journal of Molecular Biology 2000, 297 (2) , 395-408. https://doi.org/10.1006/jmbi.2000.3566
    67. Gregory L Challis, Jacques Ravel, Craig A Townsend. Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chemistry & Biology 2000, 7 (3) , 211-224. https://doi.org/10.1016/S1074-5521(00)00091-0
    68. Thomas A. Keating, Zucai Suo, David E. Ehmann, Christopher T. Walsh. Selectivity of the Yersiniabactin Synthetase Adenylation Domain in the Two-Step Process of Amino Acid Activation and Transfer to a Holo-Carrier Protein Domain. Biochemistry 2000, 39 (9) , 2297-2306. https://doi.org/10.1021/bi992341z
    69. David E. Ehmann, Amy M. Gehring, Christopher T. Walsh. Lysine Biosynthesis in Saccharomyces cerevisiae:  Mechanism of α-Aminoadipate Reductase (Lys2) Involves Posttranslational Phosphopantetheinylation by Lys5. Biochemistry 1999, 38 (19) , 6171-6177. https://doi.org/10.1021/bi9829940
    70. Hans von Döhren, Horst Kleinkauf. Peptides. 1999https://doi.org/10.1002/0471250589.ebt160
    71. Uffe Anthoni, Carsten Christophersen, Per Halfdan Nielsen. Naturally Occurring Cyclotryptophans and Cyclotryptamines. 1999, 163-236. https://doi.org/10.1016/S0735-8210(99)80025-9
    72. Torsten Stachelhaus, Henning D. Mootz, Veit Bergendahl, Mohamed A. Marahiel. Peptide Bond Formation in Nonribosomal Peptide Biosynthesis. Journal of Biological Chemistry 1998, 273 (35) , 22773-22781. https://doi.org/10.1074/jbc.273.35.22773
    73. M. F. BYFORD, J. E. BALDWIN, C.‐Y. SHIAU, C. J. SCHOFIELD. ChemInform Abstract: The Mechanism of ACV Synthetase. ChemInform 1998, 29 (6) https://doi.org/10.1002/chin.199806317
    74. Nigel G. J. Richards. Chapter 9. Reaction mechanisms . Part (iii) Bioorganic enzyme-catalysed. Annual Reports Section "B" (Organic Chemistry) 1998, 94 , 289. https://doi.org/10.1039/oc094289
    75. Christopher J Schofield, Jack E Baldwin, Michael F Byford, Ian Clifton, Janos Hajdu, Charles Hensgens, Peter Roach. Proteins of the penicillin biosynthesis pathway. Current Opinion in Structural Biology 1997, 7 (6) , 857-864. https://doi.org/10.1016/S0959-440X(97)80158-3
    76. Hans von Döhren, Ullrich Keller, Joachim Vater, Rainer Zocher. Multifunctional Peptide Synthetases. Chemical Reviews 1997, 97 (7) , 2675-2706. https://doi.org/10.1021/cr9600262
    77. Shin-ichi Hashimoto. Occurrence, Biosynthesis, and Biotechnological Production of Dipeptides. , 327-348. https://doi.org/10.1007/7171_2006_063

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect