Skip to main content

Plant Nutrient Use

  • Chapter
  • First Online:
Principles of Terrestrial Ecosystem Ecology

Abstract

Nutrient absorption, use, and loss by plants are key steps in the mineral cycling of ecosystems. This chapter describes the factors that regulate nutrient cycling through vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aber, J., W. McDowell, K. Nadelhoffer, A. Magill, G. Bernstson, et al. 1998. Nitrogen saturation in temperate forest ecosystems. BioScience 48:921-934.

    Article  Google Scholar 

  • Aerts, R. 1995. Nutrient resorption from senescing leaves of perennials: Are there general patterns? Journal of Ecology 84:597-608.

    Article  Google Scholar 

  • Aerts, R. and F.S. Chapin, III. 2000. The mineral nutrition of wild plants revisited: A re-evaluation of processes and patterns. Advances in Ecological Research 30:1-67.

    Article  CAS  Google Scholar 

  • Allen, M.F. 1991. The Ecology of Mycorrhizae. Cambridge University Press, Cambridge.

    Google Scholar 

  • Andersson, T. 1991. Influence of stemflow and throughfall from common oak (Quercus robur) on soil chemistry and vegetation patterns. Canadian Journal of Forest Research 21:917-924.

    Article  CAS  Google Scholar 

  • Barber, S.A. 1984. Soil Nutrient Bioavailability. John Wiley & Sons, New York.

    Google Scholar 

  • Bates, T.R. and J.P. Lynch. 1996. Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell and Environment 19:529-538.

    Article  CAS  Google Scholar 

  • Berendse, F. and R. Aerts. 1987. Nitrogen-use efficiency: A biologically meaningful definition? Functional Ecology 1:293-296.

    Google Scholar 

  • Bloom, A.J. and F.S. Chapin, III. l98l. Differences in steady-state net ammonium and nitrate influx by cold and warm-adapted barley varieties. Plant Physiology 68:1064-l1067.

    Google Scholar 

  • Booth, M.G. and J.D. Hoeksema. 2010. Mycorrhizal networks counteract competitive effects of canopy trees on seedling survival. Ecology 91:2294-2302.

    Article  PubMed  Google Scholar 

  • Bormann, F.H. and G.E. Likens. 1979. Pattern and Process in a Forested Ecosystem. Springer-Verlag, New York.

    Book  Google Scholar 

  • Boyd, R.S. 2004. Ecology of metal hyperaccumulation. New Phytologist 162:563-567.

    Article  Google Scholar 

  • Chapin, F.S., III, D.A. Johnson, and J.D. McKendrick. 1980. Seasonal movement of nutrients in plants of differing growth form in an Alaskan tundra ecosystem: Implications for herbivory. Journal of Ecology 68:189-209.

    Article  CAS  Google Scholar 

  • Chapin, F.S., III, K. Van Cleve, and P.R. Tryon. 1986a. Relationship of ion absorption to growth rate in taiga trees. Oecologia 69:238-242.

    Article  Google Scholar 

  • Chapin, F.S., III, P.M. Vitousek, and K. Van Cleve. 1986b. The nature of nutrient limitation in plant communities. American Naturalist 127:48-58.

    Article  Google Scholar 

  • Chapin, F.S., III, N. Fetcher, K. Kielland, K.R. Everett, and A.E. Linkins. 1988. Productivity and nutrient cycling of Alaskan tundra: Enhancement by flowing soil water. Ecology 69:693-702.

    Article  Google Scholar 

  • Chapin, F.S., III, E.-D. Schulze, and H.A. Mooney. 1990. The ecology and economics of storage in plants. Annual Review of Ecology and Systematics 21:423-448.

    Article  Google Scholar 

  • Chapin, F.S., III. 1991b. Effects of multiple environmental stresses on nutrient availability and use. Pages 67-88 in H.A. Mooney, W.E. Winner, and E.J. Pell, editors. Response of Plants to Multiple Stresses. Academic Press, San Diego.

    Chapter  Google Scholar 

  • Chapin, F.S., III. 1993b. Functional role of growth forms in ecosystem and global processes. Pages 287-312 in J.R. Ehleringer and C.B. Field, editors. Scaling Physiological Processes: Leaf to Globe. Academic Press, San Diego.

    Chapter  Google Scholar 

  • Chapin, F.S., III, L. Moilanen, and K. Kielland. 1993. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361:150-153.

    Article  CAS  Google Scholar 

  • Chapin, F.S., III and V.T. Eviner. 2004. Biogeochemistry of terrestrial net primary production. Pages 215-247 in W.H. Schlesinger, editor. Treatise on Geochemistry. Elsevier, Amsterdam.

    Google Scholar 

  • Clarkson, D.T. 1985. Factors affecting mineral nutrient acquisition by plants. Annual Review of Plant Physiology 36:77-115.

    Article  CAS  Google Scholar 

  • Coley, P.D., J.P. Bryant, and F.S. Chapin, III. 1985. Resource availability and plant anti-herbivore defense. Science 230:895-899.

    Article  PubMed  CAS  Google Scholar 

  • Craine, J.M., C. Morrow, and W.D. Stock. 2008. Nutrient concentration ratios and co-limitation of aboveground production by nitrogen and phosphorus in Kruger National Park, South Africa. New Phytologist 179:829-836.

    Article  PubMed  CAS  Google Scholar 

  • Craine, J.M. 2009. Resource Strategies of Wild Plants. Princeton University Press, Princeton.

    Book  Google Scholar 

  • Driscoll, C.T., G.B. Lawrence, A.J. Bulger, T.J. Butler, C.S. Cronan, et al. 2001. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects and management strategies. BioScience 51:180-198.

    Article  Google Scholar 

  • Dugdale, R.C. and J.J. Goering. 1967. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnology and Oceanography 12:196-206.

    Article  CAS  Google Scholar 

  • Dugdale, R.C., F.P. Wilkerson, and H.J. Minas. 1995. The role of a silicate pump in driving new production. Deep Sea Research (Part I, Oceanographic Research Papers) 42:697-719.

    Google Scholar 

  • Elser, J.J., M.E.S. Bracken, E. Cleland, D.S. Gruner, W.S. Harpole, et al. 2007. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecology Letters 10:1135-1142.

    Article  PubMed  Google Scholar 

  • Evans, L.T. 1980. The natural history of crop yield. American Scientist 68:388-397.

    Google Scholar 

  • Falkowski, P.G., R.T. Barber, and V. Smetacek. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281:200-206.

    Article  PubMed  CAS  Google Scholar 

  • Falkowski, P.G. 2000. Rationalizing elemental ratios in unicellular algae. Journal of Phycology 36:3-6.

    Article  CAS  Google Scholar 

  • Freschet, G.T., J.H.C. Cornelissen, R.S.P. van Longtestijn, and R. Aerts. 2010. Evidence of the 'plant economics spectrum' in a subarctic flora. Journal of Ecology 98:362-373.

    Article  Google Scholar 

  • Green, M.B. and J.C. Finlay. 2010. Patterns of hydrologic control over stream water total nitrogen to phosphorus ratios. Biogeochemistry 99:15-30.

    Article  CAS  Google Scholar 

  • Guildford, S.J. and R.E. Hecky. 2000. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common relationship? Limnology and Oceanography 45:1213-1223.

    Article  CAS  Google Scholar 

  • Gulmon, S.L. and H.A. Mooney. 1986. Costs of defense on plant productivity. Pages 681-698 in T.J. Givnish, editor. On the Economy of Plant Form and Function. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Güsewell, S. 2004. N:P ratios in terrestrial plants: Variation and functional significance. New Phytologist 164:243-266.

    Article  Google Scholar 

  • Hedin, L.O., J.J. Armesto, and A.H. Johnson. 1995. Patterns of nutrient loss from unpolluted, old-growth temperate forests: Evaluation of biogeochemical theory. Ecology 76:493-509.

    Article  Google Scholar 

  • Herms, D.A. and W.J. Mattson. 1992. The dilemma of plants: To grow or defend. Quarterly Review of Biology 67:283-335.

    Article  Google Scholar 

  • Hobbie, S.E. 1992. Effects of plant species on nutrient cycling. Trends in Ecology & Evolution 7:336-339.

    Article  CAS  Google Scholar 

  • Hodge, A., D. Robinson, B. Griffiths, and A. Fitter. 1999. Why plants bother: Root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant, Cell and Environment 22:811-820.

    Article  Google Scholar 

  • Horne, A.J. and C.R. Goldman. 1994. Limnology. McGraw-Hill, New York.

    Google Scholar 

  • Howarth, R.W. and R. Marino. 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnology and Oceanography 51:364-376.

    Article  CAS  Google Scholar 

  • Howarth, R.W., F. Chan, D.J. Conley, J. Garnier, S.C. Doney, et al. 2010. Coupled biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Frontiers in Ecology and the Environment.

    Google Scholar 

  • Hu, S., F.S. Chapin, III, M.K. Firestone, C.B. Field, and N.R. Chiariello. 2001. Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature 409:188-191.

    Article  PubMed  CAS  Google Scholar 

  • Huante, P., E. Rincón, and F.S. Chapin, III. 1998. Effect of changing light availability on nutrient foraging in tropical deciduous tree-seedlings. Oikos 82:449-458.

    Article  Google Scholar 

  • Ingestad, T. and G.I. Ågren. 1988. Nutrient uptake and allocation at steady-state nutrition. Physiologia Plantarum 72:450-459.

    Article  CAS  Google Scholar 

  • Jonasson, S. and F.S. Chapin, III. 1985. Significance of sequential leaf development for nutrient balance of the cotton sedge, Eriophorum vaginatum L. Oecologia 67:511-518.

    Article  Google Scholar 

  • Kahmen, A., W. Wanek, and N. Buchmann. 2008. Foliar ∂15N values characterize soil N cycling and reflect nitrate or ammonium preference of plants along a temperate grassland gradient. Oecologia 156:861-870.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalff, J. 2002. Limnology. Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Kielland, K. 1994. Amino acid absorption by arctic plants: Implications for plant nutrition and nitrogen cycling. Ecology 75:2373-2383.

    Article  Google Scholar 

  • Kielland, K. 1997. Role of free amino acids in the nitrogen economy of arctic cryptogams. Ecoscience 4:75-79.

    Google Scholar 

  • Kielland, K., J.W. McFarland, and K. Olson. 2006. Amino acid uptake in deciduous and coniferous taiga ecosystems. Plant and Soil 288:297-307.

    Article  CAS  Google Scholar 

  • Kobe, R.K., C.A. Lepczyk, and M. Iyer. 2005. Resorption efficiency decreases with increasing green leaf nutrients in a global data set. Ecology 86:2780-2792.

    Article  Google Scholar 

  • Koerselman, W. and A.F.M. Mueleman. 1996. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33:1441-1450.

    Article  Google Scholar 

  • Koide, R.T. 1991. Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytologist 117:365-386.

    Article  CAS  Google Scholar 

  • Kroehler, C.J. and A.E. Linkins. 1991. The absorption of inorganic phosphate from 32P-labeled inositol hexaphosphate by Eriophorum vaginatum. Oecologia 85:424-428.

    Article  Google Scholar 

  • Kronzucker, H.J., M.Y. Siddiqi, and A.M. Glass. 1997. Conifer root discrimination against soil nitrate and the ecology of forest succession. Nature 385:59-61.

    Article  CAS  Google Scholar 

  • Lambers, H. and H. Poorter. 1992. Inherent variation in growth rate between higher plants: A search for physiological causes and ecological consequences. Advances in Ecological Research 23:187-261.

    Article  CAS  Google Scholar 

  • Lambers, H., O.K. Atkin, and I. Scheurwater. 1996. Respiratory patterns in roots in relation to their functioning. Pages 323-362 in Y. Waisel, A. Eshel, and U. Kafkaki, editors. Plant Roots: The Hidden Half. Marcel Dekker, New York.

    Google Scholar 

  • Lambers, H., F.S. Chapin, III, and T.L. Pons. 2008. Plant Physiological Ecology. 2nd edition. Springer, New York.

    Book  Google Scholar 

  • Larcher, W. 2003. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups. 4th edition. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • LeBauer, D.S. and K.K. Treseder. 2008. Nitrogen limitation of net primary production in terrestrial ecosystems is globally distributed. Ecology 89:371-379.

    Article  PubMed  Google Scholar 

  • Lee, R.B. 1982. Selectivity and kinetics of ion uptake by barley plant following nutrient deficiency. Annals of Botany 50:429-449.

    CAS  Google Scholar 

  • Lee, R.B. and K.A. Rudge. 1987. Effects of nitrogen deficiency on the absorption of nitrate and ammonium by barley plants. Annals of Botany 57:471-486.

    Google Scholar 

  • Lekberg, Y. and R.T. Koide. 2005. Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytologist 168:189-204.

    Article  PubMed  CAS  Google Scholar 

  • Mann, K.H. and J.R.N. Lazier. 2006. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. Third edition. Blackwell Publishing, Victoria, Australia.

    Google Scholar 

  • Marschner, H. 1995. Mineral Nutrition in Higher Plants. 2nd edition. Academic Press, London.

    Google Scholar 

  • Martin, J.H. 1990. Glacial-interglacial CO2 exchange: The iron hypothesis. Paleoceanography 5:1-13.

    Article  Google Scholar 

  • McKane, R.B., L.C. Johnson, G.R. Shaver, K.J. Nadelhoffer, E.B. Rastetter, et al. 2002. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68-71.

    Article  PubMed  CAS  Google Scholar 

  • Morris, J.T. 1980. The nitrogen uptake kinetics of Spartina alterniflora in culture. Ecology 61:1114-1121.

    Article  CAS  Google Scholar 

  • Mulholland, P.J., A.M. Helton, G.C. Poole, R.O. Hall, Jr., S.K. Hamilton, et al. 2008. Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202-205.

    Article  PubMed  CAS  Google Scholar 

  • Näsholm, T., A. Ekblad, A. Nordin, R. Giesler, M. Högberg, et al. 1998. Boreal forest plants take up organic nitrogen. Nature 392:914-916.

    Article  Google Scholar 

  • Näsholm, T., K. Huss-Danell, and P. Högberg. 2000. Uptake of organic nitrogen in the field by four agriculturally important plant species. Ecology 81:1155-1161.

    Article  Google Scholar 

  • Nye, P.H. and P.B. Tinker. 1977. Solute Movement in the Soil-Root System. University of California Press, Berkeley.

    Google Scholar 

  • Peterson, B.J., W.M. Wolheim, P.J. Mujlholland, J.R. Webster, J.L. Meyer, et al. 2001. Control of nitrogen export from watersheds by headwater streams. Science 292:86-90.

    Article  PubMed  CAS  Google Scholar 

  • Pugnaire, F.I. and F.S. Chapin, III. 1992. Environmental and physiological factors governing nutrient resorption efficiency in barley. Oecologia 90:120-126.

    Article  Google Scholar 

  • Raab, T.K., D.A. Lipson, and R.K. Monson. 1999. Soil amino acid utilization among species of the Cyperaceae: Plant and soil processes. Ecology 80:2408-2419.

    Article  Google Scholar 

  • Raper, C.D., Jr., D.L. Osmond, M. Wann, and W.W. Weeks. 1978. Interdependence of root and shoot activities in determining nitrogen uptake rate of roots. Botanical Gazette 139:289-294.

    Article  CAS  Google Scholar 

  • Rastetter, E.B. and G.R. Shaver. 1992. A model of multiple-element limitation for acclimating vegetation. Ecology 73:1157-1174.

    Article  Google Scholar 

  • Read, D.J. and R. Bajwa. 1985. Some nutritional aspects of the biology of ericaceous mycorrhizas. Proceedings of the Royal Society of Edinburgh 85B:317-332.

    Google Scholar 

  • Read, D.J. 1991. Mycorrhizas in ecosystems. Experientia 47:376-391.

    Article  Google Scholar 

  • Redfield, A.C. 1958. The biological control of chemical factors in the environment. American Scientist 46:205-221.

    CAS  Google Scholar 

  • Reich, P.B. and J. Oleksyn. 2004. Global patterns of plant leaf N and P in relation to temperature and latitude. Proceedings of the National Academy of Sciences, USA 101:11001-11006.

    Article  CAS  Google Scholar 

  • Richardson, A.E., T.S. George, I. Jakobsen, and R.J. Simpson. 2007. Plant utilization of inositol phosphates. Pages 242-260 in B.L. Turner, A.E. Richardson, and E.J. Mullaney, editors. Inositol Phosphates: Linking Agriculture and the Environment. CABI Publishing, Wallingford.

    Chapter  Google Scholar 

  • Robinson, D. 1994. The responses of plants to non-uniform supplies of nutrients. New Phytologist 127:635-674.

    Article  CAS  Google Scholar 

  • Rovira, A.D. 1969. Plant root exudates. Botanical Review 35:35-56.

    Article  CAS  Google Scholar 

  • Schimel, J.P. and J. Bennett. 2004. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 85:591-602.

    Article  Google Scholar 

  • Schindler, D.W. 1971. Carbon, nitrogen, and phosphorus and the eutrophication of freshwater lakes. Journal of Phycology 7:321-329.

    CAS  Google Scholar 

  • Schindler, D.W. 1974. Eutrophication and recovery in experimental lakes: Implications for lake management. Science 184:897-899.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, D.W., R.E. Hecky, D.L. Findlay, M.P. Stainton, B.R. Parker, et al. 2008. Eutrophication of lakes cannot be controlled by reducing nitrogen inputs: Results of a 37-year whole-ecosystem experiment. Proceedings of the National Academy of Sciences, USA 105:11254-11258.

    Article  CAS  Google Scholar 

  • Simard, S.W., D.A. Perry, M.D. Jones, D.D. Myrold, D.M. Durall, et al. 1997. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579-582.

    Article  CAS  Google Scholar 

  • Smart, D.R. and A.J. Bloom. 1988. Kinetics of ammonium and nitrate uptake among wild and cultivated tomatoes. Oecologia 76:336-340.

    Article  Google Scholar 

  • Smirnoff, N., P. Todd, and G.R. Stewart. 1984. The occurrence of nitrate reduction in the leaves of woody plants. Annals of Botany 54:363-374.

    CAS  Google Scholar 

  • Smith, S.E. and D.J. Read. 1997. Mycorrhizal Symbiosis. Academic Press, London.

    Google Scholar 

  • Sterner, R.W. and J.J. Elser. 2002. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton.

    Google Scholar 

  • Sterner, R.W. 2008. On the phosphorus limitation paradigm for lakes. International Review of Hydrobiology 93:433-445.

    Article  CAS  Google Scholar 

  • Stock, W.D. and O.A.M. Lewis. 1984. Uptake and assimilation of nitrate and ammonium by an evergreen Fynbos shrub species Protea repens L. (Proteaceae). New Phytologist 97:261-268.

    Article  CAS  Google Scholar 

  • Thomas, W.A. 1969. Accumulation and cycling of calcium by dogwood trees. Ecological Monographs 39:101–120.

    Article  Google Scholar 

  • Tjoelker, M.G., J.M. Craine, D. Wedin, P.B. Reich, and D. Tilman. 2005. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytologist 167:493-508.

    Article  PubMed  CAS  Google Scholar 

  • Tyrrell, T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400:525-531.

    Article  CAS  Google Scholar 

  • Ulrich, A. and J.J. Hills. 1973. Plant analysis as an aid in fertilizing sugar crops: Part I. Sugar beets. Pages 271-288 in L.M. Walsh and J.D. Beaton, editors. Soil Testing and Plant Analysis. Soil Science Society of America, Madison, WI.

    Google Scholar 

  • Valiela, I. 1995. Marine Ecological Processes. 2nd edition. Springer-Verlag, New York.

    Book  Google Scholar 

  • Van Breemen, N. and A.C. Finzi. 1998. Plant-soil interactions: Ecological aspects and evolutionary implications. Biogeochemistry 42:1-19.

    Article  Google Scholar 

  • Vitousek, P.M. 1982. Nutrient cycling and nutrient use efficiency. American Naturalist 119:553-572.

    Article  Google Scholar 

  • Vitousek, P.M. and R.W. Howarth. 1991. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87-115.

    Article  Google Scholar 

  • Vitousek, P.M. and C.B. Field. 1999. Ecosystem constraints to symbiotic nitrogen fixers: A simple model and its implications. Biogeochemistry 46:179–202.

    CAS  Google Scholar 

  • Vitousek, P.M. 2004. Nutrient Cycling and Limitation: Hawai'i as a Model System. Princeton University Press, Princeton.

    Google Scholar 

  • Vitousek, P.M., S. Porder, B.Z. Houlton, and O.A. Chadwick. 2010. Terrestrial phosphorus limitation: Mechanisms, implications, and nitrogen-phosphorus interactions. Ecological Applications 20:5-15.

    Article  PubMed  Google Scholar 

  • Walker, T.W. and J.K. Syers. 1976. The fate of phosphorus during pedogenesis. Geoderma 15:1-19.

    Article  CAS  Google Scholar 

  • Walters, M.B. and P.B. Reich. 1999. Low-light carbon balance and shade tolerance in the seedlings of woody plants: Do winter deciduous and broad-leaved evergreen species differ? New Phytologist 143:143-154.

    Article  Google Scholar 

  • Wilcox, H.E. 1991. Mycorrhizae. Pages 731-765 in Y. Waisel, A. Eshel, and U. Kafkaki, editors. Plant Roots: The Hidden Half. Marcel Dekker, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Stuart Chapin III .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chapin, F.S., Matson, P.A., Vitousek, P.M. (2011). Plant Nutrient Use. In: Principles of Terrestrial Ecosystem Ecology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9504-9_8

Download citation

Publish with us

Policies and ethics