<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Review Article
No access
Published Online: 12 September 2013

Angiotensin II, NADPH Oxidase, and Redox Signaling in the Vasculature

Publication: Antioxidants & Redox Signaling
Volume 19, Issue Number 10

Abstract

Significance: Angiotensin II (Ang II) influences the function of many cell types and regulates many organ systems, in large part through redox-sensitive processes. In the vascular system, Ang II is a potent vasoconstrictor and also promotes inflammation, hypertrophy, and fibrosis, which are important in vascular damage and remodeling in cardiovascular diseases. The diverse actions of Ang II are mediated via Ang II type 1 and Ang II type 2 receptors, which couple to various signaling molecules, including NADPH oxidase (Nox), which generates reactive oxygen species (ROS). ROS are now recognized as signaling molecules, critically placed in pathways activated by Ang II. Mechanisms linking Nox and Ang II are complex and not fully understood. Recent Advances: Ang II regulates vascular cell production of ROS through various recently characterized Noxs, including Nox1, Nox2, Nox4, and Nox5. Activation of these Noxs leads to ROS generation, which in turn influences many downstream signaling targets of Ang II, including MAP kinases, RhoA/Rho kinase, transcription factors, protein tyrosine phosphatases, and tyrosine kinases. Activation of these redox-sensitive pathways regulates vascular cell growth, inflammation, contraction, and senescence. Critical Issues: Although there is much evidence indicating a role for Nox/ROS in Ang II function, there is still a paucity of information on how Ang II exerts cell-specific effects through ROS and how Nox isoforms are differentially regulated by Ang II. Moreover, exact mechanisms whereby ROS induce oxidative modifications of signaling molecules mediating Ang II actions remain elusive. Future Directions: Future research should elucidate these issues to better understand the significance of Ang II and ROS in vascular (patho) biology. Antioxid. Redox Signal. 19, 1110–1120.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Al Ghouleh IKhoo NKKnaus UGGriendling KKTouyz RMThannickal VJBarchowsky ANauseef WMKelley EEBauer PMDarley-Usmar VShiva SCifuentes-Pagano EFreeman BAGladwin MTPagano PJ. Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signalingFree Radic Biol Med511271-12882011. 1. Al Ghouleh I, Khoo NK, Knaus UG, Griendling KK, Touyz RM, Thannickal VJ, Barchowsky A, Nauseef WM, Kelley EE, Bauer PM, Darley-Usmar V, Shiva S, Cifuentes- Pagano E, Freeman BA, Gladwin MT, and Pagano PJ. Oxidases and peroxidases in cardiovascular and lung disease: new concepts in reactive oxygen species signaling. Free Radic Biol Med 51: 1271–1288, 2011.
2.
Benigni ACorna DZoja CSonzogni ALatini RSalio MConti SRottoli DLongaretti LCassis PMorigi MCoffman TMRemuzzi G. Disruption of the Ang II type 1 receptor promotes longevity in miceJ Clin Invest119524-5302009. 2. Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, Conti S, Rottoli D, Longaretti L, Cassis P, Morigi M, Coffman TM, and Remuzzi G. Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 119: 524–530, 2009.
3.
Block KGorin YAbboud HE. Subcellular localization of Nox4 and regulation in diabetesProc Natl Acad Sci U S A10614385-143902009. 3. Block K, Gorin Y, and Abboud HE. Subcellular localization of Nox4 and regulation in diabetes. Proc Natl Acad Sci U S A 106: 14385–14390, 2009.
4.
Bokoch GMZhao T. Regulation of the phagocyte NAD(P)H oxidase by Rac GTPaseAntioxid Redox Signal81533-15482006. 4. Bokoch GM and Zhao T. Regulation of the phagocyte NAD(P)H oxidase by Rac GTPase. Antioxid Redox Signal 8: 1533–1548, 2006.
5.
Brandes RPSchröder K. Differential vascular functions of Nox family NAD(P)H oxidasesCurr Opin Lipidol19513-5182008. 5. Brandes RP and Schröder K. Differential vascular functions of Nox family NAD(P)H oxidases. Curr Opin Lipidol 19: 513–518, 2008.
6.
Brasier AR. The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammationCardiovasc Res86211-2182010. 6. Brasier AR. The nuclear factor-kappaB-interleukin-6 signalling pathway mediating vascular inflammation. Cardiovasc Res 86: 211–218, 2010.
7.
Briones AMTabet FCallera GEMontezano ACYogi AHe YQuinn MTSalaices MTouyz RM. Differential regulation of Nox1, Nox2 and Nox4 in vascular smooth muscle cells from WKY and SHRJ Am Soc Hypertens5137-1532011. 7. Briones AM, Tabet F, Callera GE, Montezano AC, Yogi A, He Y, Quinn MT, Salaices M, and Touyz RM. Differential regulation of Nox1, Nox2 and Nox4 in vascular smooth muscle cells from WKY and SHR. J Am Soc Hypertens 5: 137–153, 2011.
8.
Brown DIGriendling KK. Nox proteins in signal transductionFree Radic Biol Med471239-12532009. 8. Brown DI and Griendling KK. Nox proteins in signal transduction. Free Radic Biol Med 47: 1239–1253, 2009.
9.
Burger DMontezano ACNishigaki NHe YCarter ATouyz RM. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH 18 oxidase/Rho kinase pathways targeted to lipid raftsArterioscler Thromb Vasc Biol311898-18992011. 9. Burger D, Montezano AC, Nishigaki N, He Y, Carter A, and Touyz RM. Endothelial microparticle formation by angiotensin II is mediated via Ang II receptor type I/NADPH 18 oxidase/Rho kinase pathways targeted to lipid rafts. Arterioscler Thromb Vasc Biol 31: 1898–1899, 2011.
10.
Burgoyne JRHaeussler DJKumar VJi YPimental DRZee RSCostello CELin CMcComb MECohen RABachschmid MM. Oxidation of HRas cysteine thiols by metabolic stress prevents palmitoylation in vivo and contributes to endothelial cell apoptosisFASEB J26832-8412012. 10. Burgoyne JR, Haeussler DJ, Kumar V, Ji Y, Pimental DR, Zee RS, Costello CE, Lin C, McComb ME, Cohen RA, and Bachschmid MM. Oxidation of HRas cysteine thiols by metabolic stress prevents palmitoylation in vivo and contributes to endothelial cell apoptosis. FASEB J 26: 832–841, 2012.
11.
Callera GEMontezano ACYogi ATostes RCTouyz RM. Vascular signaling through cholesterol-rich domains: implications in hypertensionCurr Opin Nephrol Hypertens1690-1042007. 11. Callera GE, Montezano AC, Yogi A, Tostes RC, and Touyz RM. Vascular signaling through cholesterol-rich domains: implications in hypertension. Curr Opin Nephrol Hypertens 16: 90–104, 2007.
12.
Callera GEYogi ABriones AMMontezano ACHe YTostes RCSchiffrin ELTouyz RM. Vascular proinflammatory responses by aldosterone are mediated via c-Src trafficking to cholesterol-rich microdomains: role of PDGFRCardiovasc Res91720-7312011. 12. Callera GE, Yogi A, Briones AM, Montezano AC, He Y, Tostes RC, Schiffrin EL, and Touyz RM. Vascular proinflammatory responses by aldosterone are mediated via c-Src trafficking to cholesterol-rich microdomains: role of PDGFR. Cardiovasc Res 91: 720–731, 2011.
13.
Camici GGCosentino FTanner FCLüscher TF. The role of p66Shc deletion in ageassociated arterial dysfunction and disease statesJ Appl Physiol1051628-16312008. 13. Camici GG, Cosentino F, Tanner FC, and Lüscher TF. The role of p66Shc deletion in ageassociated arterial dysfunction and disease states. J Appl Physiol 105: 1628–1631, 2008.
14.
Capettini LSMontecucco FMach FStergiopulos NSantos RAda Silva RF. Role of renin-angiotensin system in inflammation, immunity and agingCurr Pharm Des18963-9702012. 14. Capettini LS, Montecucco F, Mach F, Stergiopulos N, Santos RA, and da Silva RF. Role of renin-angiotensin system in inflammation, immunity and aging. Curr Pharm Des 18: 963–970, 2012.
15.
Cosentino FFrancia PCamici GGPelicci PGLüscher TFVolpe M. Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc proteinArterioscler Thromb Vasc Biol28622-6282008. 15. Cosentino F, Francia P, Camici GG, Pelicci PG, Lüscher TF, and Volpe M. Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol 28: 622–628, 2008.
16.
Cruzado MCRisler NRMiatello RMYao GSchiffrin ELTouyz RM. Vascular smooth muscle cell NAD(P)H oxidase activity during the development of hypertension: Effect of angiotensin II and role of insulinlike growth factor-1 receptor transactivationAm J Hypertens1881-872005. 16. Cruzado MC, Risler NR, Miatello RM, Yao G, Schiffrin EL, and Touyz RM. Vascular smooth muscle cell NAD(P)H oxidase activity during the development of hypertension: Effect of angiotensin II and role of insulinlike growth factor-1 receptor transactivation. Am J Hypertens 18: 81–87, 2005.
17.
Dikalov SIDikalova AEBikineyeva ATSchmidt HHHarrison DGGriendling KK. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide productionFree Radic Biol Med451340-13512008. 17. Dikalov SI, Dikalova AE, Bikineyeva AT, Schmidt HH, Harrison DG, and Griendling KK. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production. Free Radic Biol Med 45: 1340–1351, 2008.
18.
Dikalova AEBikineyeva ATBudzyn KNazarewicz RRMcCann LLewis WHarrison DGDikalov SI. Therapeutic targeting of mitochondrial superoxide in hypertensionCirc Res107106-1162010. 18. Dikalova AE, Bikineyeva AT, Budzyn K, Nazarewicz RR, McCann L, Lewis W, Harrison DG, and Dikalov SI. Therapeutic targeting of mitochondrial superoxide in hypertension. Circ Res 107: 106–116, 2010.
19.
Dikalova AEGóngora MCHarrison DGLambeth JDDikalov SGriendling KK. Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncouplingAm J Physiol Heart Circ Physiol299H673-H6792010. 19. Dikalova AE, Góngora MC, Harrison DG, Lambeth JD, Dikalov S, and Griendling KK. Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling. Am J Physiol Heart Circ Physiol 299: H673–H679, 2010.
20.
Donnini STerzuoli EZiche MMorbidelli L. Sulfhydryl angiotensin-converting enzyme inhibitor promotes endothelial cell survival through nitric-oxide synthase, fibroblast growth factor-2, and telomerase cross-talkJ Pharmacol Exp Ther332776-7842010. 20. Donnini S, Terzuoli E, Ziche M, and Morbidelli L. Sulfhydryl angiotensin-converting enzyme inhibitor promotes endothelial cell survival through nitric-oxide synthase, fibroblast growth factor-2, and telomerase cross-talk. J Pharmacol Exp Ther 332: 776–784, 2010.
21.
Dutta SRittinger K. Regulation of NOXO1 activity through reversible interactions with p22 and NOXA1PLoS One5e10478. 21. Dutta S and Rittinger K. Regulation of NOXO1 activity through reversible interactions with p22 and NOXA1. PLoS One 5: e10478.
22.
Ebrahimian TLi MWLemarié CASimeone SMPagano PJGaestel MParadis PWassmann SSchiffrin EL. Mitogen-activated protein kinase-activated protein kinase 2 in angiotensin II-induced inflammation and hypertension: regulation of oxidative stressHypertension57245-2542011. 22. Ebrahimian T, Li MW, Lemarié CA, Simeone SM, Pagano PJ, Gaestel M, Paradis P, Wassmann S, and Schiffrin EL. Mitogen-activated protein kinase-activated protein kinase 2 in angiotensin II-induced inflammation and hypertension: regulation of oxidative stress. Hypertension 57: 245–254, 2011.
23.
Fernandes DCManoel AHWosniak J. JrLaurindo FR. Protein disulfide isomerase overexpression in vascular smooth muscle cells induces spontaneous preemptive NADPH oxidase activation and Nox1 mRNA expression: effects of nitrosothiol exposureArch Biochem Biophys484197-2042009. 23. Fernandes DC, Manoel AH, Wosniak J Jr., and Laurindo FR. Protein disulfide isomerase overexpression in vascular smooth muscle cells induces spontaneous preemptive NADPH oxidase activation and Nox1 mRNA expression: effects of nitrosothiol exposure. Arch Biochem Biophys 484: 197–204, 2009.
24.
Flohé LToppo SCozza GUrsini F. A comparison of thiol peroxidase mechanismsAntioxid Redox Signal15763-7802011. 24. Flohé L, Toppo S, Cozza G, and Ursini F. A comparison of thiol peroxidase mechanisms. Antioxid Redox Signal 15: 763–780, 2011.
25.
Freinbichler WColivicchi MAStefanini CBianchi LBallini CMisini BWeinberger PLinert WVarešlija DTipton KFDella Corte L. Highly reactive oxygen species: detection, formation, and possible functionsCell Mol Life Sci682067-20792011. 25. Freinbichler W, Colivicchi MA, Stefanini C, Bianchi L, Ballini C, Misini B, Weinberger P, Linert W, Varešlija D, Tipton KF, and Della Corte L. Highly reactive oxygen species: detection, formation, and possible functions. Cell Mol Life Sci 68: 2067–2079, 2011.
26.
Fridovich I. Superoxide anion radical (O2-.), superoxide dismutases, and related mattersJ Biol Chem27218515-185171997. 26. Fridovich I. Superoxide anion radical (O2-.), superoxide dismutases, and related matters. J Biol Chem 272: 18515–18517, 1997.
27.
Garrido AMGriendling KK. NADPH oxidases, angiotensin II receptor signalingMol Cell Endocrinol302148-1582009. 27. Garrido AM and Griendling KK: NADPH oxidases and angiotensin II receptor signaling. Mol Cell Endocrinol 302: 148–158, 2009.
28.
Geiszt M. NAD(P)H oxidases: New kids on the blockCardiovasc Res71289-2992006. 28. Geiszt M. NAD(P)H oxidases: New kids on the block. Cardiovasc Res 71: 289–299, 2006.
29.
Gordillo GFang HPark HRoy S. Nox-4-dependent nuclear H2O2 drives DNA oxidation resulting in 8-OHdG as urinary biomarker and hemangioendothelioma formationAntioxid Redox Signal12933-9432010. 29. Gordillo G, Fang H, Park H, and Roy S. Nox-4-dependent nuclear H2O2 drives DNA oxidation resulting in 8-OHdG as urinary biomarker and hemangioendothelioma formation. Antioxid Redox Signal 12: 933–943, 2010.
30.
Graham KAKulawiec MOwens KMLi XDesouki MMChandra DSingh KK. NADPH oxidase 4 is an oncoprotein localized to mitochondriaCancer Biol Ther10223-2312010. 30. Graham KA, Kulawiec M, Owens KM, Li X, Desouki MM, Chandra D, and Singh KK. NADPH oxidase 4 is an oncoprotein localized to mitochondria. Cancer Biol Ther 10: 223–231, 2010.
31.
Griendling KKMinieri CAOllerenshaw JDAlexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cellsCirc Res741141-11481994. 31. Griendling KK, Minieri CA, Ollerenshaw JD, and Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74: 1141–1148, 1994.
32.
Herbert KEMistry YHastings RPoolman TNiklason LWilliams B. Angiotensin II-mediated oxidative DNA damage accelerates cellular senescence in cultured human vascular smooth muscle cells via telomere-dependent and independent pathwaysCirc Res102201-2082008. 32. Herbert KE, Mistry Y, Hastings R, Poolman T, Niklason L, and Williams B. Angiotensin II-mediated oxidative DNA damage accelerates cellular senescence in cultured human vascular smooth muscle cells via telomere-dependent and independent pathways. Circ Res 102: 201–208, 2008.
33.
Imanishi IHano TNishio I. Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stressJ Hypertens2397-1042005. 33. Imanishi I, Hano T, and Nishio I. Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens 23: 97–104, 2005.
34.
Jackson EKGillespie DGZhu CRen JZacharia LCMi Z. Alpha2-adrenoceptors enhance angiotensin II-induced renal vasoconstriction: role for NADPH oxidase and RhoAHypertension51719-7262008. 34. Jackson EK, Gillespie DG, Zhu C, Ren J, Zacharia LC, and Mi Z. Alpha2-adrenoceptors enhance angiotensin II-induced renal vasoconstriction: role for NADPH oxidase and RhoA. Hypertension 51: 719–726, 2008.
35.
Jacob CJamier VBa LA. Redox active secondary metabolitesCurr Opin Chem Biol15149-1552011. 35. Jacob C, Jamier V, and Ba LA. Redox active secondary metabolites. Curr Opin Chem Biol 15: 149–155, 2011.
36.
Jagadeesha DKTakapoo MBanfi BBhalla RCMiller FJ. Jr. Nox1 transactivation of epidermal growth factor receptor promotes N-cadherin shedding and smooth muscle cell migrationCardiovasc Res93406-4132012. 36. Jagadeesha DK, Takapoo M, Banfi B, Bhalla RC, and Miller FJ Jr. Nox1 transactivation of epidermal growth factor receptor promotes N-cadherin shedding and smooth muscle cell migration. Cardiovasc Res 93: 406–413, 2012.
37.
Katsuyama MMatsuno KYabe-Nishimura C. Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzymeClin Biochem Nutr509-222012. 37. Katsuyama M, Matsuno K, and Yabe-Nishimura C. Physiological roles of NOX/NADPH oxidase, the superoxide-generating enzyme. Clin Biochem Nutr 50: 9–22, 2012.
38.
Knock GAWard JP. Redox regulation of protein kinases as a modulator of vascular functionAntioxid Redox Signal151531-15472011. 38. Knock GA and Ward JP. Redox regulation of protein kinases as a modulator of vascular function. Antioxid Redox Signal 15: 1531–1547, 2011.
39.
Lassegue BClempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulationAm J Physiol Regul Integr Comp Physiol285R277-R2972003. 39. Lassegue B and Clempus RE. Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285: R277–R297, 2003.
40.
Lassègue BSorescu DSzöcs KYin QAkers MZhang YGrant SLLambeth JDGriendling KK. Novel gp91(phox) homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathwaysCirc Res88888-8942010. 40. Lassègue B, Sorescu D, Szöcs K, Yin Q, Akers M, Zhang Y, Grant SL, Lambeth JD, and Griendling KK. Novel gp91(phox) homologues in vascular smooth muscle cells: nox1 mediates angiotensin II-induced superoxide formation and redox-sensitive signaling pathways. Circ Res 88: 888–894, 2010.
41.
Lemarié CASchiffrin EL. The angiotensin II type 2 receptor in cardiovascular diseaseJ Renin Angiotensin Aldosterone Syst1119-312010. 41. Lemarié CA and Schiffrin EL: The angiotensin II type 2 receptor in cardiovascular disease. J Renin Angiotensin Aldosterone Syst 11: 19–31, 2010.
42.
Leto TLMorand SHurt DUeyama T. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidasesAntioxid Redox Signal112602009. 42. Leto TL, Morand S, Hurt D, and Ueyama T. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 11: 260, 2009.
43.
Li YLévesque LOAnand-Srivastava MB. Epidermal growth factor receptor transactivation by endogenous vasoactive peptides contributes to hyperproliferation of vascular smooth muscle cells of SHRAm J Physiol Heart Circ Physiol299H1959-H19672010. 43. Li Y, Lévesque LO, and Anand-Srivastava MB. Epidermal growth factor receptor transactivation by endogenous vasoactive peptides contributes to hyperproliferation of vascular smooth muscle cells of SHR. Am J Physiol Heart Circ Physiol 299: H1959–H1967, 2010.
44.
Loirand GPacaud P. The role of Rho protein signaling in hypertensionNat Rev Cardiol7637-6472010. 44. Loirand G and Pacaud P. The role of Rho protein signaling in hypertension. Nat Rev Cardiol 7: 637–647, 2010.
45.
Lu JMitra SWang XKhaidakov MMehta JL. Oxidative stress and lectin-like ox-LDLreceptor LOX-1 in atherogenesis and tumorigenesisAntioxid Redox Signal152301-23332011. 45. Lu J, Mitra S, Wang X, Khaidakov M, and Mehta JL. Oxidative stress and lectin-like ox-LDLreceptor LOX-1 in atherogenesis and tumorigenesis. Antioxid Redox Signal 15: 2301–2333, 2011.
46.
Lyle ANDeshpande NNTaniyama YSeidel-Rogol BPounkova LDu PPapaharalambus CLassègue B. Griendling KK Poldip2, a novel regulator of Nox4, cytoskeletal integrity in vascular smooth muscle cellsCirc Res105249-2592009. 46. Lyle AN, Deshpande NN, Taniyama Y, Seidel-Rogol B, Pounkova L, Du P, Papaharalambus C, Lassègue B, and Griendling KK Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells. Circ Res 105: 249–259, 2009.
47.
Mehta PKGriendling KK. Angiotensin II cell signalling: physiological, pathological effects in the cardiovascular systemAm J Physiol Cell Physiol292C82-C972007. 47. Mehta PK and Griendling KK: Angiotensin II cell signalling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol 292: C82–C97, 2007.
48.
Mendez JINicholson WJTaylor WR. SOD isoforms and signaling in blood vessels: evidence for the importance of ROS compartmentalizationArterioscler Thromb Vasc Biol25887-8882005. 48. Mendez JI, Nicholson WJ, and Taylor WR. SOD isoforms and signaling in blood vessels: evidence for the importance of ROS compartmentalization. Arterioscler Thromb Vasc Biol 25: 887–888, 2005.
49.
Meziani FTesse AAndriantsitohaina R. Microparticles are vectors of paradoxical information in vascular cells including the endothelium: role in health and diseasesPharmacol Rep6075-842008. 49. Meziani F, Tesse A, and Andriantsitohaina R. Microparticles are vectors of paradoxical information in vascular cells including the endothelium: role in health and diseases. Pharmacol Rep 60: 75–84, 2008.
50.
