<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Review Article
No access
Published Online: 19 February 2011

Thiol-Based Redox Switches and Gene Regulation

Publication: Antioxidants & Redox Signaling
Volume 14, Issue Number 6

Abstract

Cysteine is notable among the universal, proteinogenic amino acids for its facile redox chemistry. Cysteine thiolates are readily modified by reactive oxygen species (ROS), reactive electrophilic species (RES), and reactive nitrogen species (RNS). Although thiol switches are commonly triggered by disulfide bond formation, they can also be controlled by S-thiolation, S-alkylation, or modification by RNS. Thiol-based switches are common in both prokaryotic and eukaryotic organisms and activate functions that detoxify reactive species and restore thiol homeostasis while repressing functions that would be deleterious if expressed under oxidizing conditions. Here, we provide an overview of the best-understood examples of thiol-based redox switches that affect gene expression. Intra- or intermolecular disulfide bond formation serves as a direct regulatory switch for several bacterial transcription factors (OxyR, OhrR/2-Cys, Spx, YodB, CrtJ, and CprK) and indirectly regulates others (the RsrA anti-σ factor and RegB sensory histidine kinase). In eukaryotes, thiol-based switches control the yeast Yap1p transcription factor, the Nrf2/Keap1 electrophile and oxidative stress response, and the Chlamydomonas NAB1 translational repressor. Collectively, these regulators reveal a remarkable range of chemical modifications exploited by Cys residues to effect changes in gene expression. Antioxid. Redox Signal. 14, 1049—1063.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Anjem AVarghese SImlay JA. Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coliMol Microbiol72844-8582009. 1. Anjem A, Varghese S, and Imlay JA. Manganese import is a key element of the OxyR response to hydrogen peroxide in Escherichia coli. Mol Microbiol 72: 844–858, 2009.
2.
Antelmann HHecker MZuber P. Proteomic signatures uncover thiol-specific electrophile resistance mechanisms in Bacillus subtilisExpert Rev Proteom577-902008. 2. Antelmann H, Hecker M, and Zuber P. Proteomic signatures uncover thiol-specific electrophile resistance mechanisms in Bacillus subtilis. Expert Rev Proteom 5: 77–90, 2008.
3.
Bae JBPark JHHahn MYKim MSRoe JH. Redox-dependent changes in RsrA, an anti-sigma factor in Streptomyces coelicolor: zinc release and disulfide bond formationJ Mol Biol335425-4352004. 3. Bae JB, Park JH, Hahn MY, Kim MS, and Roe JH. Redox-dependent changes in RsrA, an anti-sigma factor in Streptomyces coelicolor: zinc release and disulfide bond formation. J Mol Biol 335: 425–435, 2004.
4.
Barford D. The role of cysteine residues as redox-sensitive regulatory switchesCurr Opin Struct Biol14679-6862004. 4. Barford D. The role of cysteine residues as redox-sensitive regulatory switches. Curr Opin Struct Biol 14: 679–686, 2004.
5.
Brandes NSchmitt SJakob U. Thiol-based redox switches in eukaryotic proteinsAntioxid Redox Signal11997-10142009. 5. Brandes N, Schmitt S, and Jakob U. Thiol-based redox switches in eukaryotic proteins. Antioxid Redox Signal 11: 997–1014, 2009.
6.
Castillo EAAyte JChiva CMoldon ACarrascal MAbian JJones NHidalgo E. Diethylmaleate activates the transcription factor Pap1 by covalent modification of critical cysteine residuesMol Microbiol45243-2542002. 6. Castillo EA, Ayte J, Chiva C, Moldon A, Carrascal M, Abian J, Jones N, and Hidalgo E. Diethylmaleate activates the transcription factor Pap1 by covalent modification of critical cysteine residues. Mol Microbiol 45: 243–254, 2002.
7.
Chen HXu GZhao YTian BLu HYu XXu ZYing NHu SHua Y. A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radioduransPLoS One3e16022008. 7. Chen H, Xu G, Zhao Y, Tian B, Lu H, Yu X, Xu Z, Ying N, Hu S, and Hua Y. A novel OxyR sensor and regulator of hydrogen peroxide stress with one cysteine residue in Deinococcus radiodurans. PLoS One 3: e1602, 2008.
8.
Chi BKAlbrecht DGronau KBecher DHecker MAntelmann H. The redox-sensing regulator YodB senses quinones and diamide via a thiol-disulfide switch in Bacillus subtilisProteomics103155-31642010. 8. Chi BK, Albrecht D, Gronau K, Becher D, Hecker M, and Antelmann H. The redox-sensing regulator YodB senses quinones and diamide via a thiol-disulfide switch in Bacillus subtilis. Proteomics 10: 3155–3164, 2010.
9.
Cho SHYoun SHLee SRYim HSKang SO. Redox property and regulation of PpsR, a transcriptional repressor of photosystem gene expression in Rhodobacter sphaeroidesMicrobiology150697-7062004. 9. Cho SH, Youn SH, Lee SR, Yim HS, and Kang SO. Redox property and regulation of PpsR, a transcriptional repressor of photosystem gene expression in Rhodobacter sphaeroides. Microbiology 150: 697–706, 2004.
10.
Choi HKim SMukhopadhyay PCho SWoo JStorz GRyu SE. Structural basis of the redox switch in the OxyR transcription factorCell105103-1132001. 10. Choi H, Kim S, Mukhopadhyay P, Cho S, Woo J, Storz G, and Ryu SE. Structural basis of the redox switch in the OxyR transcription factor. Cell 105: 103–113, 2001.
11.
D'Autreaux BTucker NPDixon RSpiro S. A non-haem iron centre in the transcription factor NorR senses nitric oxideNature437769-7722005. 11. D'Autreaux B, Tucker NP, Dixon R, and Spiro S. A non-haem iron centre in the transcription factor NorR senses nitric oxide. Nature 437: 769–772, 2005.
12.
Delaunay APflieger DBarrault MBVinh JToledano MB. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activationCell111471-4812002. 12. Delaunay A, Pflieger D, Barrault MB, Vinh J, and Toledano MB. A thiol peroxidase is an H2O2 receptor and redox-transducer in gene activation. Cell 111: 471–481, 2002.
13.
Ding HDemple B. In vivo kinetics of a redox-regulated transcriptional switchProc Natl Acad Sci U S A948445-84491997. 13. Ding H and Demple B. In vivo kinetics of a redox-regulated transcriptional switch. Proc Natl Acad Sci U S A 94: 8445–8449, 1997.
14.
Ehira SOgino HTeramoto HInui MYukawa H. Regulation of quinone oxidoreductase by the redox-sensing transcriptional regulator QorR in Corynebacterium glutamicumJ Biol Chem28416736-167422009. 14. Ehira S, Ogino H, Teramoto H, Inui M, and Yukawa H. Regulation of quinone oxidoreductase by the redox-sensing transcriptional regulator QorR in Corynebacterium glutamicum. J Biol Chem 284: 16736–16742, 2009.
15.
Eiamphungporn WSoonsanga SLee JWHelmann JD. Oxidation of a single active site suffices for the functional inactivation of the dimeric Bacillus subtilis OhrR repressor in vitroNucleic Acids Res371174-11812009. 15. Eiamphungporn W, Soonsanga S, Lee JW, and Helmann JD. Oxidation of a single active site suffices for the functional inactivation of the dimeric Bacillus subtilis OhrR repressor in vitro. Nucleic Acids Res 37: 1174–1181, 2009.
16.
Ellison DWMiller VL. Regulation of virulence by members of the MarR/SlyA familyCurr Opin Microbiol9153-1592006. 16. Ellison DW and Miller VL. Regulation of virulence by members of the MarR/SlyA family. Curr Opin Microbiol 9: 153–159, 2006.
17.
Elsen SJaubert MPignol DGiraud E. PpsR: a multifaceted regulator of photosynthesis gene expression in purple bacteriaMol Microbiol5717-262005. 17. Elsen S, Jaubert M, Pignol D, and Giraud E. PpsR: a multifaceted regulator of photosynthesis gene expression in purple bacteria. Mol Microbiol 57: 17–26, 2005.
18.
Elsen SSwem LRSwem DLBauer CE. RegB/RegA, a highly conserved redox-responding global two-component regulatory systemMicrobiol Mol Biol Rev68263-2792004. 18. Elsen S, Swem LR, Swem DL, and Bauer CE. RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 68: 263–279, 2004.
19.
Fernhoff NBDerbyshire ERMarletta MA. A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclaseProc Natl Acad Sci U S A10621602-216072009. 19. Fernhoff NB, Derbyshire ER, and Marletta MA. A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase. Proc Natl Acad Sci U S A 106: 21602–21607, 2009.
20.
Fourquet SGuerois RBiard DToledano MB. Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formationJ Biol Chem2858463-84712010. 20. Fourquet S, Guerois R, Biard D, and Toledano MB. Activation of NRF2 by nitrosative agents and H2O2 involves KEAP1 disulfide formation. J Biol Chem 285: 8463–8471, 2010.
21.
Fuangthong MAtichartpongkul SMongkolsuk SHelmann JD. OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilisJ Bacteriol1834134-41412001. 21. Fuangthong M, Atichartpongkul S, Mongkolsuk S, and Helmann JD. OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis. J Bacteriol 183: 4134–4141, 2001.
22.
Fuangthong MHelmann JD. The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivativeProc Natl Acad Sci U S A996690-66952002. 22. Fuangthong M and Helmann JD. The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proc Natl Acad Sci U S A 99: 6690–6695, 2002.
23.
Gaballa ANewton GLAntelmann HParsonage DUpton HRawat MClaiborne AFahey RCHelmann JD. Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in BacilliProc Natl Acad Sci U S A1076482-64862010. 23. Gaballa A, Newton GL, Antelmann H, Parsonage D, Upton H, Rawat M, Claiborne A, Fahey RC, and Helmann JD. Biosynthesis and functions of bacillithiol, a major low-molecular-weight thiol in Bacilli. Proc Natl Acad Sci U S A 107: 6482–6486, 2010.
24.
Gabor KVerissimo CSCyran BCTer Horst PMeijer NPSmidt Hde Vos WMvan der Oost J. Characterization of CprK1, a CRP/FNR-type transcriptional regulator of halorespiration from Desulfitobacterium hafnienseJ Bacteriol1882604-26132006. 24. Gabor K, Verissimo CS, Cyran BC, Ter Horst P, Meijer NP, Smidt H, de Vos WM, and van der Oost J. Characterization of CprK1, a CRP/FNR-type transcriptional regulator of halorespiration from Desulfitobacterium hafniense. J Bacteriol 188: 2604–2613, 2006.
25.
Garg SKKommineni SHenslee LZhang YZuber P. The YjbH protein of Bacillus subtilis enhances ClpXP-catalyzed proteolysis of SpxJ Bacteriol1911268-12772009. 25. Garg SK, Kommineni S, Henslee L, Zhang Y, and Zuber P. The YjbH protein of Bacillus subtilis enhances ClpXP-catalyzed proteolysis of Spx. J Bacteriol 191: 1268–1277, 2009.
26.
Gomelsky MKlug G. BLUF: a novel FAD-binding domain involved in sensory transduction in microorganismsTrends Biochem Sci27497-5002002. 26. Gomelsky M and Klug G. BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem Sci 27: 497–500, 2002.
27.
Gupta NRagsdale SW. Dual roles of an essential cysteine residue in activity of a redox-regulated bacterial transcriptional activatorJ Biol Chem28328721-287282008. 27. Gupta N and Ragsdale SW. Dual roles of an essential cysteine residue in activity of a redox-regulated bacterial transcriptional activator. J Biol Chem 283: 28721–28728, 2008.
28.
Han YBraatsch SOsterloh LKlug G. A eukaryotic BLUF domain mediates light-dependent gene expression in the purple bacterium Rhodobacter sphaeroides 2.4.1Proc Natl Acad Sci U S A10112306-123112004. 28. Han Y, Braatsch S, Osterloh L, and Klug G. A eukaryotic BLUF domain mediates light-dependent gene expression in the purple bacterium Rhodobacter sphaeroides 2.4.1. Proc Natl Acad Sci U S A 101: 12306–12311, 2004.
29.
Herrero ERos JBelli GCabiscol E. Redox control and oxidative stress in yeast cellsBiochim Biophys Acta17801217-12352008. 29. Herrero E, Ros J, Belli G, and Cabiscol E. Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780: 1217–1235, 2008.
30.
Hochgrafe FMostertz JAlbrecht DHecker M. Fluorescence thiol modification assay: oxidatively modified proteins in Bacillus subtilisMol Microbiol58409-4252005. 30. Hochgrafe F, Mostertz J, Albrecht D, and Hecker M. Fluorescence thiol modification assay: oxidatively modified proteins in Bacillus subtilis. Mol Microbiol 58: 409–425, 2005.
31.
Hochgrafe FMostertz JPother DCBecher DHelmann JDHecker M. S-cysteinylation is a general mechanism for thiol protection of Bacillus subtilis proteins after oxidative stressJ Biol Chem28225981-259852007. 31. Hochgrafe F, Mostertz J, Pother DC, Becher D, Helmann JD, and Hecker M. S-cysteinylation is a general mechanism for thiol protection of Bacillus subtilis proteins after oxidative stress. J Biol Chem 282: 25981–25985, 2007.
32.
Hong MFuangthong MHelmann JDBrennan RG. Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR familyMol Cell20131-1412005. 32. Hong M, Fuangthong M, Helmann JD, and Brennan RG. Structure of an OhrR-ohrA operator complex reveals the DNA binding mechanism of the MarR family. Mol Cell 20: 131–141, 2005.
33.
Imlay JA. Pathways of oxidative damageAnnu Rev Microbiol57395-4182003. 33. Imlay JA. Pathways of oxidative damage. Annu Rev Microbiol 57: 395–418, 2003.
34.
Imlay JA. Cellular defenses against superoxide and hydrogen peroxideAnnu Rev Biochem77755-7762008. 34. Imlay JA. Cellular defenses against superoxide and hydrogen peroxide. Annu Rev Biochem 77: 755–776, 2008.
35.
Itoh KWakabayashi NKatoh YIshii TO'Connor TYamamoto M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophilesGenes Cells8379-3912003. 35. Itoh K, Wakabayashi N, Katoh Y, Ishii T, O'Connor T, and Yamamoto M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8: 379–391, 2003.
36.
Jaubert MZappa SFardoux JAdriano JMHannibal LElsen SLavergne JVermeglio AGiraud EPignol D. Light and redox control of photosynthesis gene expression in Bradyrhizobium: dual roles of two PpsRJ Biol Chem27944407-444162004. 36. Jaubert M, Zappa S, Fardoux J, Adriano JM, Hannibal L, Elsen S, Lavergne J, Vermeglio A, Giraud E, and Pignol D. Light and redox control of photosynthesis gene expression in Bradyrhizobium: dual roles of two PpsR. J Biol Chem 279: 44407–44416, 2004.
37.
Joyce MGLevy CGabor KPop SMBiehl BDDoukov TIRyter JMMazon HSmidt Hvan den Heuvel RHRagsdale SWvan der Oost JLeys D. CprK crystal structures reveal mechanism for transcriptional control of halorespirationJ Biol Chem28128318-283252006. 37. Joyce MG, Levy C, Gabor K, Pop SM, Biehl BD, Doukov TI, Ryter JM, Mazon H, Smidt H, van den Heuvel RH, Ragsdale SW, van der Oost J, and Leys D. CprK crystal structures reveal mechanism for transcriptional control of halorespiration. J Biol Chem 281: 28318–28325, 2006.
38.
Kang JGPaget MSSeok YJHahn MYBae JBHahn JSKleanthous CButtner MJRoe JH. RsrA, an anti-sigma factor regulated by redox changeEMBO J184292-42981999. 38. Kang JG, Paget MS, Seok YJ, Hahn MY, Bae JB, Hahn JS, Kleanthous C, Buttner MJ, and Roe JH. RsrA, an anti-sigma factor regulated by redox change. EMBO J 18: 4292–4298, 1999.
39.
Kaspar JWNiture SKJaiswal AK. Nrf2:INrf2 (Keap1) signaling in oxidative stressFree Radic Biol Med471304-13092009. 39. Kaspar JW, Niture SK, and Jaiswal AK. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47: 1304–1309, 2009.
40.
Kidd SPJiang DJennings MPMcEwan AG. Glutathione-dependent alcohol dehydrogenase AdhC is required for defense against nitrosative stress in Haemophilus influenzaeInfect Immun754506-45132007. 40. Kidd SP, Jiang D, Jennings MP, and McEwan AG. Glutathione-dependent alcohol dehydrogenase AdhC is required for defense against nitrosative stress in Haemophilus influenzae. Infect Immun 75: 4506–4513, 2007.
41.
Kidd SPPotter AJApicella MAJennings MPMcEwan AG. NmlR of Neisseria gonorrhoeae: a novel redox responsive transcription factor from the MerR familyMol Microbiol571676-16892005. 41. Kidd SP, Potter AJ, Apicella MA, Jennings MP, and McEwan AG. NmlR of Neisseria gonorrhoeae: a novel redox responsive transcription factor from the MerR family. Mol Microbiol 57: 1676–1689, 2005.
42.
Kim MSHahn MYCho YCho SNRoe JH. Positive and negative feedback regulatory loops of thiol-oxidative stress response mediated by an unstable isoform of sigmaR in actinomycetesMol Microbiol73815-8252009. 42. Kim MS, Hahn MY, Cho Y, Cho SN, and Roe JH. Positive and negative feedback regulatory loops of thiol-oxidative stress response mediated by an unstable isoform of sigmaR in actinomycetes. Mol Microbiol 73: 815–825, 2009.
43.
Kim SKMason JTKnaff DBBauer CESetterdahl AT. Redox properties of the Rhodobacter sphaeroides transcriptional regulatory proteins PpsR and AppAPhotosynth Res8989-982006. 43. Kim SK, Mason JT, Knaff DB, Bauer CE, and Setterdahl AT. Redox properties of the Rhodobacter sphaeroides transcriptional regulatory proteins PpsR and AppA. Photosynth Res 89: 89–98, 2006.
44.
Kim SOMerchant KNudelman RBeyer WF JrKeng TDeAngelo JHausladen AStamler JS. OxyR: a molecular code for redox-related signalingCell109383-3962002. 44. Kim SO, Merchant K, Nudelman R, Beyer WF Jr, Keng T, DeAngelo J, Hausladen A, and Stamler JS. OxyR: a molecular code for redox-related signaling. Cell 109: 383–396, 2002.
45.
Korner HSofia HJZumft WG. Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programsFEMS Microbiol Rev27559-5922003. 45. Korner H, Sofia HJ, and Zumft WG. Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27: 559–592, 2003.
46.
Lamour VWestblade LFCampbell EADarst SA. Crystal structure of the in vivo-assembled Bacillus subtilis Spx/RNA polymerase alpha subunit C-terminal domain complexJ Struct Biol168352-3562009. 46. Lamour V, Westblade LF, Campbell EA, and Darst SA. Crystal structure of the in vivo-assembled Bacillus subtilis Spx/RNA polymerase alpha subunit C-terminal domain complex. J Struct Biol 168: 352–356, 2009.
47.
Lee CLee SMMukhopadhyay PKim SJLee SCAhn WSYu MHStorz GRyu SE. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction pathNat Struct Mol Biol111179-11852004. 47. Lee C, Lee SM, Mukhopadhyay P, Kim SJ, Lee SC, Ahn WS, Yu MH, Storz G, and Ryu SE. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat Struct Mol Biol 11: 1179–1185, 2004.
48.
Lee JGodon CLagniel GSpector DGarin JLabarre JToledano MB. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeastJ Biol Chem27416040-160461999. 48. Lee J, Godon C, Lagniel G, Spector D, Garin J, Labarre J, and Toledano MB. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. J Biol Chem 274: 16040–16046, 1999.
49.
Lee JWHelmann JD. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidationNature440363-3672006. 49. Lee JW and Helmann JD. The PerR transcription factor senses H2O2 by metal-catalysed histidine oxidation. Nature 440: 363–367, 2006.
50.
Lee JWSoonsanga SHelmann JD. A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrRProc Natl Acad Sci U S A1048743-87482007. 50. Lee JW, Soonsanga S, and Helmann JD. A complex thiolate switch regulates the Bacillus subtilis organic peroxide sensor OhrR. Proc Natl Acad Sci U S A 104: 8743–8748, 2007.
51.
Leelakriangsak MHuyen NTTowe Svan Duy NBecher DHecker MAntelmann HZuber P. Regulation of quinone detoxification by the thiol stress sensing DUF24/MarR-like repressor, YodB in Bacillus subtilisMol Microbiol671108-11242008. 51. Leelakriangsak M, Huyen NT, Towe S, van Duy N, Becher D, Hecker M, Antelmann H, and Zuber P. Regulation of quinone detoxification by the thiol stress sensing DUF24/MarR-like repressor, YodB in Bacillus subtilis. Mol Microbiol 67: 1108–1124, 2008.
52.
Leelakriangsak MKobayashi KZuber P. Dual negative control of spx transcription initiation from the P3 promoter by repressors PerR and YodB in Bacillus subtilisJ Bacteriol1891736-17442007. 52. Leelakriangsak M, Kobayashi K, and Zuber P. Dual negative control of spx transcription initiation from the P3 promoter by repressors PerR and YodB in Bacillus subtilis. J Bacteriol 189: 1736–1744, 2007.
53.
Leichert LIGehrke FGudiseva HVBlackwell TIlbert MWalker AKStrahler JRAndrews PCJakob U. Quantifying changes in the thiol redox proteome upon oxidative stress in vivoProc Natl Acad Sci U S A1058197-82022008. 53. Leichert LI, Gehrke F, Gudiseva HV, Blackwell T, Ilbert M, Walker AK, Strahler JR, Andrews PC, and Jakob U. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. Proc Natl Acad Sci U S A 105: 8197–8202, 2008.
54.
Levy CPike KHeyes DJJoyce MGGabor KSmidt Hvan der Oost JLeys D. Molecular basis of halorespiration control by CprK, a CRP-FNR type transcriptional regulatorMol Microbiol70151-1672008. 54. Levy C, Pike K, Heyes DJ, Joyce MG, Gabor K, Smidt H, van der Oost J, and Leys D. Molecular basis of halorespiration control by CprK, a CRP-FNR type transcriptional regulator. Mol Microbiol 70: 151–167, 2008.
55.
Li WBottrill ARBibb MJButtner MJPaget MSKleanthous C. The role of zinc in the disulphide stress-regulated anti-sigma factor RsrA from Streptomyces coelicolorJ Mol Biol333461-4722003. 55. Li W, Bottrill AR, Bibb MJ, Buttner MJ, Paget MS, and Kleanthous C. The role of zinc in the disulphide stress-regulated anti-sigma factor RsrA from Streptomyces coelicolor. J Mol Biol 333: 461–472, 2003.
56.
Liebeke MPother DCvan Duy NAlbrecht DBecher DHochgrafe FLalk MHecker MAntelmann H. Depletion of thiol-containing proteins in response to quinones in Bacillus subtilisMol Microbiol691513-15292008. 56. Liebeke M, Pother DC, van Duy N, Albrecht D, Becher D, Hochgrafe F, Lalk M, Hecker M, and Antelmann H. Depletion of thiol-containing proteins in response to quinones in Bacillus subtilis. Mol Microbiol 69: 1513–1529, 2008.
57.
Masip LVeeravalli KGeorgiou G. The many faces of glutathione in bacteriaAntioxid Redox Signal8753-7622006. 57. Masip L, Veeravalli K, and Georgiou G. The many faces of glutathione in bacteria. Antioxid Redox Signal 8: 753–762, 2006.
58.
Masuda SBauer CE. AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroidesCell110613-6232002. 58. Masuda S and Bauer CE. AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 110: 613–623, 2002.
59.
Masuda SDong CSwem DSetterdahl ATKnaff DBBauer CE. Repression of photosynthesis gene expression by formation of a disulfide bond in CrtJProc Natl Acad Sci U S A997078-70832002. 59. Masuda S, Dong C, Swem D, Setterdahl AT, Knaff DB, and Bauer CE. Repression of photosynthesis gene expression by formation of a disulfide bond in CrtJ. Proc Natl Acad Sci U S A 99: 7078–7083, 2002.
60.
Mazon HGabor KLeys DHeck AJvan der Oost Jvan den Heuvel RH. Transcriptional activation by CprK1 is regulated by protein structural changes induced by effector binding and redox stateJ Biol Chem28211281-112902007. 60. Mazon H, Gabor K, Leys D, Heck AJ, van der Oost J, and van den Heuvel RH. Transcriptional activation by CprK1 is regulated by protein structural changes induced by effector binding and redox state. J Biol Chem 282: 11281–11290, 2007.
61.
Mukhopadhyay PZheng MBedzyk LALaRossa RAStorz G. Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen speciesProc Natl Acad Sci U S A101745-7502004. 61. Mukhopadhyay P, Zheng M, Bedzyk LA, LaRossa RA, and Storz G. Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proc Natl Acad Sci U S A 101: 745–750, 2004.
62.
Nakano MMLin AZuber CSNewberry KJBrennan RGZuber P. Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase alpha subunitPLoS One5e86642010. 62. Nakano MM, Lin A, Zuber CS, Newberry KJ, Brennan RG, and Zuber P. Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase alpha subunit. PLoS One 5: e8664, 2010.
63.
Nakano SKuster-Schock EGrossman ADZuber P. Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilisProc Natl Acad Sci U S A10013603-136082003. 63. Nakano S, Kuster-Schock E, Grossman AD, and Zuber P. Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis. Proc Natl Acad Sci U S A 100: 13603–13608, 2003.
64.
Newberry KJFuangthong MPanmanee WMongkolsuk SBrennan RG. Structural mechanism of organic hydroperoxide induction of the transcription regulator OhrRMol Cell28652-6642007. 64. Newberry KJ, Fuangthong M, Panmanee W, Mongkolsuk S, and Brennan RG. Structural mechanism of organic hydroperoxide induction of the transcription regulator OhrR. Mol Cell 28: 652–664, 2007.
65.
Newberry KJNakano SZuber PBrennan RG. Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the alpha C-terminal domain of RNA polymeraseProc Natl Acad Sci U S A10215839-158442005. 65. Newberry KJ, Nakano S, Zuber P, and Brennan RG. Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the alpha C-terminal domain of RNA polymerase. Proc Natl Acad Sci U S A 102: 15839–15844, 2005.
66.
Newton GLBuchmeier NFahey RC. Biosynthesis and functions of mycothiol, the unique protective thiol of ActinobacteriaMicrobiol Mol Biol Rev72471-4942008. 66. Newton GL, Buchmeier N, and Fahey RC. Biosynthesis and functions of mycothiol, the unique protective thiol of Actinobacteria. Microbiol Mol Biol Rev 72: 471–494, 2008.
67.
Newton GLFahey RC. Regulation of mycothiol metabolism by sigma(R) and the thiol redox sensor anti-sigma factor RsrAMol Microbiol68805-8092008. 67. Newton GL and Fahey RC. Regulation of mycothiol metabolism by sigma(R) and the thiol redox sensor anti-sigma factor RsrA. Mol Microbiol 68: 805–809, 2008.
68.
Newton GLRawat MLa Clair JJJothivasan VKBudiarto THamilton CJClaiborne AHelmann JDFahey RC. Bacillithiol is an antioxidant thiol produced in BacilliNat Chem Biol5625-6272009. 68. Newton GL, Rawat M, La Clair JJ, Jothivasan VK, Budiarto T, Hamilton CJ, Claiborne A, Helmann JD, and Fahey RC. Bacillithiol is an antioxidant thiol produced in Bacilli. Nat Chem Biol 5: 625–627, 2009.
69.
Nguyen TNioi PPickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stressJ Biol Chem28413291-132952009. 69. Nguyen T, Nioi P, and Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284: 13291–13295, 2009.
70.
Nguyen TTEiamphungporn WMader ULiebeke MLalk MHecker MHelmann JDAntelmann H. Genome-wide responses to carbonyl electrophiles in Bacillus subtilis: control of the thiol-dependent formaldehyde dehydrogenase AdhA and cysteine proteinase YraA by the MerR-family regulator YraB (AdhR)Mol Microbiol71876-8942009. 70. Nguyen TT, Eiamphungporn W, Mader U, Liebeke M, Lalk M, Hecker M, Helmann JD, and Antelmann H. Genome-wide responses to carbonyl electrophiles in Bacillus subtilis: control of the thiol-dependent formaldehyde dehydrogenase AdhA and cysteine proteinase YraA by the MerR-family regulator YraB (AdhR). Mol Microbiol 71: 876–894, 2009.
71.
Paget MSButtner MJ. Thiol-based regulatory switchesAnnu Rev Genet3791-1212003. 71. Paget MS and Buttner MJ. Thiol-based regulatory switches. Annu Rev Genet 37: 91–121, 2003.
72.
Panmanee WVattanaviboon PEiamphungporn WWhangsuk WSallabhan RMongkolsuk S. OhrR, a transcription repressor that senses and responds to changes in organic peroxide levels in Xanthomonas campestris pv. phaseoliMol Microbiol451647-16542002. 72. Panmanee W, Vattanaviboon P, Eiamphungporn W, Whangsuk W, Sallabhan R, and Mongkolsuk S. OhrR, a transcription repressor that senses and responds to changes in organic peroxide levels in Xanthomonas campestris pv. phaseoli. Mol Microbiol 45: 1647–1654, 2002.
73.
Panmanee WVattanaviboon PPoole LBMongkolsuk S. Novel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stressJ Bacteriol1881389-13952006. 73. Panmanee W, Vattanaviboon P, Poole LB, and Mongkolsuk S. Novel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stress. J Bacteriol 188: 1389–1395, 2006.
74.
Park JHRoe JH. Mycothiol regulates and is regulated by a thiol-specific antisigma factor RsrA and sigma(R) in Streptomyces coelicolorMol Microbiol68861-8702008. 74. Park JH and Roe JH. Mycothiol regulates and is regulated by a thiol-specific antisigma factor RsrA and sigma(R) in Streptomyces coelicolor. Mol Microbiol 68: 861–870, 2008.
75.
Paulsen CECarroll KS. Orchestrating redox signaling networks through regulatory cysteine switchesACS Chem Biol547-622010. 75. Paulsen CE and Carroll KS. Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol 5: 47–62, 2010.
76.
Penner-Hahn J. Zinc-promoted alkyl transfer: a new role for zincCurr Opin Chem Biol11166-1712007. 76. Penner-Hahn J. Zinc-promoted alkyl transfer: a new role for zinc. Curr Opin Chem Biol 11: 166–171, 2007.
77.
Poole LBKarplus PAClaiborne A. Protein sulfenic acids in redox signalingAnnu Rev Pharmacol Toxicol44325-3472004. 77. Poole LB, Karplus PA, and Claiborne A. Protein sulfenic acids in redox signaling. Annu Rev Pharmacol Toxicol 44: 325–347, 2004.
78.
Poor CBChen PRDuguid ERice PAHe C. Crystal structures of the reduced, sulfenic acid, and mixed disulfide forms of SarZ, a redox active global regulator in Staphylococcus aureusJ Biol Chem28423517-235242009. 78. Poor CB, Chen PR, Duguid E, Rice PA, and He C. Crystal structures of the reduced, sulfenic acid, and mixed disulfide forms of SarZ, a redox active global regulator in Staphylococcus aureus. J Biol Chem 284: 23517–23524, 2009.
79.
Pop SMGupta NRaza ASRagsdale SW. Transcriptional activation of dehalorespiration: identification of redox-active cysteines regulating dimerization and DNA bindingJ Biol Chem28126382-263902006. 79. Pop SM, Gupta N, Raza AS, and Ragsdale SW. Transcriptional activation of dehalorespiration: identification of redox-active cysteines regulating dimerization and DNA binding. J Biol Chem 281: 26382–26390, 2006.
80.
Pop SMKolarik RJRagsdale SW. Regulation of anaerobic dehalorespiration by the transcriptional activator CprKJ Biol Chem27949910-499182004. 80. Pop SM, Kolarik RJ, and Ragsdale SW. Regulation of anaerobic dehalorespiration by the transcriptional activator CprK. J Biol Chem 279: 49910–49918, 2004.
81.
Pother DCLiebeke MHochgrafe FAntelmann HBecher DLalk MLindequist UBorovok ICohen GAharonowitz YHecker M. Diamide triggers mainly S thiolations in the cytoplasmic proteomes of Bacillus subtilis and Staphylococcus aureusJ Bacteriol1917520-75302009. 81. Pother DC, Liebeke M, Hochgrafe F, Antelmann H, Becher D, Lalk M, Lindequist U, Borovok I, Cohen G, Aharonowitz Y, and Hecker M. Diamide triggers mainly S thiolations in the cytoplasmic proteomes of Bacillus subtilis and Staphylococcus aureus. J Bacteriol 191: 7520–7530, 2009.
82.
Salmeen AAndersen JNMyers MPMeng TCHinks JATonks NKBarford D. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediateNature423769-7732003. 82. Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA, Tonks NK, and Barford D. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423: 769–773, 2003.
83.
Sanger F. Sequences, sequences, and sequencesAnnu Rev Biochem571-281988. 83. Sanger F. Sequences, sequences, and sequences. Annu Rev Biochem 57: 1–28, 1988.
84.
Seo YHCarroll KS. Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodiesProc Natl Acad Sci U S A10616163-161682009. 84. Seo YH and Carroll KS. Profiling protein thiol oxidation in tumor cells using sulfenic acid-specific antibodies. Proc Natl Acad Sci U S A 106: 16163–16168, 2009.
85.
Soonsanga SLee JWHelmann JD. Conversion of Bacillus subtilis OhrR from a 1-Cys to a 2-Cys peroxide sensorJ Bacteriol1905738-57452008. 85. Soonsanga S, Lee JW, and Helmann JD. Conversion of Bacillus subtilis OhrR from a 1-Cys to a 2-Cys peroxide sensor. J Bacteriol 190: 5738–5745, 2008.
86.
Soonsanga SLee JWHelmann JD. Oxidant-dependent switching between reversible and sacrificial oxidation pathways for Bacillus subtilis OhrRMol Microbiol68978-9862008. 86. Soonsanga S, Lee JW, and Helmann JD. Oxidant-dependent switching between reversible and sacrificial oxidation pathways for Bacillus subtilis OhrR. Mol Microbiol 68: 978–986, 2008.
87.
Stroeher UHKidd SPStafford SLJennings MPPaton JCMcEwan AG. A pneumococcal MerR-like regulator and S-nitrosoglutathione reductase are required for systemic virulenceJ Infect Dis1961820-18262007. 87. Stroeher UH, Kidd SP, Stafford SL, Jennings MP, Paton JC, and McEwan AG. A pneumococcal MerR-like regulator and S-nitrosoglutathione reductase are required for systemic virulence. J Infect Dis 196: 1820–1826, 2007.
88.
Sukchawalit RLoprasert SAtichartpongkul SMongkolsuk S. Complex regulation of the organic hydroperoxide resistance gene (ohr) from Xanthomonas involves OhrR, a novel organic peroxide-inducible negative regulator, and posttranscriptional modificationsJ Bacteriol1834405-44122001. 88. Sukchawalit R, Loprasert S, Atichartpongkul S, and Mongkolsuk S. Complex regulation of the organic hydroperoxide resistance gene (ohr) from Xanthomonas involves OhrR, a novel organic peroxide-inducible negative regulator, and posttranscriptional modifications. J Bacteriol 183: 4405–4412, 2001.
89.
Swem LRGong XYu CABauer CE. Identification of a ubiquinone-binding site that affects autophosphorylation of the sensor kinase RegBJ Biol Chem2816768-67752006. 89. Swem LR, Gong X, Yu CA, and Bauer CE. Identification of a ubiquinone-binding site that affects autophosphorylation of the sensor kinase RegB. J Biol Chem 281: 6768–6775, 2006.
90.
van Montfort RLCongreve MTisi DCarr RJhoti H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1BNature423773-7772003. 90. van Montfort RL, Congreve M, Tisi D, Carr R, and Jhoti H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature 423: 773–777, 2003.
91.
Wobbe LBlifernez OSchwarz CMussgnug JHNickelsen JKruse O. Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in ChlamydomonasProc Natl Acad Sci U S A10613290-132952009. 91. Wobbe L, Blifernez O, Schwarz C, Mussgnug JH, Nickelsen J, and Kruse O. Cysteine modification of a specific repressor protein controls the translational status of nucleus-encoded LHCII mRNAs in Chlamydomonas. Proc Natl Acad Sci U S A 106: 13290–13295, 2009.
92.
Wood MJStorz GTjandra N. Structural basis for redox regulation of Yap1 transcription factor localizationNature430917-9212004. 92. Wood MJ, Storz G, and Tjandra N. Structural basis for redox regulation of Yap1 transcription factor localization. Nature 430: 917–921, 2004.
93.
Yurimoto HHirai RMatsuno NYasueda HKato NSakai Y. HxlR, a member of the DUF24 protein family, is a DNA-binding protein that acts as a positive regulator of the formaldehyde-inducible hxlAB operon in Bacillus subtilisMol Microbiol57511-5192005. 93. Yurimoto H, Hirai R, Matsuno N, Yasueda H, Kato N, and Sakai Y. HxlR, a member of the DUF24 protein family, is a DNA-binding protein that acts as a positive regulator of the formaldehyde-inducible hxlAB operon in Bacillus subtilis. Mol Microbiol 57: 511–519, 2005.
94.
Zdanowski KDoughty PJakimowicz PO'Hara LButtner MJPaget MSKleanthous C. Assignment of the zinc ligands in RsrA, a redox-sensing ZAS protein from Streptomyces coelicolorBiochemistry458294-83002006. 94. Zdanowski K, Doughty P, Jakimowicz P, O'Hara L, Buttner MJ, Paget MS, and Kleanthous C. Assignment of the zinc ligands in RsrA, a redox-sensing ZAS protein from Streptomyces coelicolor. Biochemistry 45: 8294–8300, 2006.
95.
Zuber P. Spx-RNA polymerase interaction and global transcriptional control during oxidative stressJ Bacteriol1861911-19182004. 95. Zuber P. Spx-RNA polymerase interaction and global transcriptional control during oxidative stress. J Bacteriol 186: 1911–1918, 2004.
96.
Zuber P. Management of oxidative stress in BacillusAnnu Rev Microbiol63575-5972009. 96. Zuber P. Management of oxidative stress in Bacillus. Annu Rev Microbiol 63: 575–597, 2009.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 14Issue Number 6March 15, 2011
Pages: 1049 - 1063
PubMed: 20626317

History

Published in print: March 15, 2011
Published online: 19 February 2011
Published ahead of print: 28 October 2010
Published ahead of production: 14 July 2010
Accepted: 10 July 2010
Received: 17 June 2010

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Haike Antelmann
Institute of Microbiology, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany.
John D. Helmann
Department of Microbiology, Cornell University, Ithaca, New York.

Notes

Address correspondence to:Haike AntelmannInstitute of MicrobiologyErnst-Moritz-Arndt-University of GreifswaldF.-L.-Jahn-Str. 15D-17487 GreifswaldGermany
E-mail: [email protected]
John D. HelmannDepartment of MicrobiologyCornell UniversityIthaca, NY 14850E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top