ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Reduced Adhesion of Oral Bacteria on Hydroxyapatite by Fluoride Treatment

View Author Information
Experimental Physics, Saarland University, 66041 Saarbrücken, Germany
§ Institute of Medical Microbiology and Hygiene, Saarland University, 66421 Homburg/Saar, Germany
Cite this: Langmuir 2013, 29, 18, 5528–5533
Publication Date (Web):April 4, 2013
https://doi.org/10.1021/la4008558
Copyright © 2013 American Chemical Society

    Article Views

    2425

    Altmetric

    -

    Citations

    34
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    The mechanisms of action of fluoride have been discussed controversially for decades. The cavity-preventive effect for teeth is often traced back to effects on demineralization. However, an effect on bacterial adhesion was indicated by indirect macroscopic studies. To characterize adhesion on fluoridated samples on a single bacterial level, we used force spectroscopy with bacterial probes to measure adhesion forces directly. We tested the adhesion of Streptococcus mutans, Streptococcus oralis, and Staphylococcus carnosus on smooth, high-density hydroxyapatite surfaces, pristine and after treatment with fluoride solution. All bacteria species exhibit lower adhesion forces after fluoride treatment of the surfaces. These findings suggest that the decrease of adhesion properties is a further key factor for the cariostatic effect of fluoride besides the decrease of demineralization.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 34 publications.