Mifune MOhtsu HSuzuki HNakashima HBrailoiu EDun NJFrank GDInagami THigashiyama SThomas WGEckhart ADDempsey PJEguchi S. G protein coupling and second messenger generation are indispensable for metalloprotease-dependent, heparin binding epidermal growth factor shedding through angiotensin II type-1 receptorJ Biol Chem28026592-265992005. 50. Mifune M, Ohtsu H, Suzuki H, Nakashima H, Brailoiu E, Dun NJ, Frank GD, Inagami T, Higashiyama S, Thomas WG, Eckhart AD, Dempsey PJ, and Eguchi S. G protein coupling and second messenger generation are indispensable for metalloprotease-dependent, heparin binding epidermal growth factor shedding through angiotensin II type-1 receptor. J Biol Chem 280: 26592–26599, 2005.
51.
Miller FJ. JrFilali MHuss GJStanic BChamseddine ABarna TJLamb FS. Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Nox1 and ClC-3Circ Res101663-6712007. 51. Miller FJ Jr., Filali M, Huss GJ, Stanic B, Chamseddine A, Barna TJ, and Lamb FS. Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Nox1 and ClC-3. Circ Res 101: 663–671, 2007.
52.
Min LJMogi MIwai MHoriuchi M. Signaling mechanisms of angiotensin II in regulating vascular senescenceAgeing Res Rev8113-1212009. 52. Min LJ, Mogi M, Iwai M, and Horiuchi M. Signaling mechanisms of angiotensin II in regulating vascular senescence. Ageing Res Rev 8: 113–121, 2009.
53.
Monteiro HPArai RJTravassos LR. Protein tyrosine phosphorylation and protein tyrosine nitration in redox signalingAntioxid Redox Signal10843-8892008. 53. Monteiro HP, Arai RJ, and Travassos LR. Protein tyrosine phosphorylation and protein tyrosine nitration in redox signaling. Antioxid Redox Signal 10: 843–889, 2008.
54.
Montezano ACBurger DParavicini TMChignalia AZYusuf HAlmasri MHe YCallera GEHe GKrause KHLambeth DQuinn MTTouyz RM. Nicotinamide adenine dinucleotide phosphate reduced oxidase 5 (Nox5) regulation by angiotensin II and endothelin-1 is mediated via calcium/calmodulin-dependent, rac-1-independent pathways in human endothelial cellsCirc Res1061363-13732010. 54. Montezano AC, Burger D, Paravicini TM, Chignalia AZ, Yusuf H, Almasri M, He Y, Callera GE, He G, Krause KH, Lambeth D, Quinn MT, and Touyz RM. Nicotinamide adenine dinucleotide phosphate reduced oxidase 5 (Nox5) regulation by angiotensin II and endothelin-1 is mediated via calcium/calmodulin-dependent, rac-1-independent pathways in human endothelial cells. Circ Res 106: 1363–1373, 2010.
55.
Montezano ACCallera GEYogi AHe YTostes RCHe GSchiffrin ELTouyz RM. Aldosterone and angiotensin II synergistically stimulate migration in vascular smooth muscle cells through c-Src-regulated redox-sensitive RhoA pathwaysArterioscler Thromb Vasc Biol281511-15182008. 55. Montezano AC, Callera GE, Yogi A, He Y, Tostes RC, He G, Schiffrin EL, and Touyz RM. Aldosterone and angiotensin II synergistically stimulate migration in vascular smooth muscle cells through c-Src-regulated redox-sensitive RhoA pathways. Arterioscler Thromb Vasc Biol 28: 1511–1518, 2008.
56.
Montezano ACTouyz RM. Reactive oxygen species and endothelial function—role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidasesBasic Clin Pharmacol Toxicol11087-942012. 56. Montezano AC and Touyz RM. Reactive oxygen species and endothelial function—role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol 110: 87–94, 2012.
57.
Nguyen Dinh Cat ATouyz RM. Cell signaling of angiotensin II on vascular tone: novel mechanismsCurr Hypertens Rep13122-1282011. 57. Nguyen Dinh Cat A and Touyz RM. Cell signaling of angiotensin II on vascular tone: novel mechanisms. Curr Hypertens Rep 13: 122–128, 2011.
58.
Nishida MKitajima NSaiki SNakaya MKurose H. Regulation of Angiotensin II receptor signaling by cysteine modification of NF-κBNitric Oxide25112-1172011. 58. Nishida M, Kitajima N, Saiki S, Nakaya M, and Kurose H. Regulation of Angiotensin II receptor signaling by cysteine modification of NF-κB. Nitric Oxide 25: 112–117, 2011.
59.
Paravicini TMTouyz RM. Redox signaling in hypertensionCardiovasc Res71247-2582006. 59. Paravicini TM and Touyz RM. Redox signaling in hypertension. Cardiovasc Res 71: 247–258, 2006.
60.
Patten DALafleur VNRobitaille GAChan DAGiaccia AJRichard DE. Hypoxiainducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrialderived reactive oxygen speciesMol Biol Cell213247-32572010. 60. Patten DA, Lafleur VN, Robitaille GA, Chan DA, Giaccia AJ, and Richard DE. Hypoxiainducible factor-1 activation in nonhypoxic conditions: the essential role of mitochondrialderived reactive oxygen species. Mol Biol Cell 21: 3247–3257, 2010.
61.
Queisser NFazeli GSchupp N. Superoxide anion and hydrogen peroxide-induced signaling and damage in angiotensin II and aldosterone actionBiol Chem3911265-12792010. 61. Queisser N, Fazeli G, and Schupp N. Superoxide anion and hydrogen peroxide-induced signaling and damage in angiotensin II and aldosterone action. Biol Chem 391: 1265–1279, 2010.
62.
Rajagopalan SKurz SMünzel TTarpey MFreeman BAGriendling KKHarrison DG. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor toneJ Clin Invest971916-19231996. 62. Rajagopalan S, Kurz S, Münzel T, Tarpey M, Freeman BA, Griendling KK, and Harrison DG. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97: 1916–1923, 1996.
63.
Rasmussen HHHamilton EJLiu CCFigtree GA. Reversible oxidative modification: implications for cardiovascular physiology and pathophysiologyTrends Cardiovasc Med2085-902010. 63. Rasmussen HH, Hamilton EJ, Liu CC, and Figtree GA. Reversible oxidative modification: implications for cardiovascular physiology and pathophysiology. Trends Cardiovasc Med 20: 85–90, 2010.
64.
Seshiah PNWeber DSRocic PValppu LTaniyama YGriendling KK. Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediatorsCirc Res91406-4132002. 64. Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, and Griendling KK. Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res 91: 406–413, 2002.
65.
Streeter JThiel WBrieger KMiller FJ. Jr. Opportunity Nox: the future of NADPH oxidases as therapeutic targets in cardiovascular diseaseCardiovasc Ther2012[Epub ahead of print]. 65. Streeter J, Thiel W, Brieger K, and Miller FJ Jr. Opportunity Nox: the future of NADPH oxidases as therapeutic targets in cardiovascular disease. Cardiovasc Ther 2012. [Epub ahead of print]; doi: 10.1111/j.1755–5922.2011.00310.x.
66.
Tabet FSchiffrin ELCallera GEHe YYao GOstman AKappert KTonks NKTouyz RM. Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHRCirc Res103149-1542008. 66. Tabet F, Schiffrin EL, Callera GE, He Y, Yao G, Ostman A, Kappert K, Tonks NK, and Touyz RM. Redox-sensitive signaling by angiotensin II involves oxidative inactivation and blunted phosphorylation of protein tyrosine phosphatase SHP-2 in vascular smooth muscle cells from SHR. Circ Res 103: 149–154, 2008.
67.
Touyz RMBriones AMSedeek MBurger DMontezano AC. NOX Isoforms and Reactive Oxygen Species in Vascular HealthMol Interv1127-352011. 67. Touyz RM, Briones AM, Sedeek M, Burger D, and Montezano AC. NOX Isoforms and Reactive Oxygen Species in Vascular Health. Mol Interv 11: 27–35, 2011.
68.
Touyz RMChen XTabet FYao GHe GQuinn MTPagano PJSchiffrin EL. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin IICirc Res901205-12132002. 68. Touyz RM, Chen X, Tabet F, Yao G, He G, Quinn MT, Pagano PJ, and Schiffrin EL. Expression of a functionally active gp91phox-containing neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circ Res 90: 1205–1213, 2002.
69.
Touyz RMCruzado MTabet FYao GSalomon SSchiffrin EL. Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivationCan J Physiol Pharmacol81159-1672003. 69. Touyz RM, Cruzado M, Tabet F, Yao G, Salomon S, and Schiffrin EL. Redox-dependent MAP kinase signaling by Ang II in vascular smooth muscle cells: role of receptor tyrosine kinase transactivation. Can J Physiol Pharmacol 81: 159–167, 2003.
70.
Touyz RMSchiffrin EL. Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cellsHypertension34976-9821999. 70. Touyz RM and Schiffrin EL. Ang II-stimulated superoxide production is mediated via phospholipase D in human vascular smooth muscle cells. Hypertension 34: 976–982, 1999.
71.
Touyz RMSchiffrin EL. Signal transduction mechanisms mediating the physiological, pathophysiological actions of angiotensin II in vascular smooth muscle cellsPharmacol Rev52639-6722000. 71. Touyz RM and Schiffrin EL: Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52: 639–672, 2000.
72.
Touyz RMYao GQuinn MTPagano PJSchiffrin EL. p47p hox associates with the cytoskeleton through cortactin in human vascular smooth muscle cells: role in NAD(P)H oxidase regulation by angiotensin IIArterioscler Thromb Vasc Biol25512-5182005. 72. Touyz RM, Yao G, Quinn MT, Pagano PJ, and Schiffrin EL. p47p hox associates with the cytoskeleton through cortactin in human vascular smooth muscle cells: role in NAD(P)H oxidase regulation by angiotensin II. Arterioscler Thromb Vasc Biol 25: 512–518, 2005.
73.
Touyz RMYao GSchiffrin EL. c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cellsArterioscler Thromb Vasc Biol23981-9872003. 73. Touyz RM, Yao G, and Schiffrin EL. c-Src induces phosphorylation and translocation of p47phox: role in superoxide generation by angiotensin II in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 23: 981–987, 2003.
74.
Ungvari ZBailey-Downs LGautam TSosnowska DWang MMonticone RETelljohann RPinto JTde Cabo RSonntag WELakatta EGCsiszar A. Age-associated vascular oxidative stress, Nrf2 dysfunction, and NF-{kappa}B activation in the nonhuman primate Macaca mulattaJ Gerontol A Biol Sci Med Sci66866-8752011. 74. Ungvari Z, Bailey-Downs L, Gautam T, Sosnowska D, Wang M, Monticone RE, Telljohann R, Pinto JT, de Cabo R, Sonntag WE, Lakatta EG, and Csiszar A. Age-associated vascular oxidative stress, Nrf2 dysfunction, and NF-{kappa}B activation in the nonhuman primate Macaca mulatta. J Gerontol A Biol Sci Med Sci 66: 866–875, 2011.
75.
Ushio-Fukai MZafari AMFukui TIshizaka NGriendling KK. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cellsJ Biol Chem27123317-233211996. 75. Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, and Griendling KK. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 271: 23317–23321, 1996.
76.
Virdis ANeves MFAmiri FTouyz RMSchiffrin EL. Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused miceJ Hypertens22535-5422004. 76. Virdis A, Neves MF, Amiri F, Touyz RM, and Schiffrin EL. Role of NAD(P)H oxidase on vascular alterations in angiotensin II-infused mice. J Hypertens 22: 535–542, 2004.
77.
Wassmann SNickenig G. Pathophysiological regulation of the AT1-receptor and implications for vascular diseaseJ Hypertens Suppl24S15-S212006. 77. Wassmann S and Nickenig G. Pathophysiological regulation of the AT1-receptor and implications for vascular disease. J Hypertens Suppl 24: S15–S21, 2006.
78.
Zhang LNguyen MVLardy BJesaitis AJGrichine ARousset FTalbot MPaclet MHQian GMorel F. New insight into the Nox4 subcellular localization in HEK293 cells: first monoclonal antibodies against Nox4Biochimie93457-4682011. 78. Zhang L, Nguyen MV, Lardy B, Jesaitis AJ, Grichine A, Rousset F, Talbot M, Paclet MH, Qian G, and Morel F. New insight into the Nox4 subcellular localization in HEK293 cells: first monoclonal antibodies against Nox4. Biochimie 93: 457–468, 2011.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 19Issue Number 10October 1, 2013
Pages: 1110 - 1120
PubMed: 22530599

History

Published in print: October 1, 2013
Published online: 12 September 2013
Published ahead of print: 11 June 2012
Published ahead of production: 24 April 2012
Accepted: 24 April 2012
Revision received: 13 April 2012
Received: 10 April 2012

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Aurelie Nguyen Dinh Cat
Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada.
Augusto C. Montezano
Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada.
Dylan Burger
Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada.
Rhian M. Touyz
Kidney Research Centre, Ottawa Hospital Research Institute, University of Ottawa, Ontario, Canada.
Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom.

Notes

Address correspondence to:Dr. Rhian M. TouyzInstitute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular Research CentreUniversity of Glasgow126 University PlaceGlasgow G12 8TAUnited Kingdom
E-mail: [email protected]
[email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top