Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recognizing and treating secondary osteoporosis

Abstract

Osteoporosis, through its association with fragility fracture, is a major public health problem, costing an estimated $34.8 billion worldwide per annum. With projected demographic changes, the burden looks set to grow. Therefore, the prevention of osteoporosis, as well as its identification and treatment once established, are becoming increasingly important. Osteoporosis is secondary when a drug, disease or deficiency is the underlying cause. Glucocorticoids, hypogonadism, alcohol abuse and malnutrition are among the most frequently recognized causes of secondary osteoporosis but the list of implicated diseases and drugs is growing and some of the more recently recognized associations, such as those with haematological conditions and acid-suppressing medications, are less well publicized. In some cases, advancement in treatment of the primary disease has led to people living long enough to develop secondary osteoporosis; for example, successful treatment for breast and prostate malignancies by hormonal manipulation, improved survival in HIV with the advent of anti-retroviral therapies, and improved treatment for cystic fibrosis. This Review emphasizes the importance of secondary osteoporosis, discusses familiar and less well-known causes and what is known of their mechanisms, provides guidance as to the pragmatic identification of secondary osteoporosis and summarizes treatment options, where available.

Key Points

  • Osteoporosis and associated fragility fractures are major public health problems, but once fractures develop, it is already too late; thus, prevention is a priority

  • A growing number of diseases, deficiencies and drugs are recognised as causing secondary osteoporosis, and should be suspected as causes in particular among men and pre-menopausal women presenting with osteoporosis

  • In most cases, the general principle of treatment of secondary osteoporosis is to treat the underlying disease or deficiency, or to remove the relevant drug

  • Mechanisms of secondary osteoporosis vary and include low bone mass, increasing falls, and reduced bone quality—treatment strategies might need to be adapted for different patients

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A pragmatic algorithm for identifying treatable causes of secondary osteoporosis.
Figure 2: Measures that can be applied to the management of any patient who is at risk of, or has already developed, secondary osteoporosis.
Figure 3: Strategies for the prevention and treatment of secondary osteoporosis.
Figure 4: Causes of low bone mass in patients with HIV.

Similar content being viewed by others

References

  1. Office of the Surgeon General (US). The frequency of bone disease in Bone health and Osteoporosis: a Report of the Surgeon General. (US Department of Health and Human Services, Rockville, MD, USA, 2004).

  2. British Orthopaedic Association. The Care of Patients with Fragility Fracture. (British Orthopaedic Association, UK, 2007).

  3. Harvey, N., Dennison, E. & Cooper, C. Osteoporosis: impact on health and economics. Nat. Rev. Rheumatol. 6, 99–105 (2010).

    Article  PubMed  Google Scholar 

  4. Ross, P. D., Davis, J. W., Epstein, R. S., Wasnich, R. D. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann. Intern. Med. 114, 919–923 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Lindsay, R. et al. Risk of new vertebral fracture in the year following a fracture. JAMA 285, 320–323 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Cuddihy, M. T., Gabriel, S. E., Crowson, C. S., O'Fallon, W. M. & Melton, L. J. III. Forearm fractures as predictors of subsequent osteoporotic fractures. Osteoporosis Int. 9, 469–475 (1999).

    Article  CAS  Google Scholar 

  7. Deutschmann, H. A. et al. Search for occult secondary osteoporosis: impact of identified possible risk factors on bone mineral density. J. Int. Med. 252, 389–397 (2002).

    Article  CAS  Google Scholar 

  8. Caplan, G. A., Scane, A. C. & Francis, R. M. Pathogenesis of vertebral crush fractures in women. J. R. Soc. Med. 87, 200–202 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Odabasi, E., Turan, M., Tekbas, F. & Kutlu, M. Evaluation of secondary causes that may lead to bone loss in women with osteoporosis: a retrospective study. Arch. Gynecol. Obstet. 279, 863–867 (2009).

    Article  PubMed  Google Scholar 

  10. Moreira Kulak, C. A. et al. Osteoporosis and low bone mass in premenopausal and perimenopausal women. Endocr. Pract. 6, 296–304 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Tannenbaum, C. et al. Yield of laboratory testing to identify secondary contributors to osteoporosis in otherwise healthy women. J. Clin. Endocrinol. Metab. 87, 4431–4437 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Peris, P. et al. Clinical characteristics and etiologic factors of premenopausal osteoporosis in a group of Spanish women. Semin. Arthritis Rheum. 32, 64–70 (2002).

    Article  PubMed  Google Scholar 

  13. Cerdá Gabaroi, D. et al. Search for hidden secondary causes in postmenopausal women with osteoporosis. Menopause 17, 135–139 (2010).

    Article  PubMed  Google Scholar 

  14. Baillie, S. P., Davison, C. E., Johnson, F. J. & Francis, R. M. Pathogenesis of vertebral crush fractures in men. Age Ageing 21, 139–141 (1992).

    Article  CAS  PubMed  Google Scholar 

  15. Khosla, S., Lufkin, E. G., Hodgson, S. F., Fitzpatrick, L. A. & Melton, L. J. III. Epidemiology and clinical features of osteoporosis in young individuals. Bone 15, 551–555 (1994).

    Article  CAS  PubMed  Google Scholar 

  16. Poór, G., Atkinson, E. J., O'Fallon, W. M. & Melton, L. J. III. Predictors of hip fractures in elderly men. J. Bone Miner. Res. 10, 1900–1907 (1995).

    Article  PubMed  Google Scholar 

  17. Kelepouris, N., Harper, K. D., Gannon, F., Kaplan, F. S. & Haddad, J. G. Severe osteoporosis in men. Ann. Intern. Med. 123, 452–460 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Grisso, J. A. et al. Risk factors for hip fracture in men. Hip Fracture Study Group. Am. J. Epidemiol. 145, 786–793 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Scane, A. C. et al. Case–control study if the pathogenesis and sequelae of symptomatic vertebral fractures in men. Osteoporos. Int. 9, 91–97 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Evans, S. F. & Davie, M. W. Vertebral fractures and bone mineral density in idiopathic, secondary and corticosteroid associated osteoporosis in men. Ann. Rheum. Dis. 59, 269–275 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tuck, S. P., Raj, N. & Summers, J. D. Is distal forearm fracture in men due to osteoporosis? Osteoporos. Int. 13, 630–636 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Pye, S. R. et al. Frequency and causes of osteoporosis in men. Rheumatology (Oxford) 42, 811–812 (2003).

    Article  CAS  Google Scholar 

  23. Ryan, C. S., Petkov, V. I. & Adler, R. A. Osteoporosis in men: the value of laboratory testing. Osteoporosis Int. 22, 1845–1853 (2011).

    Article  CAS  Google Scholar 

  24. Brown, S. E. Rethinking “primary” osteoporosis: isn't all osteoporosis really just “secondary” osteoporosis? Better Bones [online] (2012).

  25. Romagnoli, E. et al. Secondary osteoporosis in men and women: clinical challenge of an unresolved issue. J. Rheumatol. 38, 1671–1679 (2011).

    Article  PubMed  Google Scholar 

  26. Gallagher, J. C. & Sai, A. J. Is screening for secondary causes of osteoporosis worthwhile? Nat. Rev. Endocrinol. 6, 360–362 (2010).

    Article  PubMed  Google Scholar 

  27. Rubin, M. R. et al. Idiopathic osteoporosis in premenopausal women. Osteoporosis Int. 16, 526–533 (2005).

    Article  Google Scholar 

  28. Dent, C. E. & Friedman, M. Idiopathic juvenile osteoporosis. Q. J. Med. 34, 177–210 (1965).

    CAS  PubMed  Google Scholar 

  29. Rauch, F. & Bishop, N. Juvenile osteoporosis in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, (ed. Rosen, C. J.) 264–267 (American Society for Bone Mineral Research, Washington, USA, 2008).

    Chapter  Google Scholar 

  30. Brodsky, B. & Baum, J. Modelling collagen diseases: Structural biology. Nature 453, 998–999 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sillence, D. O., Senn, A. & Danks, D. M. Genetic heterogeneity in Osteogenesis imperfecta. J. Med. Genet. 16, 101–116 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marini, J. C., Cabral, W. A. & Barnes, A. M. Null mutations in LEPRE1 and CRTAP cause severe recessive osteogenesis imperfecta. Cell Tissue Res. 339, 59–70 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. Phillipi, C. A., Remmington, T. & Steiner, R. D. Bisphosphonate therapy for Osteogenesis imperfecta. Cochrane Database of Systematic Reviews Issue 4, Art. No.:CD005088. http://dx.doi.org/10.1002/14651858.CD005088.pub2.

  34. Adami, S. et al. Intravenous neridronate in adults with osteogenesis imperfecta. J. Bone Miner. Res. 18, 126–130 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Sakkers, R. et al. Skeletal effects and functional outcome with olpadronate in children with Osteogenesis imperfecta: a 2-year randomised placebo-controlled study. Lancet 363, 1427–1431 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Letocha, A. D. et al. Controlled trial of pamidronate in children with types III and IV Osteogenesis imperfecta confirms vertebral gains but not short-term functional improvement. J. Bone Miner. Res. 20, 977–986 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Ward, L. M. et al. Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J. Clin. Endocrinol. Metab. 96, 355–364. (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Papapoulos, S. E. & Cremers, S. C. Prolonged bisphosphonate release after treatment in children. N. Engl. J. Med. 356 1075–1076 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Buntain, H. M. et al. Controlled longitudinal study of bone mass accrual in children and adolescents with cystic fibrosis. Thorax 61, 146–154 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Haworth, C. S. et al. A prospective study of change in bone mineral density over one year in adults with cystic fibrosis. Thorax 57, 719–723 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bhudhikanok, G. S. et al. Bone acquisition and loss in children and adults with cystic fibrosis: a longitudinal study. J. Paediatr. 133, 18–27 (1998).

    Article  CAS  Google Scholar 

  42. Haworth, C. S. Impact of cystic fibrosis on bone health. Curr. Opin. Pulm. Med. 16, 616–622 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Sermet-Gaudelaus, I. et al. Low bone mineral density in young children with cystic fibrosis. Am. J. Respir. Crit. Care Med. 175, 951–957 (2007).

    Article  Google Scholar 

  44. Dif, F. et al. Severe osteopenia in CTFR-null mice. Bone 35, 595–603 (2004).

    Article  CAS  PubMed  Google Scholar 

  45. Shead, E. F. et al. Cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in human bone. Thorax 62, 650–651 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wolfenden, L. L. et al. Vitamin D and bone health in adults with cystic fibrosis. Clin. Endocrinol. 69, 374–381 (2008).

    Article  CAS  Google Scholar 

  47. Papaioannou, A. et al. Alendronate once weekly for the prevention and treatment of bone loss in Canadian adult Cystic fibrosis patients (CFOS trial). Chest 134, 794–800 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Aris, R. M. et al. Efficacy of alendronate in adults with cystic fibrosis with low bone density. Am. J. Respir. Crit. Care Med. 169, 77–82 (2004).

    Article  PubMed  Google Scholar 

  49. Chapman, I. et al. Intravenous Zoledronate improves bone density in adults with cystic fibrosis. Clin. Endocrinol. 70, 838–846 (2009).

    Article  CAS  Google Scholar 

  50. Haworth, C. S. et al. Effect of intravenous pamidronate on bone mineral density in adults with cystic fibrosis. Thorax 56, 314–316 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bojesen, A. et al. Bone mineral density in Klinefelter syndrome is reduced and primarily determined by muscle strength and resorptive markers but not directly by testosterone. Osteoporosis Int. 22, 1441–1450 (2011).

    Article  CAS  Google Scholar 

  52. Swerdlow, A. J., Higgins, C. D., Schoemaker, M. J., Wright, A. F. & Jacobs, P. A. Mortality in patients with Klinefelter syndrome in Britain: a cohort study. J. Clin. Endocrinol. Metab. 90, 6516–6522 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Ferlin, A., Schipilliti, M. & Foresta, C. Bone density and risk of osteoporosis in Klinefelter syndrome. Acta Paediatrica 100, 878–884 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Ferlin, A. et al. Bone mass in subjects with Klinefelter syndrome: role of testosterone levels and androgen receptor gene CAG polymorphism. J. Clin. Endocrinol. Metab. 96, E739–E745 (2011).

    Article  CAS  PubMed  Google Scholar 

  55. Eastell, R. et al. A UK Consensus Group on management of glucocorticoid-induced osteoporosis: an update. J. Intern. Med. 244, 271–292 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Kanis, J. A. et al. A meta-analysis of prior corticosteroid use and fracture risk. J. Bone Miner. Res. 19, 893–899 (2004).

    Article  PubMed  Google Scholar 

  57. Weinstein, R. S. Glucocorticoid-induced bone disease. N. Engl. J. Med. 365, 62–70 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Hofbauer, L. C., Hamann, C. & Ebeling, P. Approach to the patient with secondary osteoporosis. Eur. J. Endocrinol. 162, 1009–1020 (2010).

    Article  CAS  PubMed  Google Scholar 

  59. O'Brien, C. A. et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145, 1835–1841 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Weinstein, R. S. Glucocorticoids, osteocytes, and skeletal fragility: the role of bone vascularity. Bone 46, 564–570 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Russcher, H. et al. Two polymorphisms in the glucocorticoid receptor gene directly affect glucocorticoid-regulated gene expression. J. Clin. Endocrinol. Metab. 90, 5804–5810 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Van Staa, T. P., Leufkens, H. G., Abenhaim, L., Zhang, B. & Cooper, C. Use of oral corticosteroids and risk of fractures. June, 2000. J. Bone Miner. Res. 20, 1487–1494 (2005).

    Article  CAS  PubMed  Google Scholar 

  63. Van Staa, T. P., Leufkens, H. G. M., Abenhaim, L., Zhang, B. & Cooper, C. Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology (Oxford) 39, 1383–1389 (2000).

    Article  CAS  Google Scholar 

  64. Van Staa, T. P., Leufkens, H. G. M., Cooper, C. Use of inhaled corticosteroids and risk of fractures. J. Bone Miner. Res. 16, 581–588 (2001).

    Article  CAS  PubMed  Google Scholar 

  65. Cooper, M. S. et al. Osteoblastic 11β-hydroxysteroid dehydrogenase type I activity increases with age and glucocorticoid exposure. J. Bone Miner. Res. 17, 979–986 (2002).

    Article  CAS  PubMed  Google Scholar 

  66. Bone and Tooth Society of Great Britain, National Osteoporosis Society & Royal College of Physicians. Guidelines on the prevention and treatment of glucocorticoid-induced osteoporosis. Royal College of Physicians [online]. (2003).

  67. Grossman, J. M. et al. American College of Rheumatology 2010 recommendations for the prevention and treatment of glucocorticoid-induced osteoporosis. Arthritis Care Res. 62, 1515–1526 (2010).

    Article  Google Scholar 

  68. Reid, D. M. et al. Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet 373, 1253–1263 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Mok, C. C. et al. Extended report: Raloxifene for prevention of glucocorticoid-induced bone loss: a 12-month randomized double-blinded placebo-controlled trial. Ann. Rheum. Dis. 70, 778–784 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Saag, K. G. et al. Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty six month results of a randomised, double-blind, controlled trial. Arthritis Rheum. 60, 3346–3355 (2009).

    Article  CAS  PubMed  Google Scholar 

  71. Lau, A. N. & Adachi, J. D. Role of teriparatide in treatment of glucocorticoid-induced osteoporosis. Ther. Clin. Risk Manag. 6, 497–503 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Devogelaer, J. P. et al. Baseline glucocorticoid dose and bone mineral density response with teriparatide or alendronate therapy in patients with glucocorticoid-induced osteoporosis. J. Rheumatol. 37, 141–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Saag, K. G. et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N. Engl. J. Med. 357, 2028–2039 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Bassett, J. H. et al. Thyroid status during skeletal development determines adult bone structure and mineralization. Mol. Endocrinol. 21, 1893–1904 (2007).

    Article  CAS  PubMed  Google Scholar 

  75. Cooper, M. S., Gittoes & N. J. L. Bone health and thyroid disease. Osteoporosis Rev. 18, 1–6 (2010).

    Google Scholar 

  76. Cummings, S. R., Nevitt, M. C. & Browner, W. S. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N. Engl. J. Med. 332, 767–773 (1995).

    Article  CAS  PubMed  Google Scholar 

  77. Bauer, D. C., Ettinger, B., Nevitt, M. C. & Stone, K. L. Study of Osteoporotic Fractures Research Group. Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann. Intern. Med. 134, 561–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  78. Flynn, R. W. et al. Serum thyroid-stimulating hormone concentration and morbidity from cardiovascular disease and fractures in patients on long-term thyroxine therapy. J. Clin. Endocrinol. Metab. 95, 186–193 (2010).

    Article  CAS  PubMed  Google Scholar 

  79. Turner, M. R. et al. Levothyroxine dose and risk of fractures in older adults: nested case–control study. BMJ 342, d2238 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Nicodemus, K. K. & Folsom, A. R. Iowa Women's Health Study. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care. 24, 1192–1197 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Hofbauer, L. C., Brucck, C. C., Singh, S. K. & Dobnig, H. Osteoporosis in patients with diabetes mellitus. J. Bone Miner. Res. 22, 1317–1328 (2007).

