Skip to main content
Log in

Occurrence of polyploidy in the fishes

  • Published:
Reviews in Fish Biology and Fisheries Aims and scope Submit manuscript

Abstract

Polyploidy, the multiplication of entire setsof chromosomes beyond the normal set of two,has occurred extensively, independently, and isoften repeated in many groups of fish, from thesharks to the higher teleosts. While there areseveral ways that a polyploid fish can develop,environmental change and hybrid stabilizationmay play a large role in the initiation of anew polyploid species. Despite its prevalence,the importance of polyploidy in the evolutionof the fishes is unclear. Polyploidy is morecommon in the lower teleosts than the higherteleosts, possibly due to an advantage gainedthrough decreased specialization in the lowerteleosts, a decreased viability of polyploidyin the higher fish, or both. Polyploid fishcould gain an advantage over diploid fishthrough increased heterozygosity, divergence ofduplicate genes, and/or increased expression ofkey physiological proteins. While polyploidfish do not differ considerably from diploidsphenotypically, they may be at a disadvantage,or certain advantages may be lessened due to anoverall decrease in cell number. This papersummarizes all polyploid species of fish knownto-date, and discusses the possible roles andpathways for establishment of polyploidy in theevolution of the fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allendorf, F. W. and Thorgaard, G. H. (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner, B. J. (ed.), Evolutionary Genetics of Fishes. Plenum Press, New York, pp. 1–53.

    Google Scholar 

  • Alves, M. J., Coelho, M. M. and Collares-Pereira, M. J. (1998) Diversity in the reproductive modes of females of the Rutilus alburnoides complex (Teleostei, Cyprinidae): A way to avoid the genetic constraints of uniparentalism. Mol.Biol.Evol. 15, 1233–1242.

    Google Scholar 

  • Amores, A., Force, A., Yan, Y.-L., Joly, L., Amemiya, C., Fritz, A., Ho, R. K., Langeland, J., Prince, V., Wang, Y.-L., Westerfield, M., Ekker, M. and Postlethwait, J. H. (1998) Zebrafish hox clusters and vertebrate genome evolution. Science 282, 1711–1714.

    Google Scholar 

  • Aparicio, S. (2000) Vertebrate evolution: Recent perspectives from fish. Trends Genet. 16, 54–56.

    Google Scholar 

  • Arai, K., Matsubara, K. and Suzuki, R. (1993) Production of polyploids and viable gynogens using spontaneously occurring tetraploid loach, Misgurnus anguillicaudatus. Aquaculture 117, 227–235.

    Google Scholar 

  • Benfey, T. J. (1989) A bibliography of triploid fish, 1943 to 1988. Can.Tech.Rep.Fish.Aquat.Sci. No. 1682, 33 pp.

  • Benfey, T. J. (1991) The physiology of triploid salmonids in rela-tion to aquaculture. In: Pepper, V. A. (ed. ), Proceedings of the Atlantic Canada Workshop on Methods for the Production of Non-maturing Salmonids. Can.Tech.Rep.Fish.Aquat.Sci. No. 1789, pp. 73–80.

  • Benfey, T. J. (1999) The physiology and behavior of triploid fishes. Rev.Fish.Sci. 7, 36–67.

    Google Scholar 

  • Berrebi, P. (1995) Speciation of the genus Barbus in the North Medi-terranean basin: Recent advances from biochemical genetics. Biol.Conserv. 72, 237–249.

    Google Scholar 

  • Berrebi, P. and Ráb, P. (1998) The 'Barbus' intermedius species flock in Lake Tana (Ethiopia): III-cytogenetic and molecular genetic data. Ital.J.Zool. 65, 15–20.

    Google Scholar 

  • Birstein, V. J. and DeSalle, R. (1998) Molecular phylogeny of Acipenserinae. Mol.Phylogenet.Evol. 9, 141–155.

    Google Scholar 

  • Birstein, V. J., Hanner, R. and DeSalle, R. (1997) Phylogeny of the Acipenseriformes: Cytogenetic and molecular approaches. Environ.Biol.Fishes 48, 127–155.

    Google Scholar 

  • Borin, L. A., Martins-Santos, I. C. and Oliveria, C. (2002) A natural triploid in Trichomycterus davisi (Siluriformes, Trichomycter-idae): Mitotic and meiotic characterization by chromosome banding and synaptonemal complex analyses. Genetica 115, 253–258.

    Google Scholar 

  • Choudhury, R. C., Prasad, R. and Das, C. C. (1993) Chromosomes of four Indian marine catfishes (Bagridae, Ariidae: Siluriformes) with a heteromorphic pair in male Mystus gulio. Caryologia 46, 233–243.

    Google Scholar 

  • Donaldson, E. M. and Devlin, R. H. (1996) Uses of biotechnology to enhance production. In: Pennell, W. and Barton, B. A. (eds.), Principles of Salmonid Culture. Dev.Aquac.Fish.Sci. No. 29, pp. 969–1020.

  • Fernandes-Matioli, F. M. C., Almeida-Toledo, L. F. and Toledo-Filho, S. A. (1998) Natural triploidy in the Neotropical species Gymnotus carapo (Pisces: Gymnotiformes). Caryologia 51, 319–322.

    Google Scholar 

  • Ferris, S. D. (1984) Tetraploidy and the evolution of the catostomid fishes. In: Turner, B. J. (ed. ), Evolutionary Genetics of Fishes. Plenum Press, New York, pp. 55–93.

    Google Scholar 

  • Ferris, S. D. and Whitt, G. S. (1979) Evolution of the differential regulation of duplicate genes after polyploidization. J.Mol.Evol. 12, 267–317.

    Google Scholar 

  • Ferris, S. D. and Whitt, G. S. (1980) Genetic variability in species with extensive gene duplication: the tetraploid catostomid fishes. Am.Nat. 115, 650–666.

    Google Scholar 

  • Fontana, F. (2002) A cytogenetic approach to the study of taxonomy and evolution in sturgeons. J.Appl.Ichthyol. 18, 226–233.

    Google Scholar 

  • Froese, R. and Pauly, D. (eds. ) (2003) FishBase. World Wide Web electronic publication. http://www. fishbase. org.

  • Galetti, P. M., Jr. (1998) Chromosome diversity in neotropical fishes: NOR studies. Ital.J.Zool. 65, 53–56.

    Google Scholar 

  • Giuiliano-Caetano, L. and Bertollo, L. A. C. (1990). Karyotypic vari-ability in Hoplerythrinus unitaeniatus (Pisces, Characiformes, Erythrinidae). II. Occurrence of natural triploidy. Rev.Brasil.Genet. 13, 231–237.

    Google Scholar 

  • Goddard, K. A. and Schultz, R. J. (1993) Aclonal reproduction by polyploid members of the clonal hybrid species Phoxinus eos-neogaeus. Copeia 3, 650–660.

    Google Scholar 

  • Golubtsov, A. S. and Krysanov, E. Y. (1993) Karyological study of some cyprinid species from Ethiopia. The ploidy differences between large and small Barbus of Africa. J.Fish Biol. 42, 445–455.

    Google Scholar 

  • Gosline, W. A. (1971) Functional Morphology and Classification of Teleostean Fishes. University Press of Hawaii, Honolulu, 208 pp.

    Google Scholar 

  • Guégan, J.-F. and Morand, S. (1996) Polyploid hosts: Strange attractors for parasites? Oikos 77, 366–370.

    Google Scholar 

  • Guégan, J.-F., Rab, P., Machordom, A. and Doadrio, I. (1995) New evidence of hexaploidy in 'large' African Barbus with some considerations on the origin of hexaploidy. J.Fish Biol. 47, 192–198.

    Google Scholar 

  • Jianxun, C., Xiuhai, R. and Qixing, Y. (1991) Nuclear DNA content variation in fishes. Cytologia 56, 425–429.

    Google Scholar 

  • Kendall, C., Valentino, S., Bodine, A. B. and Luer, C. A. (1994) Trip-loidy in a nurse shark, Ginglymostoma cirratum. Copeia 1994, 825–827.

    Google Scholar 

  • Klinkhardt, M., Tesche, M. and Greven, H. (1995) Database of Fish Chromosomes. Westarp Wissenschaften, Magdeburg, 230 pp.

    Google Scholar 

  • Koh, E. G. L., Lam, K., Christoffels, A., Erdmann, M. V., Brenner, S. and Venkatesh, B. (2003) Hox gene clusters in the Indonesian coelacanth, Latimeria menadoensis. Proc.Nat.Acad.Sci.USA. 100, 10841088.

    Google Scholar 

  • Larhammar, D. and Risinger, C. (1994) Why so few pseudogenes in tetraploid species? Trends Genet. 10, 418–419.

    Google Scholar 

  • Ledje, C., Kim, C.-B. and Ruddle, F. H. (2002) Characterization of Hox genes in the bichar, Polypterus palmas. J.Exp.Zool.(Mol.Dev.Evol.) 294, 107–111.

    Google Scholar 

  • Li, W.-H. (1980) Rate of gene silencing at duplicate loci: A theoretical study and interpretation of data from tetraploid fishes. Genetics 95, 237–258.

    Google Scholar 

  • Longhurst, T. J. and Joss, J. M. P. (1999) Homeobox genes in the Australian lungfish, Neoceratodus forsteri. J.Exp.Zool.(Mol.Dev.Evol.) 285, 140–145.

    Google Scholar 

  • Maistro, E. L., Dias, A. L., Foresti, F., Oliveira, C. and Moreira Filho, O. (1994) Natural triploidy in Astyanax scabripinnis (Pisces, Characidae) and simultaneous occurrence of macro B-chromosomes. Caryologia 47, 233–239.

    Google Scholar 

  • Moyle, P. B. and Cech, J. J., Jr. (1996) Fishes: An Introduction to Ichthyology. Prentice-Hall, Upper Saddle River, NJ, 612 pp.

    Google Scholar 

  • Murakami, M. and Fujitani, H. (1997) Polyploid-specific repetitive DNA sequences from triploid ginbuna (Japanese silver crucian carp, Carassius auratus langsdorfi). Genes Genet.Syst. 72, 107–113.

    Google Scholar 

  • Ohno, S. (1970) The enormous diversity in genome sizes of fish as a reflection of nature's extensive experiments with gene duplication. Trans.Amer.Fish.Soc. 99, 120–130.

    Google Scholar 

  • Ohno, S., Wolf, U. and Atkin, N. B. (1968) Evolution from fish to mammals by gene duplication. Hereditas 59, 169–187.

    Google Scholar 

  • Olmo, E., Stingo, V., Cobror, O., Capriglione, T. and Odierna, G. (1982) Repetitive DNA and polyploidy in selachians. Comp.Biochem.Physiol. 73B, 739–745.

    Google Scholar 

  • Onozato, H., Torisawa, M. and Kusama, M. (1983) Distribution of the gynogenetic polyploid crucian carp Carassius auratus in Hokkaido, Japan. Jpn.J.Ichthyol. 30, 184–190.

    Google Scholar 

  • Otto, S. P. and Whitton, J. (2000) Polyploid incidence and evolution. Annu.Rev.Genet. 34, 401–437.

    Google Scholar 

  • Pandian, T. J. and Koteeswaran, R. (1999) Natural occurrence of monoploids and polyploids in the Indian catfish, Heteropneustes fossilis. Curr.Sci. 76, 1134–1137.

    Google Scholar 

  • Post, A. (1973) Chromosomes of two fish-species of the genus Diretmus (Osteichthyes, Berciformes: Diretmidae). In: Schröder, J. H. (ed. ), Genetics and Mutagenesis of Fish. Springer-Verlag, New York, pp. 103–111.

    Google Scholar 

  • Ráb, P. (1981) Karyotype of European catfish Silurus glanis (Silur-idae, Pisces), with remarks on cytogenetics of siluroid fishes. Folia Zool. 30, 271–286.

    Google Scholar 

  • Ráb, P., Rábová, M., Bohlen, J. and Lusk, S. (2000) Genetic differentiation of the two hybrid diploid-polyploid complexes of loaches, genus Cobitis (Cobitidae) involving C.taenia, C.elongatoides and C. spp. in the Czech Republic: Karyotypes and cytogenetic diversity. Folia Zool. 49, 55–66.

    Google Scholar 

  • Raicu, P. and Taisescu, E. (1972) Misgurnus fossilis, a tetraploid fish species. J.Hered. 63, 92–94.

    Google Scholar 

  • Raicu, P., Taisescu, E. and Bãnãrescu, P. (1981) Carassius carassius and C.auratus, a pair of diploid and tetraploid representative species (Pisces, Cyprinidae). Cytologia 46, 233–240.

    Google Scholar 

  • Rishi, K. K. and Haobam, M. S. (1984) Karyotypes of three forms of fishes having high chromosome number. Int.J.Acad.Ichthyol. 5, 139–144.

    Google Scholar 

  • Rishi, K. K., Shashikala and Rishi, S. (1998) Karyotype study on six Indian hill-stream fishes. Chromosome Sci. 2, 9–13.

    Google Scholar 

  • Robinson-Rechavi, M., Marchand, O., Escriva, H., Bardet, P.-L., Zelus, D., Hughes, S. and Laudet, V. (2001) Euteleost fish genomes are characterized by expansion of gene families. Genome Res. 11, 781–788.

    Google Scholar 

  • Rock, J., Eldrige, M., Champion, A., Johnston, P. and Joss, J. (1996) Karyotype and nuclear DNA content of the Australian lungfish, Neoceratodus forsteri (Ceratodidae: Dipnoi). Cytogenet.Cell Genet. 73, 187–189.

    Google Scholar 

  • Ruiguang, Z., Zheng, S. and Wanguo, L. (1986) Studies on karyotypes and nuclear DNA contents of some cyprinoid fishes, with notes on fish polyploids in china. In: Uyeno, T., Arai, R., Taniuchi, T. and Matsuura, K. (eds. ), Indo-Pacific Fish Biology: Proceedings of the Second International Conference on Indo-Pacific Fishes. Ichthyological Society of Japan, Tokyo, pp. 877–885.

    Google Scholar 

  • Saitoh, K., Kobayashi, T., Ueshima, R. and Numachi, K.-I. (2000) Analyses of mitochondrial and satellite DNAs on spined loaches of the genus Cobitis from Japan have revealed relationships among populations of three diploid-tetraploid complexes. Folia Zool. 49, 9–16.

    Google Scholar 

  • Scheerer, P. D. and Thorgaard, G. H. (1983) Increased survival in salmonid hybrids by induced triploidy. Can.J.Fish.Aquat.Sci. 40, 2040–2044.

    Google Scholar 

  • Schultz, R. J. (1980) Role of polyploidy in the evolution of fishes. In: Lewis, W. H. (ed. ), Polyloidy: Biological Relevance. Plenum Press, New York, pp. 313–340.

    Google Scholar 

  • Schultz, R. J. (1989) Origins and relationships of unisexual Poeciliids. In: Meffe, G. K. and Snelson, F. F., Jr. (eds. ), Ecology and Evolution of Livebearing Fishes (Poeciliidae). Prentice Hall, Englewood Cliffs, NJ, pp. 69–87.

    Google Scholar 

  • Shimizu, Y., Oshiro, T. and Sakaizumi, M. (1993) Electrophor-etic studies of diploid, triploid and tetraploid forms of the Japanese silver crucian carp, Carassius auratus langsdorfii. Jpn.J.Ichthyol. 40, 65–75.

    Google Scholar 

  • Soltis, P. S. and Soltis, D. E. (2000) The role of genetic and genomic attributes in the success of polyploids. Proc.Nat.Acad.Sci.USA. 97, 7051–7057.

    Google Scholar 

  • Stingo, V. and Rocco, L. (1991). Chondrichthyan cytogenetics: A comparison with teleosteans. J.Mol.Evol. 33, 76–82.

    Google Scholar 

  • Suzuki, A. and Taki, Y. (1981) Karyotype of tetraploid origin in a tropical Asian cyprinid Acrossocheilus sumatranus. Jpn.J.Ichthyol. 28, 173–176.

    Google Scholar 

  • Taylor, J. S., Braasch, I., Frickey, T., Meyer, A. and Van de Peer, Y. (2003) Genome duplication, a trait shared by 22, 000 species of ray-finned fish. Genome Res. 13, 382–390.

    Google Scholar 

  • Tsigenopoulos, C. S., Ráb, P., Naran, D. and Berrebi, P. (2002) Multiple origins of polyploidy in the phylogeny of southern African barbs (Cyprinidae) as inferred from mtDNA markers. Heredity 88, 466–473.

    Google Scholar 

  • Vasil'yev, V. P. (1981) Chromosome numbers in fish-like vertebrates and fish. J.Ichthyol. 20, 1–38.

    Google Scholar 

  • Ward, R. D., McAndrew, B. J. and Wallis, G. P. (1981) Enzyme vari-ation in the brook lamprey, Lampetra planeri (Bloch), a member of the vertebrate group Agnatha. Genetica 55, 67–73.

    Google Scholar 

  • Wittbrodt, J., Meyer, A. and Schartl, M. (1998) More genes in fish? BioEssays 20, 511–515.

    Google Scholar 

  • Yu, X., Zhou, T., Li, K., Li, Y. and Zhou, M. (1987) On the karyosystematics of cyprinid fishes and a summary of fish chromosome studies in China. Genetica 72, 225–236.

    Google Scholar 

  • Zhang, Q. and Arai, K. (1999) Distribution and reproductive capacity of natural triploid individuals and occurrence of unre-duced eggs as a cause of polyploidization in the loach, Misgurnus anguillicaudatus. Ichthyological Res. 46, 153–161.

    Google Scholar 

  • Zhou, R, Cheng, H. and Tiersch, T. R. (2002) Differential genome duplication and fish diversity. Rev.Fish Biol.Fish. 11, 331–337.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leggatt, R.A., Iwama, G.K. Occurrence of polyploidy in the fishes. Reviews in Fish Biology and Fisheries 13, 237–246 (2003). https://doi.org/10.1023/B:RFBF.0000033049.00668.fe

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RFBF.0000033049.00668.fe

Navigation