Skip to main content

Advertisement

Log in

Implications of oxidative stress on viral pathogenesis

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Reactive species are frequently formed after viral infections. Antioxidant defences, including enzymatic and non-enzymatic components, protect against reactive species, but sometimes these defences are not completely adequate. An imbalance in the production of reactive species and the body’s inability to detoxify these reactive species is referred to as oxidative stress. The aim of this review is to analyse the role of oxidative stress in the pathogenesis of viral infections and highlight some major therapeutic approaches that have gained importance, with regards to controlling virus-induced oxidative injury. Attention will be focused on DNA viruses (papillomaviruses, hepadnaviruses), RNA viruses (flaviviruses, orthomyxoviruses, paramyxoviruses, togaviruses) and retroviruses (human immunodeficiency virus). In general, viruses cause an imbalance in the cellular redox environment, which depending on the virus and the cell can result in different responses, e.g. cell signaling, antioxidant defences, reactive species, and other processes. Therefore, the modulation of reactive species production and oxidative stress potentially represents a novel pharmacological approach for reducing the consequences of viral pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623

    Article  CAS  PubMed  Google Scholar 

  2. Akaike T (2001) Role of free radicals in viral pathogenesis and mutation. Rev Med Virol 11:87–101

    Article  CAS  PubMed  Google Scholar 

  3. Lander HM (1997) An essential role for free radicals and derived species in signal transduction. FASEB J 11(2):118–124

    CAS  PubMed  Google Scholar 

  4. Gloire G, Legrand-Poels S, Piette J (2006) NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem Pharmacol 72(11):1493–1505

    Article  CAS  PubMed  Google Scholar 

  5. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  6. Nakashima I, Liu W, Akhand AA et al (2003) 4-Hydroxynonenal triggers multistep signal transduction cascades for suppression of cellular functions. Mol Aspects Med 24:231–238

    Article  CAS  PubMed  Google Scholar 

  7. Forman HJ, Dickinson DA (2004) Introduction to serial reviews on 4-hydroxy-2-nonenal as a signaling molecule. Free Radic Biol Med 37:594–596

    Article  CAS  PubMed  Google Scholar 

  8. Armogida M, Nisticò R, Mercuri NB (2012) Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischaemia. Br J Pharmacol 166:1211–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ratnam DV, Ankola DD, Bhardwaj V et al (2006) Role of antioxidants in prophylaxis and therapy: a pharmaceutical perspective. J Controll Release 113:189–207

    Article  CAS  Google Scholar 

  10. Miao L, St Clair DK (2009) Regulation of superoxide dismutase genes: implications in disease. Free Radic Biol Med 47:344–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zamocky M, Furtmuller PG, Obinger C (2008) Evolution of catalases from bacteria to humans. Antioxid Redox Signal 10:1527–1548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8:1865–1879

    Article  CAS  PubMed  Google Scholar 

  13. Peterhans E (1979) Sendai virus stimulates chemiluminescence in mouse spleen cells. Biochem Biophys Res Commun 91:383–392

    Article  CAS  PubMed  Google Scholar 

  14. Peterhans E, Grob M, Burge T et al (1987) Virus-induced formation of reactive oxygen intermediates in phagocytic cells. Free Radic Res Commun 3(1–5):39–46

    Article  CAS  PubMed  Google Scholar 

  15. Muller F (1992) Reactive oxygen intermediates and human immunodeficiency virus (HIV) infection. Free Radic Biol Med 13(6):651–657

    Article  CAS  PubMed  Google Scholar 

  16. Reshi ML, Su Y-C, Hong J-R (2014) RNA viruses: ROS-mediated cell death. Int J Cell Biol 2014:467452-1--467452-16. doi:10.1155/2014/467452

    PubMed  PubMed Central  Google Scholar 

  17. Burdon RH (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med 18:775–794

    Article  CAS  PubMed  Google Scholar 

  18. Albrecht T, Boldogh I, Fons MP (1992) Receptor-initiated activation of cells and their oncogenes by herpes-family viruses. J Investig Dermatol 98(6 Suppl):29S–35S

    Article  CAS  PubMed  Google Scholar 

  19. Pace GW, Leaf CD (1995) The role of oxidative stress in HIV disease. Free Radic Biol Med 19:523–528

    Article  CAS  PubMed  Google Scholar 

  20. Stehbens WE (2004) Oxidative stress in viral hepatitis and AIDS. Exp Mol Pathol 77:121–132

    Article  CAS  PubMed  Google Scholar 

  21. Deramaudt TB, Dill C, Bonay M (2013) Regulation of oxidative stress by Nrf2 in the pathophysiology of infectious diseases. Médecine et maladies infectieuses 43:100–107

    Article  CAS  PubMed  Google Scholar 

  22. Gloenbock DT, Hampton RY, Qusesh RS et al (1991) Lipid Al-like molecule that antagonize the effects of endotoxin on human monocytes. J Biol Chem 266:19490–19498

    Google Scholar 

  23. Schwarz KB (1996) Oxidative stress during viral infection: a review. Free Radic Biol Med 21(5):641–649

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Wanga Z, Chen H et al (2014) Antioxidants: potential antiviral agents for Japanese encephalitis virus infection. Int J Infect Dis 24:30–36

    Article  PubMed  CAS  Google Scholar 

  25. Choi J, Ou JH (2006) Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol Gastrointest Liver Physiol 290:G847–G851

    Article  CAS  PubMed  Google Scholar 

  26. Ha H-L, Shin H-J, Feitelson M et al (2010) Oxidative stress and antioxidants in hepatic pathogenesis. World J Gastroenterol 16(48):6035–6043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Peterhans E (1997) Oxidants and antioxidants in viral diseases: disease mechanisms and metabolic regulation. J Nutr 127:962S–965S

    CAS  PubMed  Google Scholar 

  28. Gullberg RC, Jordan Steel J, Moon SL et al (2015) Oxidative stress influences positive strand RNA virus genome synthesis and capping. Virology 475:219–229

    Article  CAS  PubMed  Google Scholar 

  29. Jacobson MD (1996) Reactive oxygen species and programmed cell death. Trends Biochem Sci 21:83–86

    Article  CAS  PubMed  Google Scholar 

  30. Peterhans E (1997) Reactive oxygen species and nitric oxide in viral diseases. Biol Trace Elem Res 56:107–116

    Article  CAS  PubMed  Google Scholar 

  31. Akaike T, Suga M, Maeda H (1998) Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO. Proc Soc Exp Biol Med 217:64–73

    Article  CAS  PubMed  Google Scholar 

  32. Beck MA (2000) Nutritionally induced oxidative stress: effect on viral disease. Am J Clin Nutr 71:1676S–1679S

    CAS  PubMed  Google Scholar 

  33. Valyi-Nagy T, Dermody TS (2005) Role of oxidative damage in the pathogenesis of viral infections of the nervous system. Histol Histopathol 20:957–967

    CAS  PubMed  Google Scholar 

  34. Williams VM, Filippova M, Soto U et al (2011) HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress. Future Virol 6:45–57

    Article  PubMed  PubMed Central  Google Scholar 

  35. Medvedev R, Ploen D, Hildt E (2016) HCV and oxidative stress: implications for HCV life cycle and HCV-associated pathogenesis. Oxid Med Cell Longev 2016:9012580

    Article  PubMed  PubMed Central  Google Scholar 

  36. Huang H, Chen Y, Ye J (2007) Inhibition of hepatitis C virus replication by peroxidation of arachidonate and restoration by vitamin E. Proc Natl Acad Sci USA 104(47):18666–18670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Choi J, Lee KJ, Zheng Y et al (2004) Reactive oxygen species suppress hepatitis C virus RNA replication in human hepatoma cells. Hepatology 39(1):81–89

    Article  CAS  PubMed  Google Scholar 

  38. Ezzikouri S, Nishimura T, Kohara M et al (2015) Inhibitory effects of Pycnogenol® on hepatitis C virus replication. Antiviral Res 113:93–102

    Article  CAS  PubMed  Google Scholar 

  39. Dröge W (2003) Oxidative stress and aging. Adv Exp Med Biol 543:191–200

    Article  PubMed  Google Scholar 

  40. Perry G, Raina AK, Nunomura A et al (2000) How important is oxidative damage? Lessons from Alzheimer’s disease. Free Radic Biol Med 28:831–834

    Article  CAS  PubMed  Google Scholar 

  41. Liou GY, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44:479–496

    Article  CAS  PubMed  Google Scholar 

  42. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192:1–15

    Article  CAS  PubMed  Google Scholar 

  43. Foppoli C, DeMarco F, Cini C et al (2015) Redox control of viral carcinogenesis: the human papillomavirus paradigm. Biochimica et Biophysica Acta 1850:1622–1632

    Article  CAS  PubMed  Google Scholar 

  44. Czaja MJ (2007) Cell signaling in oxidative stress-induced liver injury. Semin Liver Dis 27:378–389

    Article  CAS  PubMed  Google Scholar 

  45. Storz P (2005) Reactive oxygen species in tumor progression. Front Biosci 10:1881–1896 (PubMed:15769673)

    Article  CAS  PubMed  Google Scholar 

  46. Hagen TM, Huang S, Curnutte J et al (1994) Extensive oxidative DNA damage in hepatocytes of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma. Proc Natl Acad Sci USA 91:12808–12812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Demirdag K, Yilmaz S, Ozdarendeli A et al (2003) Levels of plasma malondialdehyde and erythrocyte antioxidant enzyme activities in patients with chronic hepatitis B. Hepatogastroenterology 50:766–770

    CAS  PubMed  Google Scholar 

  48. Bolukbas C, Bolukbas FF, Horoz M et al (2005) Increased oxidative stress associated with the severity of the liver disease in various forms of hepatitis B virus infection. BMC Infect Dis 5:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Fujita N, Sugimoto R, Ma N et al (2008) Comparison of hepatic oxidative DNA damage in patients with chronic hepatitis B and C. J Viral Hepat 15:498–507

    Article  CAS  PubMed  Google Scholar 

  50. Gwak GY, Lee DH, Moon TG et al (2008) The correlation of hepatitis B virus PreS mutation with cellular oxidative DNA damage in hepatocellular carcinoma. Hepatogastroenterology 55:2028–2032

    CAS  PubMed  Google Scholar 

  51. Higgs MR, Chouteau P, Lerat H (2014) ‘Liver let die’: oxidative DNA damage and hepatotropic viruses. J Gen Virol 95:991–1004

    Article  CAS  PubMed  Google Scholar 

  52. Ren JH, Chen X, Zhou L et al (2016) Protective role of Sirtuin3 (SIRT3) in oxidative stress mediated by hepatitis B virus X protein expression. PLoS One. doi:10.1371/journal.pone.0150961

    Google Scholar 

  53. Farinati F, Cardin R, Degan P et al (1999) Oxidative DNA damage in circulating leukocytes occurs as an early event in chronic HCV infection. Free Radic Biol Med 27:1284–1291

    Article  CAS  PubMed  Google Scholar 

  54. Sumida Y, Nakashima T, Yoh T et al (2000) Serum thioredoxin levels as an indicator of oxidative stress in patients with hepatitis C virus infection. J Hepatol 33:616–622

    Article  CAS  PubMed  Google Scholar 

  55. Mahmood S, Kawanaka M, Kamei A et al (2004) Immunohistochemical evaluation of oxidative stress markers in chronic hepatitis C. Antioxid Redox Signal 6:19–24

    Article  CAS  PubMed  Google Scholar 

  56. Sukowati Caecilia HC, El-Khobar Korri E, Ie Susan I et al (2016) Significance of hepatitis virus infection in the oncogenic initiation of hepatocellular carcinoma. World J Gastroenterol 22(4):1497–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gong G, Waris G, Tanveer R et al (2001) Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kB. Proc Natl Acad Sci USA 98:9599–9604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pahl HL (1999) Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol Rev 0:683–701

    CAS  Google Scholar 

  59. Berridge MJ, Bootman MD, Lipp P (1998) Calcium—a life and death signal. Nature (London) 395:645–648

    Article  CAS  Google Scholar 

  60. Murphy A, Bredesen G, Cortopaasi C et al (1996) Proc Natl Acad Sci USA 93:9893–9898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yen HH, Shih KL, Lin TT et al (2012) Decreased mitochondrial deoxyribonucleic acid and increased oxidative damage in chronic hepatitis C. World J Gastroenterol 18(36):5084–5089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Piccoli C, Quarato G, Ripoli M et al (2009) Review HCV infection induces mitochondrial bioenergetic unbalance: causes and effects. Biochim Biophys Acta 1787(5):539–546

    Article  CAS  PubMed  Google Scholar 

  63. Piccoli C, Scrima R, D’Aprile A et al (2006) Review mitochondrial dysfunction in hepatitis C virus infection. Biochim Biophys Acta 1757(9–10):1429–1437

    Article  CAS  PubMed  Google Scholar 

  64. Mercurio F, Manning A (1999) Oncogene 18:6163–6171

    Article  CAS  PubMed  Google Scholar 

  65. Qadri I, Iwahashi M, Capasso JM et al (2004) Induced oxidative stress and activated expression of manganese superoxide dismutase during hepatitis C virus replication: role of JNK, p38 MAPK and AP-1. Biochem J 378:919–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Paracha UZ, Fatima K, Alqahtani M et al (2013) Oxidative stress and hepatitis C virus. Virol J 10:251

    Article  PubMed  PubMed Central  Google Scholar 

  67. Jaeschke H (2011) Reactive oxygen and mechanisms of inflammatory liver injury: present concepts. J Gastroenterol Hepatol 26(Suppl 1):173–179

    Article  CAS  PubMed  Google Scholar 

  68. Fisher AB (2009) Redox signaling across cell membranes. Antioxid Redox Signal 11:1349–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Waris G, Turkson J, Hassanein T et al (2005) Hepatitis C virus (HCV) constitutively activates STAT-3 via oxidative stress: role of STAT-3 in HCV replication. J Virol 79:1569–1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Arzumanyan A, Reis HM, Feitelson MA (2013) Pathogenic mechanisms in HBV- and HCV-associated hepatocellular carcinoma. Nat Rev Cancer 13:123–135

    Article  CAS  PubMed  Google Scholar 

  71. Lozano-Sepulveda AS, Bryan-Marrugo OL, Cordova-Fletes C et al (2015) Oxidative stress modulation in hepatitis C virus infected cells. World J Hepatol 7(29):2880–2889

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gabbay E, Zigmond E, Pappo O et al (2007) Antioxidant therapy for chronic hepatitis C after failure of interferon: results of phase II randomized, double-blind placebo controlled clinical trial. World J Gastroenterol 13:5317–5323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Miura K, Taura K, Kodama Y et al (2008) Hepatitis C virus-induced oxidative stress suppresses hepcidin expression through increased histone deacetylase activity. Hepatology 48:1420–1429

    Article  CAS  PubMed  Google Scholar 

  74. Deng L, Shoji I, Ogawa W et al (2011) Hepatitis C virus infection promotes hepatic gluconeogenesis through an NS5A-mediated, FoxO1-dependent pathway. J Virol 85:8556–8568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chambers TJ, Hahn CS, Galler R et al (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688

    Article  CAS  PubMed  Google Scholar 

  76. Burke DS, Lorsomrudee W, Leake CJ et al (1985) Fatal outcome in Japanese encephalitis. Am J Trop Med Hyg 34:1203–1210

    CAS  PubMed  Google Scholar 

  77. Mathur A, Kulshreshtha R, Chaturvedi UC (1989) Evidence for latency of Japanese encephalitis virus in T lymphocytes. J Gen Virol 70:461–465

    Article  PubMed  Google Scholar 

  78. Raung SL, Kuo MD, Wang YM et al (2001) Role of reactive oxygen intermediates in Japanese encephalitis virus infection in murine neuroblastoma cells. Neurosci Lett 315:9–12

    Article  CAS  PubMed  Google Scholar 

  79. Liao SL, Raung SL, Chen CJ (2002) Japanese encephalitis virus stimulates superoxide dismutase activity in rat glial cultures. Neurosci Lett 324:133–136

    Article  CAS  PubMed  Google Scholar 

  80. Srivastava R, Kalita J, Khan MY et al (2009) Free radical generation by neurons in rat model of Japanese encephalitis. Neurochem Res 34:2141–2146

    Article  CAS  PubMed  Google Scholar 

  81. Kumar S, Misra UK, Kalita J et al (2009) Imbalance in oxidant/ antioxidant system in different brain regions of rat after the infection of Japanese encephalitis virus. Neurochem Int 55:648–654

    Article  CAS  PubMed  Google Scholar 

  82. Yang TC, Lai CC, Shiu SL et al (2010) Japanese encephalitis virus down-regulates thioredoxin and induces ROS-mediated ASK1-ERK/p38 MAPK activation in human promonocyte cells. Microbes Infect 12:643–651

    Article  CAS  PubMed  Google Scholar 

  83. Kaushik DK, Gupta M, Kumawat KL, Basu A (2012) NLRP3 inflammasome: key mediator of neuroinflammation in murine Japanese encephalitis. PLoS One 7:e32270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Gil L, Martínez G, Tápanes R et al (2004) Oxidative stress in adult dengue patients. Am J Trop Med Hyg 71:652–657

    CAS  PubMed  Google Scholar 

  85. Klassen P, Biesalski HK, Mazariegos M et al (2004) Classic dengue fever affects levels of circulating antioxidants. Nutrition 20:542–547

    Article  CAS  PubMed  Google Scholar 

  86. Soundravally R, Sankar P, Bobby Z et al (2008) Oxidative stress in severe dengue viral infection: association of thrombocytopenia with lipid peroxidation. Platelets 19(6):447–454

    Article  CAS  PubMed  Google Scholar 

  87. Soundravally R, Hoti SL, Patil SA et al (2014) Association between proinflammatory cytokines and lipid peroxidation in patients with severe dengue disease around defervescence. Int J Infect Dis 18:68–72

    Article  CAS  PubMed  Google Scholar 

  88. Yen YTCH, Lin YD, Shieh CC et al (2008) Enhancement by tumor necrosis factor alpha of dengue virus-induced endothelial cell production of reactive nitrogen and oxygen species is key to hemorrhage development. J Virol 82(24):12312–12324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tian YJW, Gao N, Zhang J et al (2010) Inhibitory effects of glutathione on dengue virus production. Biochem Biophys Res Commun 397(3):420–424

    Article  CAS  PubMed  Google Scholar 

  90. Wang J, Chen Y, Gao N et al (2013) Inhibitory effect of glutathione on oxidative liver injury induced by dengue virus serotype 2 infections in mice. PloS One 8(1):e55407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Akaike T, Noguchi Y, Ijiri S et al (1996) Pathogenesis of influenza virus-induced pneumonia: Involvement of both nitric oxide and oxygen radicals. Proc Natl Acad Sci USA 93:2448–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Choi AM, Knobil K, Otterbein SL et al (1996) Oxidant stress responses in influenza virus pneumonia: gene expression and transcription factor activation. Am J Physiol 271(3 Pt 1):L383–L391

    CAS  PubMed  Google Scholar 

  93. Suliman HB, Ryan LK, Bishop L et al (2001) Prevention of influenza-induced lung injury in mice overexpressing extracellular superoxide dismutase. Am J Physiol Lung Cell Mol Physiol 280(1):L69–L78

    CAS  PubMed  Google Scholar 

  94. Kobasa D, Jones SM, Shinya K et al (2007) Aberrant innate immune response in lethal infection of macaques with the 1918 influenza virus. Nature 445(7125):319–323

    Article  CAS  PubMed  Google Scholar 

  95. Walsh KB, Teijaro JR, Wilker PR et al (2011) Suppression of cytokine storm with a sphingosine analog provides protection against pathogenic influenza virus. Proc Natl Acad Sci USA 108(29):12018–12023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ng MP, Lee JC, Loke WM et al (2014) Does influenza A infection increase oxidative damage? Antioxid Redox Signal 21(7):1025–1031. doi:10.1089/ars.2014.5907 (Epub Jul 21)

    Article  CAS  PubMed  Google Scholar 

  97. Buffinton GD, Christen S, Peterhans E et al (1992) Oxidative stress in lungs of mice infected with influenza A virus. Free Radic Res Commun 16(2):99–110

    Article  CAS  PubMed  Google Scholar 

  98. Hennet T, Peterhans E, Stocker R (1992) Alterations in antioxidant defences in lung and liver of mice infected with influenza A virus. J Gen Virol 73(Pt 1):39–46

    Article  CAS  PubMed  Google Scholar 

  99. Cai J, Chen Y, Seth S et al (2003) Inhibition of influenza infection by glutathione. Free Radic Biol Med 34(7):928–936

    Article  CAS  PubMed  Google Scholar 

  100. Shi X, Shi Z, Huang H et al (2014) Ability of recombinant human catalase to suppress inflammation of the murine lung induced by influenza A. Inflammation 37(3):809–817. doi:10.1007/s10753-013-9800-2

    Article  CAS  PubMed  Google Scholar 

  101. Lin X, Wang R, Zou W et al (2016) The influenza virus H5N1 infection can induce ROS production for viral replication and host cell death in A549 cells modulated by human Cu/Zn superoxide dismutase (SOD1) overexpression. Viruses 8:13. doi:10.3390/v8010013

    Article  PubMed Central  CAS  Google Scholar 

  102. Mochizuki H, Todokoro M, Arakawa H (2009) RS virus-induced inflammation and the intracellular glutathione redox state in cultured human airway epithelial cells. Inflammation 32(4):252–264. doi:10.1007/s10753-009-9128-0

    Article  CAS  PubMed  Google Scholar 

  103. Casola A, Burger N, Liu T et al (2001) Oxidant tone regulates RANTES gene transcription in airway epithelial cells infected with respiratory syncytial virus: role in viral-induced interferon regulatory factor activation. J Biol Chem 276:19715–19722

    Article  CAS  PubMed  Google Scholar 

  104. Liu T, Shawn C, Brasier AR et al (2004) Reactive oxygen species mediate virus-induced STAT activation: role of tyrosine phosphatases. J Biol Chem 279:2461–2469

    Article  CAS  PubMed  Google Scholar 

  105. Hosakote YM, Liu T, Castro SM et al (2009) Respiratory syncytial virus induces oxidative stress by modulating antioxidant enzymes. Am J Respir Cell Mol Biol 41:348–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Castro SM, Guerrero-Plata A, Suarez-Real G et al (2006) Antioxidant treatment ameliorates respiratory syncytial virus-induced disease and lung inflammation. Am J Respir Crit Care Med 174:1361–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hosakote YM, Jantzi PD, Esham DL et al (2011) Viral-mediated inhibition of antioxidant enzymes contributes to the pathogenesis of severe respiratory syncytial virus bronchiolitis. Am J Respir Crit Care Med 183:1550–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Huang SH, Cao XJ, Liu W et al (2010) Inhibitory effect of melatonin on lung oxidative stress induced by respiratory syncytial virus infection in mice. J Pineal Res 48(2):109–116. doi:10.1111/j.1600-079X.2009.00733.x (Epub Jan 8)

    Article  CAS  PubMed  Google Scholar 

  109. Hosakote YM, Komaravelli N, Mautemps N et al (2012) Antioxidant mimetics modulate oxidative stress and cellular signaling in airway epithelial cells infected with respiratory syncytial virus. Am J Physiol Lung Cell Mol Physiol 303(11):L991–L1000. doi:10.1152/ajplung.00192.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Moreno-Solís G, de la Torre-Aguilar MJ, Torres-Borrego J et al (2015) Oxidative stress and inflamatory plasma biomarkers in respiratory syncytial virus bronchiolitis. Clin Respir J. doi:10.1111/crj.12425

    PubMed  Google Scholar 

  111. Dhanwani R, Khan M, Alam SI et al (2011) Differential proteome analysis of Chikungunya virus infected new-born mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis. Proteomics 11:1936–1951

    Article  CAS  PubMed  Google Scholar 

  112. Dhanwani R, Khan M, Bhaskar AS et al (2012) Characterization of Chikungunya virus infection in human neuroblastoma SH-SY5Y cells: role of apoptosis in neuronal cell death. Virus Res 163(2012):563–572

    Article  CAS  PubMed  Google Scholar 

  113. Patil DR, Hundekar SL, Arankalle VA (2012) Expression profile of immune response genes during acute myopathy induced by chikungunya virus in a mouse model. Institut Pasteur Microbes Infect 14:457–469

    Article  CAS  Google Scholar 

  114. Joubert PE, Werneke SW, de la Calle C et al (2012) Chikungunya virus-induced autophagy delays caspase-dependent cell death. J Exp Med 209(5):1029–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nabel G, Baltimore D (1987) An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326(6114):711–713

    Article  CAS  PubMed  Google Scholar 

  116. Fuchs J, Ochsendorf F, Schofer H et al (1991) Oxidative imbalance in HIV infected patients. Med Hypotheses 36(1):60–64

    Article  CAS  PubMed  Google Scholar 

  117. Staal FJT, Roederer M, Herzenberg LA et al (1990) Intracellular thiols regulate activation of nuclear factor κB and transcription of human immunodeficiency virus. Proc Natl Acad Sci USA 87(24):9943–9947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Meyer M, Pahl HL, Baeuerle PA (1994) Regulation of the transcription factors NF-κB and AP-1 by redox changes. Chem-Biol Interact 91(2–3):91–100

    Article  CAS  PubMed  Google Scholar 

  119. Sonnerborg A, Carlin G, Akerlund B et al (1988) Increased production of malondialdehyde in patients with HIV infection”. Scand J Infect Dis 20(3):287–290

    Article  CAS  PubMed  Google Scholar 

  120. Revillard J-P, Vincent CMA, Favier AE et al (1992) Lipid peroxidation in human immunodeficiency virus infection. J Acquired Immune Defic Syndromes 5(6):637–638

    CAS  Google Scholar 

  121. Favier A, Sappey C, Leclerc P et al (1994) Antioxidant status and lipid peroxidation in patients infected with HIV. Chem-Biol Interact 91(2–3):165–180

    Article  CAS  PubMed  Google Scholar 

  122. Malvy DJM, Richard M-J, Arnaud J et al (1994) Relationship of plasma malondialdehyde, vitamin E and antioxidant micronutrients to human immunodeficiency virus-1 seropositivity. Clin Chim Acta 224:89–94

    Article  CAS  PubMed  Google Scholar 

  123. Dröge W, Eck HP, Mihm S (1994) Oxidant-antioxidant status in human immunodeficiency virus infection. Oxygen Radic Biol Syst Methods Enzymol 233:594–601

    Article  Google Scholar 

  124. Fuchs J, Emerit I, Levy A et al (1995) Clastogenic factors in plasma of HIV-1 infected patients. Free Radic Biol Med 19:843–848

    Article  CAS  PubMed  Google Scholar 

  125. De Rosa SC, Zaretsky MD, Dubs JG et al (2000) N-acetylcysteinereplenishes glutathione in HIV infection. Eur J Clin Investig 30:915–929

    Article  Google Scholar 

  126. De La Fuente M, Miquel J, Catalan MP et al (2002) The amount of thiolic antioxidant ingestion related to improve several immune functions is higher in aged than in adult mice. Free Radic Res 36:119–126

    Article  CAS  Google Scholar 

  127. Leff JA, Oppegard MA, Curiel TJ et al (1992) Progressive increases in serum catalase activity in advancing human immunodeficiency virus infection. Free Radic Biol Med 13(2):143–149

    Article  CAS  PubMed  Google Scholar 

  128. Greenspan HC (1994) Aruoma OI (1994) Oxidative stress and apoptosis in HIV infection: a role for plant-derived metabolites with synergistic antioxidant activity. Immunol Today 15(5):209–213

    Article  CAS  PubMed  Google Scholar 

  129. Mishra MK, Ghosh D, Duseja R et al (2009) Antioxidant potential of minocycline in Japanese encephalitis virus infection in murine neuroblastoma cells: correlation with membrane fluidity and cell death. Neurochem Int 54:464–470

    Article  CAS  PubMed  Google Scholar 

  130. Dutta K, Ghosh D, Basu A (2009) Curcumin protects neuronal cells from Japanese encephalitis virus-mediated cell death and also inhibits infective viral particle formation by dysregulation of ubiquitin–proteasome system. J Neuroimmune Pharmacol 4:328–337

    Article  PubMed  Google Scholar 

  131. Gansukh E, Kazibwe Z, Pandurangan M et al (2016) Probing the impact of quercetin-7-O-glucoside on influenza virus replication influence. Phytomedicine 23:958–967

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cintia Lopes de Brito Magalhães.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camini, F.C., da Silva Caetano, C.C., Almeida, L.T. et al. Implications of oxidative stress on viral pathogenesis. Arch Virol 162, 907–917 (2017). https://doi.org/10.1007/s00705-016-3187-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-016-3187-y

Keywords

Navigation