    Article  CAS  PubMed  Google Scholar 

  82. Thrailkill, K. M., Lumpkin, C. K. Jr, Bunn, R. C., Kemp, S. F. & Fowkles, J. L. Is insulin an anabolic agent in bone? Dissecting the diabetic bone for clues. Am. J. Physiol. Endocrinol. Metab. 289, E735–E745 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. De Liefde, I. I. et al. Bone mineral density and fracture risk in type II diabetes mellitus: the Rotterdam study. Osteoporosis Int. 16, 1713–1720 (2005).

    Article  CAS  Google Scholar 

  84. Holst, J. J. et al. Regulation of glucagon secretion by incretins. Diabetes Obes Metab. 13, 89–94 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Venken, K., Boonen, S., Bouillon, R. & Vanderschueren, D. Gonadal steroids 117–123 in Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. (American Society of Bone Mineral Research, USA, 2008).

    Google Scholar 

  86. Shahinian, V. B., Kuo, Y. F., Freeman, J. L. & Goodwin, J. S. Risk of fracture after androgen deprivation therapy for prostate cancer. N. Engl. J. Med. 352, 154–164 (2005).

    Article  CAS  PubMed  Google Scholar 

  87. Morgans, A. K. & Smith, M. R. RANKL-targeted therapies: the next frontier in the treatment of male osteoporosis. J. Osteoporos. http://dx.doi.org/10.4061/2011/941310.

  88. Smith, M. R. et al. Effects of Denosumab on bone mineral density in men receiving androgen deprivation therapy for prostate cancer. J. Urol. 182, 2670–2675 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fizazi, K. et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised double-blind study. Lancet 377, 813–822 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ferrari-Lacraz, S. & Ferrari, S. Do RANKL inhibitors (denosumab) affect inflammation and immunity? Osteoporosis Int. 22, 435–446 (2011).

    Article  CAS  Google Scholar 

  91. Cohen, S. B. et al. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis Rheum. 58, 1299–1309 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Geusens, P. P. et al. The ratio of circulating osteoprotegerin to RANKL in early rheumatoid arthritis predicts later joint destruction. Arthritis Rheum 54, 1772–1777 (2006).

    Article  CAS  PubMed  Google Scholar 

  93. Kong, Y. Y. et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 402, 304–309 (1999).

    Article  CAS  PubMed  Google Scholar 

  94. Wheater, G. et al. Suppression of bone turnover by B-cell depletion in patients with rheumatoid arthritis. Osteoporos. Int. 22, 3067–3072 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Lodder, M. C. et al. Bone mineral density in patients with rheumatoid arthritis: relation between disease severity and low bone mineral density. Ann. Rheum. Dis. 63, 1576–1580 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Diarra, D. et al. Dickkopf-1 is a master regulator of joint remodelling. Nat. Med. 13, 156–163 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Goldring, S. R. & Goldring, M. B. Eating bone or adding it: the wnt pathway decides. Nat. Med. 13, 133–134 (2007).

    Article  CAS  PubMed  Google Scholar 

  98. Goldring, S. R. Inflammation-induced bone loss in the rheumatic diseases. In Primer on the Metabolic Bone Diseases (ed. Rosen, C. J.) 272–275 (American Society for Bone and Mineral Research, Washington, US, 2008).

    Chapter  Google Scholar 

  99. Goldring, S. R. & Gravallese, E. M. Bisphosphonates: environmental protection for the joint? Arthritis Rheum. 50, 2044–2047 (2004).

    Article  PubMed  Google Scholar 

  100. Ali, T., Lam, D., Bronze, M. S. & Humphrey, M. B. Osteoporosis in inflammatory bowel disease. Am. J. Med. 122, 599–604 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Compston, J. E. et al. Osteoporosis in patients with inflammatory bowel disease. Gut 28, 410–415 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bernstein, C. N., Sargent, M. & Leslie, W. D. Serum osteoprotegerin is increased in Crohn's disease: a population-based case control study. Inflamm. Bowel Dis. 11, 325–330 (2005).

    Article  PubMed  Google Scholar 

  103. Moschen, A. R. et al. The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss. Gut 54, 479–487 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bernstein, C. N., Leslie, W. D. & Leboff, M. S. AGA technical review on osteoporosis in gastrointestinal diseases. Gastroenterology 124, 795–841 (2003).

    Article  PubMed  Google Scholar 

  105. Henderson, S., Hoffman, N. & Prince, R. A double-blind placebo-controlled study of the effects of the bisphosphonates risedronate on bone mass in patients with inflammatory bowel disease. Am. J. Gastroenterol. 101, 119–123 (2006).

    Article  CAS  PubMed  Google Scholar 

  106. Palomba, S. et al. Effectiveness of risedronate in osteoporotic postmenopausal women with inflammatory bowel disease: a prospective, parallel, open-label, two-year extension study. Menopause 15, 730–736 (2008).

    Article  PubMed  Google Scholar 

  107. Tebas, P. et al. Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. AIDS 14, F63–F67 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Moore, A. L. et al. Reduced bone mineral density in HIV-positive individuals. AIDS 15, 1731–1733 (2001).

    Article  CAS  PubMed  Google Scholar 

  109. Brown, T. T. & Qaqish, R. B. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 20, 2165–2174 (2006).

    Article  PubMed  Google Scholar 

  110. Van Vonderen, M. G. et al. First line zidovudine/lamivudine/lopinavir/ritonavir leads to greater bone loss compared with nevirapine/lopinavir/ritonavir. AIDS 23, 1367–1376 (2009).

    Article  CAS  PubMed  Google Scholar 

  111. Bruera, D., Luna, N., David, D. O., Bergoglio, L. M. & Zamudio, J. Decreased bone mineral density in HIV-infected patients is independent of antiretroviral therapy. AIDS 17, 1917–1923 (2003).

    Article  PubMed  Google Scholar 

  112. Mondy, K. et al. Longitudinal evolution of bone mineral density and bone markers in human immunodeficiency virus-infected individuals. Clin. Infect. Dis. 36, 482–490 (2003).

    Article  PubMed  Google Scholar 

  113. Dolan, S. E., Kanter, J. R. & Grinspoon, S. Longitudinal analysis of bone density in human immunodeficiency virus-infected women. J. Clin. Endocrinol. Metab. 91, 2938–2945 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fausto, A. et al. Potential predictive factors of osteoporosis in HIV-positive subjects. Bone 38, 893–897 (2006).

    Article  PubMed  Google Scholar 

  115. Cotter, E. J., Ip, H. S., Powderly, W. G. & Doran, P. P. Mechanism of HIV protein induced modulation of mesenchymal stem cell osteogenic differentiation. BMC Musculoskelet. Disord. 9, 33 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fakruddin, J. M. & Laurence, J. HIV envelope gp120-mediated regulation of osteoclastogenesis via receptor activator of nuclear factor κ B ligand (RANKL) secretion and its modulation by certain HIV protease inhibitors through interferon-γ/RANKL cross-talk. J. Biol. Chem. 278, 48251–48258 (2003).

    Article  CAS  PubMed  Google Scholar 

  117. Glesby, M. J. Bone disorders in Human Immunodeficiency Virus Infection. Clin. Infect. Dis. 37 (Suppl 2), S91–S95 (2003).

    Article  CAS  PubMed  Google Scholar 

  118. Mallon, P. W. HIV and bone mineral density. Curr. Opin. Infect. Dis. 23, 1–8 (2010).

    Article  PubMed  Google Scholar 

  119. Lin, D. & Rieder, M. J. Interventions for the treatment of decreased bone mineral density associated with HIV infection. Cochrane Database of Systematic Reviews 2007, Issue 2. Art No.:CD005645. doi:10.1002/14651858.CD005645.pub2.

  120. Callander, N. S. & Roodman, G. D. Myeloma bone disease. Semin. Haematol. 38, 276–285 (2001).

    Article  CAS  Google Scholar 

  121. Melton, L. J. III, Kyle, R. A., Achenbach, S. J., Oberg, A. L. & Rajkumar, S. V. Fracture risk with multiple myeloma: a population-based study. J. Bone Miner. Res. 20, 487–493 (2005).

    Article  PubMed  Google Scholar 

  122. Tian, E. et al. The role of the Wnt-signalling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N. Engl. J. Med. 349, 2483–2494 (2003).

    Article  CAS  PubMed  Google Scholar 

  123. Morgan, G. J. et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet 376, 1989–1999 (2010).

    Article  CAS  PubMed  Google Scholar 

  124. Dore, R. K. The RANKL Pathway and Denosumab. Rheum. Dis. Clin. North Am. 37, 433–452 (2011).

    Article  PubMed  Google Scholar 

  125. Giuliani, N. et al. The proteosome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood 110, 334–338 (2007).

    Article  CAS  PubMed  Google Scholar 

  126. Vestergaard, P., Rejnmark, L. & Mosekilde, L. Proton pump inhibitors, Histamine H2 receptor antagonists, and other antacid medications and the risk of fracture. Calcif. Tissue Int. 79, 76–83 (2006).

    Article  CAS  PubMed  Google Scholar 

  127. Yang, Y.-X., Lewis, J. D., Epstein, S. & Metz, D. C. Long-term proton pump inhibitor therapy and risk of hip fracture. JAMA 296, 2947–2953 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. O'Connell, M. B., Madden, D. M., Murray, A. M., Heaney, R. P. & Kerzner, L. J. Effects of proton pump inhibitors on calcium carbonate absorption in women: a randomized crossover trial. Am. J. Med. 120, 778–781 (2005).

    Article  CAS  Google Scholar 

  129. Yu, E. W. et al. Acid-suppressive medications and risk of bone loss and fracture in postmenopausal women. Calcif. Tissue Int. 83, 251–259 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Coleman, R. E. et al. Skeletal effects of exemestane on bone mineral density, bone biomarkers, and fracture incidence in postmenopausal women with early breast cancer participating in the Intergroup Exemestane Study (IES): A randomised controlled study. Lancet Oncol. 8, 119–127 (2007).

    Article  CAS  PubMed  Google Scholar 

  131. Llombart, A. et al. Immediate administration of Zoledronic acid reduces aromatase inhibitor associated bone loss in postmenopausal women with early breast cancer: 12-month analysis of the E-Zo-FAST trial. Clin. Breast Cancer 12, 40–48 (2012).

    Article  CAS  PubMed  Google Scholar 

  132. Sergi, G. et al. Preventive effect of risedronate on bone loss and frailty fractures in elderly women trated with anastrozole for early breast cancer. J. Bone Miner. Metab. http://dx.doi.org/10.1007/s00774-011-0341-1

  133. Rizzoli, R. et al. Guidance for the prevention of bone loss and fractures in postmenopausal women treated with aromatase inhibitors for breast cancer: an ESCEO position paper. Osteoporosis Int. http://dx.doi.org/10.1007/s00198-011-1870-0

  134. Schwartz, A. V. et al. Thiazolinedione use and bone loss in older diabetic patients. J. Clin. Endocrinol. Metab, 91, 3349–3354 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Betteridge, D. J. Thiazolinediones and fracture risk in patients with Type 2 diabetes. Diabet. Med. 28, 759–771 (2011).

    Article  CAS  PubMed  Google Scholar 

  136. Lecka-Czerniik, B. Bone loss in diabetes: use of antidiabetic thiazolinediones and secondary osteoporosis. Curr. Osteoporos. Rep, 8, 178–184 (2010).

    Article  Google Scholar 

  137. Meier, C. et al. Use of thiazolinediones and fracture risk. Arch. Intern. Med. 168, 820–825 (2008).

    Article  CAS  PubMed  Google Scholar 

  138. Van Lierop, A. H. et al. Distinct effects of pioglitazone and metformin on circulating sclerostin and biochemical effects of bone turnover in men with type 2 diabetes mellitus. Eur. J. Endocrinol. 166, 711–716 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Gustafson, B., Eliasson, B. & Smith, U. Thiazolinediones increase the wingless-type MMTV integration family (WNT) inhibitor Dickkopf-1 in adipocytes: a link with osteogenesis. Diabetologia 53, 536–540 (2010).

    Article  CAS  PubMed  Google Scholar 

  140. Kanis, J. A. et al. FRAX® and its applications to clinical practice. Bone 44, 734–743 (2009).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Supplementary information

Supplementary Table 1

Studies of the estimated prevalence of secondary osteoporosis among women (DOC 69 kb)

Supplementary Table 2

Studies of the estimated prevalence of secondary osteoporosis among men (DOC 70 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker-Bone, K. Recognizing and treating secondary osteoporosis. Nat Rev Rheumatol 8, 480–492 (2012). https://doi.org/10.1038/nrrheum.2012.93

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrrheum.2012.93

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing