Skip to main content
Log in

Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases

  • Published:
NeuroMolecular Medicine Aims and scope Submit manuscript

Abstract

Abnormal interactions and misfolding of synaptic proteins in the nervous system are being extensively explored as important pathogenic events resulting in neurodegeneration in various neurological disorders. These include Alzheimer’s disease (AD), Parkinson’s disease (PD), and dementia with Lewy bodies (DLB). In AD, misfolded amyloid β peptide 1–42 (Aβ), a proteolytic product of amyloid precursor protein metabolism, accumulates in the neuronal endoplasmic reticulum and extracellularly as plaques. In contrast, in PD and DLB cases there is abnormal accumulation of α-synuclein in neuronal cell bodies, axons, and synapses. Furthermore, in DLB, Aβ 1–42 may promote α-synuclein accumulation and neurodegeneration. The central event leading to synaptic and neuronal loss in these diseases is not completely clear yet; however, recent advances in the field suggest that nerve damage might result from the conversion of nontoxic monomers to toxic oligomers and protofibrils. The mechanisms by which misfolded Aβ peptide and α-synuclein might lead to synapse loss are currently under investigation. Several lines of evidence support the possibility that Aβ peptide and α-synuclein might interact to cause mitochondrial and plasma membrane damage upon translocation of protofibrils to the membranes. Accumulation of Aβ and α-synuclein oligomers in the mitochondrial membrane might result in the release of cytochrome C with the subsequent activation of the apoptosis cascade. Conversely, the oxidative stress and mitochondrial dysfunction associated with AD and PD may also lead to increased membrane permeability and cytochrome C release, which promotes Aβ and α-synuclein oligomerization and neurodegeneration. Together, these studies suggest that the translocation of misfolded proteins to the mitochondrial membrane might play an important role in either triggering or perpetuating neurodegeneration. The insights obtained from the characterization of this process may be applied to the role of mitochondrial dysfunction in other neurodegenerative disorders, including AD. New evidence may also provide a rationale for the mitochondrial membrane as a target for therapy in a variety of neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alves Da Costa C., Ancolio K., and Checler F. (2000) Wild-type but not Parkinson’s disease-related ala-53→Thr mutant alpha synuclein protects neuronal cells from apoptotic stimuli. J. Biol. Chem. 275, 24065–24069.

    Article  CAS  Google Scholar 

  • Askanas V., McFerrin J., Baque S., et al. (1996) Transfer of β-amyloid precursor protein gene using adenovirus vector causes mitochondrial abnormalities in cultures of normal human muscle. Proc. Natl. Acad. Sci. USA 93, 1314–1319.

    Article  PubMed  CAS  Google Scholar 

  • Avila J., Lim, F., Moreno F. et al. (2002) Tau function and dysfunction in neurons: its role in neuro-degenerative disorders. Mol. Neurobiol. 25, 213–231.

    Article  PubMed  CAS  Google Scholar 

  • Betarbet R., Sherer T. B., MacKenzie G., et al. (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat. Neurosci. 3, 1301–1306.

    Article  PubMed  CAS  Google Scholar 

  • Bonifati V., Rizzu P., van Baren M. J., et al. (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256–259.

    Article  PubMed  CAS  Google Scholar 

  • Busciglio J., Pelsman A., Wong C., et al. (2002) Altered metabolism of the amyloid beta precursor protein is associated with mitochondrial dysfunction in Down’s syndrome. Neuron 33, 677–688.

    Article  PubMed  CAS  Google Scholar 

  • Bush A. I. (2002) Metal complexing agents as therapies for Alzheimer’s disease. Neurobiol. Aging 23, 1031–1038.

    Article  PubMed  CAS  Google Scholar 

  • Chan S. L., Furukawa K., and Mattson M. P. (2002) Presenilins and APP in neuritic and synaptic plasticity: implications for the pathogenesis of Alzheimer’s disease. Neuromol. Med. 2, 167–196.

    Article  CAS  Google Scholar 

  • Chartier-Harlin M.-C., Crawford F., Houlden H., et al. (1991) Early-onset Alzheimer’s disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature 353, 844–846.

    Article  PubMed  CAS  Google Scholar 

  • Conway K., Harper J., and Lansbury P. (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318–1320.

    Article  PubMed  CAS  Google Scholar 

  • Conway K. A., Lee S. J., Rochet J. C., et al. (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA 97, 571–576.

    Article  PubMed  CAS  Google Scholar 

  • Cummings C. J. and Zoghbi H. Y. (2000) Trinucleotide repeats: mechanisms and pathophysiology. Annu. Rev. Genomics Hum. Genet. 1, 281–328.

    Article  PubMed  CAS  Google Scholar 

  • Dauer W., Kholodilov N., Vila M., et al. (2002) Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc. Natl. Acad. Sci. USA 99, 14524–14529.

    Article  PubMed  CAS  Google Scholar 

  • Duff K., Eckman C., Zehr C., et al. (1996) Increased amyloid-beta42(43) in brains of mice expressing mutant presenilin 1. Nature 383, 710–713.

    Article  PubMed  CAS  Google Scholar 

  • Feany M. and Bender W. (2000) A Drosophila model of Parkinson’s disease. Nature 404, 394–398.

    Article  PubMed  CAS  Google Scholar 

  • Ferrigno P. and Silver P. (2000) Polyglutamine expansions: proteolysis, chaperones, and the dangers of promiscuity. Neuron 26, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara H., Hasegawa M., Dohmae N., et al. (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 4, 160–164.

    Article  PubMed  CAS  Google Scholar 

  • Gearing M., Mirra S., Hedreen J., et al. (1995) Neuropathology confirmation of the clinical diagnosis of Alzheimer’s disease: CERAD. Part X. Neurology 45, 461–466.

    PubMed  CAS  Google Scholar 

  • Giasson B. I., Duda J. E., Murray I. V., et al. (2000) Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 290, 985–989.

    Article  PubMed  CAS  Google Scholar 

  • Goate A., Chartier-Harlin M.-C., Mullan M., et al. (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349, 704.

    Article  PubMed  CAS  Google Scholar 

  • Good P. F., Werner P., Hsu A., Olanow C. W., and Perl D. P. (1996) Evidence of neuronal oxidative damage in Alzheimer’s disease. Am. J. Pathol. 149, 21–28.

    PubMed  CAS  Google Scholar 

  • Gosavi N., Lee H. J., Lee J. S., Patel S., and Lee S. J. (2002) Golgi fragmentation occurs in the cells with prefibrillar alpha-synuclein aggregates and precedes the formation of fibrillar inclusion. J. Biol. Chem. 277, 48984–48992.

    Article  PubMed  CAS  Google Scholar 

  • Haas C., Hung A. Y., Citron M., Teplow D. B., and Selkoe D. J. (1995) beta-Amyloid, protein processing and Alzheimer’s disease. Arzneimittelforschung 45, 398–402.

    PubMed  CAS  Google Scholar 

  • Hashimoto M., and Masliah E. (1999) Alpha-synuclein in Lewy body disease and Alzheimer’s disease. Brain Pathol. 9, 707–720.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M., Takeda A., Hsu L. J., Takenouchi T., and Masliah E. (1999a) Role of cytochrome c as a stimulator of α-synuclein aggregation in Lewy body disease. J. Biol. Chem. 274, 28849–28852.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M., Hsu L., Xia Y., et al. (1999b) Oxidative stress induces amyloid-like aggregate formation of NACP/α-synuclein in vitro. Neuroreport 10, 717–721.

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M., Hernandez-Ruiz S., Hsu L., et al. (1998) Human recombinant NACP/a-synuclein is aggregated and fibrillated in vitro: Relevance for Lewy body disease. Brain Res 799, 301–306

    Article  PubMed  CAS  Google Scholar 

  • Hensley K., Carney J. M., Mattson M. P., et al. (1994) A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer disease. Proc. Natl. Acad. Sci. USA 91, 3270–3274.

    Article  PubMed  CAS  Google Scholar 

  • Hod Y., Pentyala S. N., Whyard T. C., and El-Maghrabi M. R. (1999) Identification and characterization of a novel protein that regulates RNA-protein interaction. J. Cell Biochem. 72, 435–444.

    Article  PubMed  CAS  Google Scholar 

  • Hsu L. J., Sagara Y., Arroyo A., et al. (2000) α-Synuclein promotes mitochondrial deficiencies and oxidative stress. Am. J. Pathol. 157, 401–410.

    PubMed  CAS  Google Scholar 

  • Imai Y., Soda M., Inoue H., et al. (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105, 891–902.

    Article  PubMed  CAS  Google Scholar 

  • Irizarry M., Growdon W., Gomez-Isla T., et al. (1998) Nigral and cortical Lewy bodies and dystrophic nigral neurites in Parkinson’s disease and cortical Lewy body disease contain alpha-synuclein immunoreactivity. J. Neuropathol. Exp. Neurol. 57, 334–337.

    PubMed  CAS  Google Scholar 

  • Iwai A. (2000) Properties of NACP/alpha-synuclein and its role in Alzheimer’s disease. Biochim. Biophys. Acta 1502, 95–109.

    PubMed  CAS  Google Scholar 

  • Iwai A., Masliah E., Yoshimoto M., et al. (1994) The precursor protein of non-Ab component of Alzheimer’s disease amyloid (NACP) is a presynaptic protein of the central nervous system. Neuron 14, 467–475.

    Article  Google Scholar 

  • Jakes R., Spillantini M., and Goedert M. (1994) Identification of two distinct synucleins from human brain. FEBS Lett. 345, 27–32.

    Article  PubMed  CAS  Google Scholar 

  • Jenner P. (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov. Disord. 13, 24–34.

    PubMed  Google Scholar 

  • Jia T., Liu Y. E., Liu J., and Shi Y. E. (1999) Stimulation of breast cancer invasion and metastasis by synuclein gamma. Cancer Res. 59, 742–747.

    PubMed  CAS  Google Scholar 

  • Jo E., McLaurin J., Yip C., St. George-Hyslop P., and Graser P. (2000) Alpha-synuclein membrane iteractions and lipid specificity. J. Biol. Chem. 275, 34328–34334.

    Article  PubMed  CAS  Google Scholar 

  • Keller J. N., Kindy M. S., Holtsberg F. W., et al. (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci. 18, 687–697

    PubMed  CAS  Google Scholar 

  • Keller J. N., Pang Z., Geddes J. W., et al. (1997) Impairment of glucose and glutamate transport and induction of mitochondrial oxidative stress and dysfunction in synaptosomes by amyloid beta-peptide: role of the lipid peroxidation product 4-hydroxynonenal. J. Neurochem.

  • Kirschenbaum F., Hsu S. C., Cordell B., and McCarthy J. V. (2001) Glycogen synthase kinase-3beta regulates presenilin 1 C-terminal fragment levels. J. Biol. Chem. 276, 30701–30707.

    Article  PubMed  CAS  Google Scholar 

  • Kish S. J., Bergeron C., Rajput A., et al. (1992) Brain cytochrome oxidase in Alzheimer’s disease. J. Neurochem. 59,, 776–779.

    Article  PubMed  CAS  Google Scholar 

  • Kitada T., Asakawa S., Hattori N., et al. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608.

    Article  PubMed  CAS  Google Scholar 

  • Klein R. L., King M. A., Hamby M. E., and Meyer E. M. (2002) Dopaminergic cell loss induced by human A30P alpha-synuclein gene transfer to the rat substantia nigra. Hum. Gene Ther. 13, 605–612.

    Article  PubMed  CAS  Google Scholar 

  • Koo E., Lansbury P. J., and Kelly J. (1999) Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc. Natl. Acad. Sci. USA 96, 9989–9990.

    Article  PubMed  CAS  Google Scholar 

  • Kruger R., Kuhn W., Muller T., et al. (1998) Ala30Pro mutation in the gene encoding α-synuclein in Parkinson’s disease. Nat. Genet. 18, 106–108.

    Article  PubMed  CAS  Google Scholar 

  • Langston J. W., Langston E. B., and Irwin I. (1984a) MPTP-induced parkinsonism in human and nonhuman primates—clinical and experimental aspects. Acta. Neurol. Scand. Suppl. 100, 49–54.

    PubMed  CAS  Google Scholar 

  • Langston J. W., Forno L. S., Rebert C. S., and Irwin I. (1984b) Selective nigral toxicity after systemic administration of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyrine (MPTP) in the squirrel monkey. Brain Res. 292, 390–394.

    Article  PubMed  CAS  Google Scholar 

  • Lansbury P. T. J. (1999) Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc. Natl. Acad. Sci. USA 96, 3342–3344.

    Article  PubMed  CAS  Google Scholar 

  • Lee H. J., Shin S. Y., Choi C., Lee Y. H., and Lee S. J. (2002) Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors. J. Biol. Chem. 277, 5411–5417.

    Article  PubMed  CAS  Google Scholar 

  • Leroy E., Boyer R., Auburger G., et al. (1998) The ubiquitin pathway in Parkinsons’s disease. Nature 395, 451–452.

    Article  PubMed  CAS  Google Scholar 

  • Liu Y., Fallon L., Lashuel H. A., Liu Z., and Lansbury P. T. J. (2002) The UCH-L1 gene encodes two opposing enzymatic activities that affect alpha-synuclein degradation and Parkinson’s disease susceptibility. Cell 111, 209–218.

    Article  PubMed  CAS  Google Scholar 

  • Manning-Bog A. B., McCormack A. L., Purisai M. G., Bolin L. M., and Di Monte D. A. (2003) Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration. J. Neurosci. 23, 3095–3099.

    PubMed  CAS  Google Scholar 

  • Masliah E. (2001) Recent advances in the understanding of the role of synaptic proteins in Alzheimer’s disease and other neurodegenerative disorders. IJ. Alz. Dis. 3, 1–9.

    Google Scholar 

  • Masliah E. (2000) The role of synaptic proteins in Alzheimer’s disease. Ann. NY Acad. Sci. 924, 68–75.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E., Rockenstein E., Veinbergs I., et al. (2000) Dopaminergic loss and inclusion body formation in alpha-synuclein mice: Implications for neurodegenerative disorders. Science 287, 1265–1269.

    Article  PubMed  CAS  Google Scholar 

  • Masliah E., Iwai A., Mallory M., Ueda K., Saitoh T (1996) Altered presynaptic protein NACP is associated with plaque formation and neurodegeneration in Alzheimer’s disease. Am. J. Pathol. 148, 201–210.

    PubMed  CAS  Google Scholar 

  • Masliah E., Rockenstein E., Veinbergs I., et al. (2001) β amyloid peptides enhance α-synuclein accumulation and neuronal deficits in a transgenic mouse model linking Alzheimer’s and Parkinson’s disease. Proc. Natl. Acad. Sci. USA 98, 12245–12250.

    Article  PubMed  CAS  Google Scholar 

  • Mitsumoto A., Nakagawa Y., Takeuchi A., et al. (2001) Oxidized forms of peroxiredoxins and DJ-1 on two-dimensional gels increased in response to sublethal levels of paraquat. Free Radic. Res. 35, 301–310.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y., Ikebe S., Hattori N., et al. (1995) Role of mitochondria in the etiology and pathogenesis of Parkinson’s disease. Biochim. Biophys. Acta. 1271, 265–274.

    PubMed  Google Scholar 

  • Muchowski P. J. (2002) Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron 35, 9–12.

    Article  PubMed  CAS  Google Scholar 

  • Nagakubo D., Taira T., Kitaura H., et al. (1997) DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem. Biophys. Res. Commun. 231, 509–513.

    Article  PubMed  CAS  Google Scholar 

  • Nakajo S., Tsukada K., Omata K., Nakamura Y., and Nakaya K. (1993) A new brain-specific 14-kDa protein is a phosphoprotein. Its complete amino acid sequence and evidence for phosphorylation. Eur. J. Biochem. 217, 1057–1063.

    Article  PubMed  CAS  Google Scholar 

  • Narayanan V. and Scarlata S. (2001) Membrane binding and self-association of alpha-synucleins. Biochemistry 40, 9927–9934.

    Article  PubMed  CAS  Google Scholar 

  • Negro A., Brunati A. M., Donella-Deana A., Massimino M. L., and Pinna L. A. (2002) Multiple phosphorylation of alpha-synuclein by protein tyrosine kinase Syk prevents eosin-induced aggregation. FASEB J. 16, 210–212.

    PubMed  CAS  Google Scholar 

  • Orth M. and Schapira A. H. (2001) Mitochondria and degenerative disorders. Am. J. Med. Genet. 106, 27–36.

    Article  PubMed  CAS  Google Scholar 

  • Osterova-Golts N., Petrucelli L., Hardy J., et al. (2000) The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicity. J. Neurosci. 20, 6048–6054.

    Google Scholar 

  • Ostrerova N., Petrucelli L., Farrer M., et al. (1999) alpha-synuclein shares physical and functional homology with 14-3-3 proteins. J. Neurosci. 19, 5782–5791.

    PubMed  CAS  Google Scholar 

  • Paik S. R., Shin H. J., Lee J. H., Chang C. S., and Kim J. (1999) Copper(II)-induced self-oligomerization of alpha-synuclein. Biochem. J. 340, 821–828.

    Article  PubMed  CAS  Google Scholar 

  • Parker W. D. J., Filley C. M., and Parks J. K. (1990) Cytochrome oxidase deficiency in Alzheimer’s disease. Neurology 40, 1302–1303.

    PubMed  Google Scholar 

  • Perrin R., Woods W., Clayton D., and George J. (2000) Interaction of human alpha-synuclein and Parkinson’s disease variants with phospholipids: structural analysis using site-directed mutagenesis. J. Biol. Chem. 275, 34393–34398.

    Article  PubMed  CAS  Google Scholar 

  • Petrucelli L., O’Farrell C., Lockhart P. J., et al. (2002) Parkin protects against the toxicity associated with mutant alpha-synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron 36, 1007–1019.

    Article  PubMed  CAS  Google Scholar 

  • Pfanner N. and Meijer M (1997) The Tom and Tim machine. Curr. Biol. 7, 100–103.

    Article  Google Scholar 

  • Polymeropoulos M., Lavedan C., Leroy E., et al. (1997) Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047.

    Article  PubMed  CAS  Google Scholar 

  • Ramassamy C., Averill D., Beffert U., et al. (1999) Oxidative damage and protection by antioxidants in the frontal cortex of Alzheimer’s disease is related to the apolipoprotein E genotype. Free Radic. Biol. Med. 27, 544–553.

    Article  PubMed  CAS  Google Scholar 

  • Rochet J., Conway K., and Lansbury P. J. (2000) Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures of human and mouse α-synuclein. Biochemistry 39, 10619–10626.

    Article  PubMed  CAS  Google Scholar 

  • Rockenstein E., Mallory M., Hashimoto M., et al. (2002) Differential neuropathological alterations in transgenic mice expressing α-synuclein from the platelet-derived growth factor and Thy-1 promoters. J. Neurosci. Res. 68, 568–578.

    Article  PubMed  CAS  Google Scholar 

  • Schapira A. H., Gu M., Taanman J. W., et al. (1998) Mitochondria in the etiology and pathogenesis of Parkinson’s disease. Ann. Neurol. 44, S89–98.

    PubMed  CAS  Google Scholar 

  • Selkoe D. J., Yamazaki T., Citron M., et al. (1996) The role of APP processing and trafficking pathways in the formation of amyloid beta-protein. Ann. NY Acad. Sci. 777, 57–64.

    Article  PubMed  CAS  Google Scholar 

  • Serpell L., Berriman J., Jakes R., Goedert M., and Crowther R. (2000) Fiber diffraction of synthetic α-synuclein filaments shows amyloid-like cross-β conformation. Proc. Natl. Acad. Sci. USA 97, 4897–4902.

    Article  PubMed  CAS  Google Scholar 

  • Sherer T. B., Kim J. H., Betarbet R., and Greenamyre J. T. (2003) Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp. Neurol. 179, 9–16.

    Article  PubMed  CAS  Google Scholar 

  • Shigenaga M., Hagen T., and Ames B. (1994) Oxidative damage and mitochondrial decay in aging. Proc. Natl. Acad. Sci. USA 91, 10771–10778.

    Article  PubMed  CAS  Google Scholar 

  • Shimura H., Hattori N., Kubo S.-I., et al. (2000) Familialr Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat. Genet. 25, 302–305.

    Article  PubMed  CAS  Google Scholar 

  • Smith M. A., Perry G., Richey P. L., et al. (1996) Oxidative damage in Alzheimer’s. Nature 382, 120–121.

    Article  PubMed  CAS  Google Scholar 

  • Song D., Shults C., Sisk A., Rockenstein E., and Masliah E. (2003) Enhanced Sustantia Nigra Pathology in human α-synuclein Transgenic Mice after treatment with MPTP. Exp. Neurol., in press.

  • Souza J., Giasson B., Chen Q., Lee V.-Y., and Ischiropoulos H. (2000) Dityrosine cross-linking promotes formation of stable alpha-synuclein polymers. J. Biol. Chem. 275, 18344–18349.

    Article  PubMed  CAS  Google Scholar 

  • Spillantini M., Schmidt M., Lee V.-Y., et al. (1997) α-Synuclein in Lewy bodies. Nature 388, 839–840.

    Article  PubMed  CAS  Google Scholar 

  • Surguchov A., Surgucheva I., Solessio E., and Baehr W. (1999) Synoretin—A new protein belonging to the synuclein family. Mol. Cell Neurosci. 13, 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow R. H., Parks J. K., Cassarino D. S., et al. (1997) Cybrids in Alzheimer’s disease: a cellular model of the disease? Neurology 49, 918–925.

    PubMed  CAS  Google Scholar 

  • Takeda A., Mallory M., Sundsmo M., et al. (1998a) Abnormal accumulation of NACP / α-synuclein in neurodegenerative disorders. Am. J. Pathol. 152, 367–372.

    PubMed  CAS  Google Scholar 

  • Takeda A., Hashimoto M., Mallory M., et al. (1998b) Abnormal distribution of the non-Ab component of Alzheimer’s disease amyloid precursor/α-synuclein in Lewy body disease as revealed by proteinase K and formic acid pretreatment. Lab. Invest. 78, 1169–1177.

    PubMed  CAS  Google Scholar 

  • Tanaka Y., Engelender S., Igarashi S., et al. (2001) Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum. Mol. Genet. 10, 919–926.

    Article  PubMed  CAS  Google Scholar 

  • Terry R., Hansen L., and Masliah E. (1994) Structural basis of the cognitive alterations in Alzheimer disease. In: Alzheimer Disease (Terry R., Katzman R., eds.), Raven Press, New York, pp. 179–196.

    Google Scholar 

  • Trojanowski J. and Lee V. (1998) Aggregation of neurofilament and alpha-synuclein proteins in Lewy bodies: implications for pathogenesis of Parkinson disease and Lewy body dementia. Arch. Neurol. 55, 151–152.

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski J., Goedert M., Iwatsubo T., and Lee V. (1998) Fatal attractions: abnormal protein aggregation and neuron death in Parkinson’s disease and lewy body dementia. Cell Death Differ. 5, 832–837.

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski J. Q. and Lee V. M. (2000) “Fatal attractions” of proteins. A comprehensive hypothetical mechanism underlying Alzheimer’s disease and other neurodegenerative disorders. Ann. N Y Acad. Sci. 924, 62–67.

    Article  PubMed  CAS  Google Scholar 

  • Ueda K., Masliah E., Xia Y., et al. (1993) Novel amyloid component (NAC) differentiates Alzheimer’s disease from normal aging plaques. Soc. Neurosci. Abstr. 19, 1254.

    Google Scholar 

  • Volles M. J. and Lansbury P. T., Jr. (2002) Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41, 4595–4602.

    Article  PubMed  CAS  Google Scholar 

  • Volles M. J., Lee S. J., Rochet J. C., et al. (2001) Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson’s disease. Biochemistry 40, 7812–7819.

    Article  PubMed  CAS  Google Scholar 

  • Wagenfeld A., Gromoll J., and Cooper T. G. (1998) Molecular cloning and expression of rat contraception associated protein 1 (CAP1), a protein putatively involved in fertilization. Biochem. Biophys. Res. Commun. 251, 545–549.

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K., Hansen L., Vincent I., Mallory M., and Masliah E. (1997) Neurofibrillary tangles in the dentate granule cells in Alzheimer’s disease, Lewy body disease and progressive supranuclear palsy. Acta. Neuropathol. 93, 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Walsh D., Tseng B., Rydel R., Podlisny M., and Selkoe D. (2000) The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry 39, 10831–10839.

    Article  PubMed  CAS  Google Scholar 

  • Weinreb P., Zhen W., Poon A., Conway K., and Lansbury P. J. (1996) NACP, a protein implicated in Alzheimer’s disease and learning, is natively unfolded. Biochemistry 35, 13709–13715.

    Article  PubMed  CAS  Google Scholar 

  • Wood S. J., Wypych J., Steavenson S., et al. (1999) α-Synuclein fibrillogenesis is nucleation dependent. Implications for the pathogenesis of Parkinson’s disease. J. Biol. Chem. 274, 19509–19512.

    Article  PubMed  CAS  Google Scholar 

  • Yamin G., Glaser C. B., Uversky V. N., and Fink A. L. (2003) Certain metals trigger fibrillation of methionine-oxidized alpha-synuclein. J. Biol. Chem. 278, 27630–27635. Epub 2003 May 16.

    Article  PubMed  CAS  Google Scholar 

  • Yang F., Ueda K., Chen P., Ashe K. H., and Cole G. M. (2000) Plaque-associated alpha-synuclein (NACP) pathology in aged transgenic mice expressing amyloid precursor protein. Brain Res. 853, 381–383.

    Article  PubMed  CAS  Google Scholar 

  • Youdim M. B., Ben-Shachar D., Riederer P. (1994) The enigma of neuromelanin in Parkinson’s disease substantia nigra. J. Neural. Transm. Suppl. 43, 113–122.

    PubMed  CAS  Google Scholar 

  • Younkin S. G. (1997) The AAP and PS1/2 mutations linked to early onset familial Alzheimer’s disease increase the extracellular concentration and A beta 1–42 (43). Rinsho. Shinkeigaku. 37, 1099.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eliezer Masliah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashimoto, M., Rockenstein, E., Crews, L. et al. Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuromol Med 4, 21–35 (2003). https://doi.org/10.1385/NMM:4:1-2:21

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/NMM:4:1-2:21

Index Entries

Navigation