    1. Johannes Mischo, Thomas Faidt, Ryan B. McMillan, Johanna Dudek, Gubesh Gunaratnam, Pardis Bayenat, Anne Holtsch, Christian Spengler, Frank Müller, Hendrik Hähl, Markus Bischoff, Matthias Hannig, Karin Jacobs. Hydroxyapatite Pellets as Versatile Model Surfaces for Systematic Adhesion Studies on Enamel: A Force Spectroscopy Case Study. ACS Biomaterials Science & Engineering 2022, 8 (4) , 1476-1485. https://doi.org/10.1021/acsbiomaterials.1c00925
    2. Thomas Faidt, Andreas Friedrichs, Samuel Grandthyll, Christian Spengler, Karin Jacobs, Frank Müller. Effect of Fluoride Treatment on the Acid Resistance of Hydroxyapatite. Langmuir 2018, 34 (50) , 15253-15258. https://doi.org/10.1021/acs.langmuir.8b03412
    3. Thomas Faidt, Christian Zeitz, Samuel Grandthyll, Michael Hans, Matthias Hannig, Karin Jacobs, and Frank Müller . Time Dependence of Fluoride Uptake in Hydroxyapatite. ACS Biomaterials Science & Engineering 2017, 3 (8) , 1822-1826. https://doi.org/10.1021/acsbiomaterials.6b00782
    4. Hyun-Su Lee, Carl Myers, Lynette Zaidel, Prathima C. Nalam, Matthew A. Caporizzo, Carlo A. Daep, David M. Eckmann, James G. Masters, and Russell J. Composto . Competitive Adsorption of Polyelectrolytes onto and into Pellicle-Coated Hydroxyapatite Investigated by QCM-D and Force Spectroscopy. ACS Applied Materials & Interfaces 2017, 9 (15) , 13079-13091. https://doi.org/10.1021/acsami.7b02774
    5. Christian Zeitz, Thomas Faidt, Samuel Grandthyll, Hendrik Hähl, Nicolas Thewes, Christian Spengler, Jörg Schmauch, Michael Johannes Deckarm, Carsten Gachot, Harald Natter, Matthias Hannig, Frank Müller, and Karin Jacobs . Synthesis of Hydroxyapatite Substrates: Bridging the Gap between Model Surfaces and Enamel. ACS Applied Materials & Interfaces 2016, 8 (39) , 25848-25855. https://doi.org/10.1021/acsami.6b10089
    6. Susann Hertel, Julia Timpel. Betreuung von Kindern und Jugendlichen mit hohem Kariesrisiko. Zahnmedizin up2date 2023, 17 (03) , 205-222. https://doi.org/10.1055/a-2123-1364
    7. Y. Huang, Q. Han, X. Peng, B. Ren, J. Li, X. Zhou, M. Li, L. Cheng. Disaggregated Nano-Hydroxyapatite (DnHAP) with Inhibitory Effects on Biofilms and Demineralization. Journal of Dental Research 2023, 102 (7) , 777-784. https://doi.org/10.1177/00220345231162349
    8. Katharina Doll-Nikutta, Andreas Winkel, Ines Yang, Anna Josefine Grote, Nils Meier, Mosaieb Habib, Henning Menzel, Peter Behrens, Meike Stiesch. Adhesion Forces of Oral Bacteria to Titanium and the Correlation with Biophysical Cellular Characteristics. Bioengineering 2022, 9 (10) , 567. https://doi.org/10.3390/bioengineering9100567
    9. Jana Storsberg, Kateryna Loza, Matthias Epple. Incorporation of Fluoride into Human Teeth after Immersion in Fluoride-Containing Solutions. Dentistry Journal 2022, 10 (8) , 153. https://doi.org/10.3390/dj10080153
    10. Matthias Epple, Joachim Enax, Frederic Meyer. Prevention of Caries and Dental Erosion by Fluorides—A Critical Discussion Based on Physico-Chemical Data and Principles. Dentistry Journal 2022, 10 (1) , 6. https://doi.org/10.3390/dj10010006
    11. Ye Han. Effects of brief sodium fluoride treatments on the growth of early and mature cariogenic biofilms. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-97905-0
    12. Ulrich Schiffner. Fluoridanwendung zur Kariesprävention. Kinder- und Jugendmedizin 2021, 21 (06) , 431-440. https://doi.org/10.1055/a-1654-6874
    13. Huan Zhou, Shaofeng Yang, Donglei Wei, Chunyong Liang, Qiang Yang, Huilin Yang, Donghui Wang, Mingjun Li, Lei Yang. Development of hydrofluoric acid-cleaned silicon nitride implants for periprosthetic infection eradication and bone regeneration enhancement. Materials Science and Engineering: C 2021, 127 , 112241. https://doi.org/10.1016/j.msec.2021.112241
    14. Ulrich Schiffner. Verwendung von Fluoriden zur Kariesprävention. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 2021, 64 (7) , 830-837. https://doi.org/10.1007/s00103-021-03347-4
    15. Eduard Arzt, Haocheng Quan, Robert M. McMeeking, René Hensel. Functional surface microstructures inspired by nature – From adhesion and wetting principles to sustainable new devices. Progress in Materials Science 2021, 120 , 100823. https://doi.org/10.1016/j.pmatsci.2021.100823
    16. Eduard Arzt, Haocheng Quan, Robert M. McMeeking, René Hensel. WITHDRAWN: Functional surface microstructures inspired by nature – From adhesion and wetting principles to sustainable new devices. Progress in Materials Science 2021, 119 , 100778. https://doi.org/10.1016/j.pmatsci.2021.100778
    17. Xiaodie Wang, Limin Liu, Xiaoyan Zhou, Yongbiao Huo, Jinlong Gao, Haijing Gu. Casein phosphopeptide combined with fluoride enhances the inhibitory effect on initial adhesion of Streptococcus mutans to the saliva-coated hydroxyapatite disc. BMC Oral Health 2020, 20 (1) https://doi.org/10.1186/s12903-020-01158-8
    18. Manuel Nieto‐Domínguez, Pablo I. Nikel. Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. ChemBioChem 2020, 21 (18) , 2551-2571. https://doi.org/10.1002/cbic.202000091
    19. Aulia Rifada, Bannan Muthi’atul Af’idah, Wafa Aufia, Agnia Vibriani, Maria Maghdalena, Kurniawan Eko Saputro, Dwi Wahyu Nugroho, M. Arief Iskandar, Arief Cahyanto, Alfian Noviyanto, Nurul Taufiqu Rochman. Effect of Nano Hydroxyapatite in Toothpaste on Controlling Oral Microbial Viability. IOP Conference Series: Materials Science and Engineering 2020, 924 (1) , 012010. https://doi.org/10.1088/1757-899X/924/1/012010
    20. Albertus Viljoen, Johann Mignolet, Felipe Viela, Marion Mathelié-Guinlet, Yves F. Dufrêne, . How Microbes Use Force To Control Adhesion. Journal of Bacteriology 2020, 202 (12) https://doi.org/10.1128/JB.00125-20
    21. Johannes Fiedler, Clas Persson, Stefan Yoshi Buhmann. Spectroscopy of Nanoparticles without Light. Physical Review Applied 2020, 13 (1) https://doi.org/10.1103/PhysRevApplied.13.014025
    22. Li Zhou, Hai Ming Wong, Quan Li Li. <p>Anti-Biofouling Coatings on the Tooth Surface and Hydroxyapatite</p>. International Journal of Nanomedicine 2020, Volume 15 , 8963-8982. https://doi.org/10.2147/IJN.S281014
    23. Varun Prasath Padmanabhan, Sankara Narayanan T. S. N., Suresh Sagadevan, Md Enamul Hoque, Ravichandran Kulandaivelu. Advanced lithium substituted hydroxyapatite nanoparticles for antimicrobial and hemolytic studies. New Journal of Chemistry 2019, 43 (47) , 18484-18494. https://doi.org/10.1039/C9NJ03735G
    24. María P. Angarita‐Díaz, Jaime A. Díaz, Herlinto A. Tupaz, Arantxa López‐López, Diana Forero, Alex Mira, Fernando Dávila, Ximena A. Cerón, Emilia M. Ochoa‐Acosta, Olga L. Goméz, Gladys Gonzalez. Presence of Streptococcus dentisani in the dental plaque of children from different Colombian cities. Clinical and Experimental Dental Research 2019, 5 (3) , 184-190. https://doi.org/10.1002/cre2.158
    25. Mateusz Plaza, Lorenzo Paladino, IjeomaNnodim Opara, MichaelS Firstenberg, Benjamin Wilson, ThomasJ Papadimos, StanislawP Stawicki. The use of distributed consensus algorithms to curtail the spread of medical misinformation. International Journal of Academic Medicine 2019, 5 (2) , 93. https://doi.org/10.4103/IJAM.IJAM_47_19
    26. Niar Gusnaniar, Henny C. van der Mei, Wenwen Qu, Titik Nuryastuti, Johanna M.M. Hooymans, Jelmer Sjollema, Henk J. Busscher. Physico-chemistry of bacterial transmission versus adhesion. Advances in Colloid and Interface Science 2017, 250 , 15-24. https://doi.org/10.1016/j.cis.2017.11.002
    27. Christian Spengler, Nicolas Thewes, Friederike Nolle, Thomas Faidt, Natalia Umanskaya, Matthias Hannig, Markus Bischoff, Karin Jacobs. Enhanced adhesion of Streptococcus mutans to hydroxyapatite after exposure to saliva. Journal of Molecular Recognition 2017, 30 (7) https://doi.org/10.1002/jmr.2615
    28. Eliza Leusmann. Auf die Tube drücken. Nachrichten aus der Chemie 2017, 65 (4) , 427-429. https://doi.org/10.1002/nadc.20174056104
    29. I. Izquierdo-Barba, C. Torres-Rodríguez, E. Matesanz, M. Vallet-Regí. New approach to determine the morphological and structural changes in the enamel as consequence of dental bleaching. Materials Letters 2015, 141 , 302-306. https://doi.org/10.1016/j.matlet.2014.11.120
    30. Li‐Chiu Yang, Suh‐Woan Hu, Min Yan, Jaw‐Ji Yang, Sing‐Hua Tsou, Yuh‐Yih Lin. Antimicrobial Activity of Platelet‐Rich Plasma and Other Plasma Preparations Against Periodontal Pathogens. Journal of Periodontology 2015, 86 (2) , 310-318. https://doi.org/10.1902/jop.2014.140373
    31. Ernesto Beltrán-Partida, Benjamin Valdez-Salas, Alan Escamilla, Aldo Moreno-Ulloa, Larysa Burtseva, Ernesto Valdez-Salas, Mario Curiel Alvarez, Nicola Nedev. The Promotion of Antibacterial Effects of Ti6Al4V Alloy Modified with TiO 2 Nanotubes Using a Superoxidized Solution. Journal of Nanomaterials 2015, 2015 , 1-9. https://doi.org/10.1155/2015/818565
    32. Santosh Pandit, Jian-Na Cai, Ji-Eun Jung, Jae-Gyu Jeon. Effect of 1-Minute Fluoride Treatment on Potential Virulence and Viability of a Cariogenic Biofilm. Caries Research 2015, 49 (4) , 449-457. https://doi.org/10.1159/000434731
    33. Shivani Sharma, Stacey Lavender, JungReem Woo, Lihong Guo, Wenyuan Shi, LaTonya Kilpatrick-Liverman, James K. Gimzewski. Nanoscale characterization of effect of l-arginine on Streptococcus mutans biofilm adhesion by atomic force microscopy. Microbiology 2014, 160 (7) , 1466-1473. https://doi.org/10.1099/mic.0.075267-0
    34. Kirstin C. Morton, Lane A. Baker. Atomic force microscopy-based bioanalysis for the study of disease. Anal. Methods 2014, 6 (14) , 4932-4955. https://doi.org/10.1039/C4AY00485J

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect