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ABSTRACT

This work considers the problem of the pattern recogni-
tion training from the teacher point of view. The approach, -
denoted as teaching space approach is proposed, which makes
explicite two problems of the pattern recognition training:
the problem of interpattern similarity and the problem of a
transfer of some previous training of the learner.
Particular attention is paid on the problem of interpattern
similarity. As a result, a measure of similarity is derived
from the behavior of an artificial classifier, which turns
out not to be considered so far in any area dealing with
similarity judgment. Some implications to the theory of
adaptive linear classifiers, cluster analysis, and neural
modelling are discussed. The goal-seeking nature of the.

teacher during the pattern recognition training is empha-
sized,



INTRODUCTION

It is & well known fact that perceptron type machines cannot form a
concept of similarity different from some feature matching procedure [6] This
is consistent with the studies of their inability to extract some complex
features such as connectivity [28]. The recognition of translation, rotation
and change ip shape is also not an ability of these machines although some
att;mpts huve been made in that direction [36]. The notion of similarity,
nlphOugh oriuinaily present. in  pceceptron  theory (351, graduully has
dissappearcd from theories of adaptive pattern recognition. For cxample,
contemporary Lheory of linea; muchines [31] does not include that notion at

leas not cxplicitely.

From the cLher side,other areas dealing with pattern reqognition. such as
cluster unnlySis techniques, neccesarily includes tﬁe notion of similarity
(38),(41). Similarity is also a natural concept in human pattern recognition
and is actively studied in the latest psychological research
(21],044),026],033]. The importance of similarity in connection with leafning
was also pointed out in artificial intelligence [14] . Some attempts for

adoption of this nction in neural modelling have recently "been shown

(191, [46].

This work studies in some detail the "trivial" concept of similarity
built by a linear machine during the training process. As a'result. this work
has derived a measure of similarity from the pattern classification process

performed by the linear classifiers. This measure is used by the machine
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during the training process, that is, when the machine learns to distinguish
between the reference pattérns. It turns out that the derived measure of
similarity has not been proposed so far among the mgasures of similarity in
c¢luster analysls and psychology. Let us emphasize here that it is not an
intention to compare the measure of similarity derived here with otper
measures proposed so far. But we do emphasize that the measure descriped
bellow is derived from the process of the pattern classification performed by
an artificial system, rather then proposed heuristically on the basis on the

observations over some data structure.

The upproach taken here is influenced by the original works of Glushkov
(18], Bleck (5], and Hosenblatt [37]. The problem of learning is considered
as a control problem, and is viewed from thé teacher side. Attention ié
placed on the generation of the training sequence rather. then on the
trajeclory of the learner's memory vectors ip the weight space, which is the
approach taken in the classical theory of linear machines. This approach
devglops the model of the training process in wﬁich the interpattern
similarity and transfer of training can be viewed explicitely as- the
parameters of the model. This is consistent with the pedagogical and

psychological findings about pattern recognition training (15]1,(451,0171,(40].

The approach introduces two concepts, teaching space and similarity space
which are described in the following sections. Some implications of the
results obtained using the teaching Space approach are discussed in the later

chapters of this paper.
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THE TEACHING SPACE CONCEPT

A classifier is given by the set of n real valued functions gi(l)v
i=1,..,n often called discriminant functions, defined over the set of vectors
named patterns the typical element being x. The pattern x is said to belong

to the i-th class if
g.(x) > g (x) for all j g i. (1)
1 J

The classifier is trainable if it is possible to modify the parameters of

the functions 81(5) using ‘t.he set of reference patterns from the given
refgrencc set X . The modification is usually performed by introducing an
extérnal conlrol system, or teacher. Figure 1 shows such a classifier." The
control veetor UT=z[uy, ...,.uu](""" denotes transposition) modifies the
parameters of the clussifier in order to achieve some' predefined desired
elassiflealion, |.e., canonical surjection, over the set X . The maximum
selector clanent generates the signal Y":[yl - ,yn]where yi=1 if and only if

condition (1) is satisfied, otherwise ¥;30,i=1,..,n.

Figweae |

In the simplest case of a linear classifier the discriminant functions

are chosen to be linear forms

gi(v-’-(-)=<!'i’i>f CH (2)
(<.,.> denotes inner product) where W, is the memory vector associated with

the i-th class, and 6]- is some threshold value. The elements which compute
the functionsg,(x) are denoted as dot product units (32],[23]. It is
sometimes convenient to introcduce the vectors _y,;={e,i,£i]f and 5‘:[1.1] in

order to write the functions (2) in the form gi(x)=<wi',x'>. We will not use
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that notation, but let us note that the usage of the vectors x' instead of x
in the training procedure affects the results obtained. A discussion about

that is given later in this paper.

The approach taken here will be introduced by assuming the simplest

possible task for this classifier: the single-sample dichotomy, in which the

classifier is trained to distinguish, i.e. separate and correctly classify
two reference patterns il‘and 12- Let us define the desired classification as
;)(_ibelqnging to i-th class, for iz1,2. Then in order for the classification
performed by this classifier to be correct it is necessary and sufficiént to
;‘ind."il and ¥ such that:

g,(x1) > ga(x)) (3.1)

Bo(%y) > gl(_)gz) (3.2)

As o procedure of searching for the feasible y_land _"_{zusing a tra;ning

paradigm, we choose the fixed increment rule with arbitrary nonnegative

constunts of "reward" Cr and “punishment" Cp» not both equal to .zero. ‘ Two
types qt‘ trials ar;e distinguished, training trials and exaninatio'n trials.
The exanination trial does not change the memory of the classifier; it Just
evaluate the classification performed by the classifier. If Xy, j.=1.2.' was
correctlly classified in the previous examination +trial, there will be no

training trial. If a misclassification for X4 occurs, in the training trial:

wilt+e1) = wi(t) + cpuxy : (4.1)

w (t+1) = w, (t) - cp.x, for i 4 k. (4.2)

In other words, the elements of the classifier which have voted for ‘he
incorrect classification will be punished and the elements which have voted
for the desired classification will be rewarded. This training procedure is

the (generalized) & (cr,cp) learning law used in the percéptron training
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experiments [18]. The lawsa(c,c) @(c,0), and®(1,0) are most commonly used.

Let T be a training sequencé. consisting of the patterns il and 12 which

appear in the training trials. Let pi be the number of appearances of the
pattern xi within T. The sequence T is said to be successful if after
training with that sequence, the classifier correctly classit;ies the patterns
iland)_&_z. A successful sequence 1is denoted by T¥. The 1length of the

training sdquence L(T“):pl-o-p can be used as a measure of the optimality of T.

2

Observe that given a successful training sequence T¥ , any permutation of that

sequence is also a successful training sequence for that system [18].

e - . . . : . w .
Let ﬁ]_o and ﬁZC Le the initial values of the vectors il and X, at the
vegining, of Lhe Lraining process. ‘Then after training with some T, the values

of the vectors ¥, and W will be

Yy ® P1CeXy - PoCpXp * Wy (5.1)
My = PaCpXz = PyCpX) * Mgg (5.2)

Now, replacing (1) and (5) in (3) and introducing the notation

Yik T <Xy (6)
bik = <WMio-Weo)oXy> (7)
dik = Oi-ok (8)

we obtain the pair of inequalities '
P17 ag1Pp * (By*dpy)/(epey)  (9.1)
022‘)2 > a-lzp] + (b]2+d]2)/(cr*cp) (9'2)

Thus, the probiem cf training for distinguishing, i.e. separating{ the
patterns X, and X, 1is equivalent to the problem of the solution of the
inequalities (9). These inequalities are the basis of the approach taken

here. They describe the model of the teaching process over thea(cr,cp)



i e M~ O

e - —— | ——

Page 6

system whose thr eshold does not change during the training.

Let us give an interpretation of the parameters tpat appear in the
inequalities (9). Note that the a-parameters aj» i'..k=1.2. which appear in
the relations (9) are functions of the input patterns only. They represent
the degree of matching between the features of the patterns X, and X2+ Thus

we will refer to the a-parameters as to the matching coefficients. The

influence of the state of memory of the learner at the begining of the

training experiments. is considered through b-parameters, bik. In other words,

they represent the influence of the transfer of some previous training vpon
the training process. The d-parameters are results of the ~sét of thresho}d
values for the linear classifier at the begining of the training process.
Here it is assumed that the d-parameters are not changing during the training
process. ‘he b- and d-parameters are in.general assumed to be unknown, in
contrast to the a-parameters which-are always computable from the reference

patterns. In the case where b;,=0and d; =0 we say that the learner starts

_with the homogeneous initial conditions. It is easy to see that in this case

the problon of solution of (9) is a linear programming problem. Otherwise it
is search under uncertainity since b- and d-parameters are unknown, The

p-purumeters P, and P,y which are searched for, represent the distribution of

the patierns within the training sequence. Another interesting interbretation N
can be obtuined by dividing the inequalities (9) by the length of the teaching

sequence L(P). Then the parameters pi/L(P)i=1.2 are the probabilities of the

appearcnce of the patterns in the training sequence.

The geometrical interpretation of this approach is given in Figure 2.

Two cases are shown: 38y > O0,(Fig. 2.1) and aik< 0 (Fig. 2.2)

Figure 2
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In Figure 2 the problem is represented in(plv,pz)-space. which we qali

teaching space or P-space. This space consists of all the points(;;l,pz)

where P and p, are nonnegative integers. It must be searched in order to

find a point satisfying (9). These points are marked in Figure 2. Sﬁch
points can be found in the solution region which 1is shaded on the figure.
This region 1is always convex polyhidron. 1In the case of homogeneous initial

conditions it is convex polyhidral conc.

It is important that the basic relations (9) of this approach do not
explicitly include the memcry matrix E=[!1’-‘12]’ but rather the teaching
scequence Lhrough the vector P:{;}l,pZ].One must search for the nonnegative
integersy “1 and pz, parameter s which are direclly controllable and observable
in every training procéss: they are parameters of the control system
(teachcr). In general, the parameters of the learner, such as the state of

its memcry, are observable and controllable only indirectly, if at all.

Some regults concerhing the influence of the lcarning constants ¢ and Cp
upon the training process are immediately evident from the inequalities (9),
Since learning constunts are assumed posilive and not both equal Lo zcro in
the cuse of homogeneous initial conditions they have no effect upon the
training process. If the initial conditions are not homogeneous, the effect
of the léarninz constants can be summarized in the statement that the bigger
the sun cr*cp. the less the influence of the initial conditiéns upon the
training process. Certainly, this is not always desirable. The system which
could show o posihiye transfer of some previous training by chosing large cr )

and cp can become equivalent to a system which has no knowledge about the

"lessons". 1In that case the convergence of the training of such a system will



Page 8
be slowed using the large learning constants.

Further in the sequel we will be mainly interested in the influence of

the chosen reference patterns upon the teaching process.

SIMILARITY SPACE CONCEPT
AND THE MEASURE OF INTERPATTERN SIMILARITY

DURING THE TRAINING PROCESS

Consider the construction of the solution region in the teaching Space
(Figure 2), Given inequalities (9), we first-assume homogeneous initial
cbnditions. Then a convex polyhidral cone is defined in the teaching space
whose vertex 1is at the coordinate origin. This cone is characterised,b& its
vertex angle. Now, taking into account the given initial conditions, the cone
is translated relative to the coordinate origin. It is important that no
rotation or _scaling is performed due to the influence of the initial

conditions. As a result of that construction, the intersection between the

cone chined by the reference patterns, and the positive quadrant of the

coordinate system is the region where the solution points can be found.

Thus, given arbitrary reference patterns x, and x, , in the teaching

space (pl.pz) is defined an angle @ (Fig. 2)

B = 90° - a) - oz (10)
where

. (11.1
a) arctg(azl/all) (1 1.2;

Gy = arc:g(alzlazz)
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Now considering the Figure 2, it is intuitively clear that the greater
the angle, the easier it should be to search for a goal point in the teaching

space. Thus, the angle g can be viewed as a measure of distinguishability or

the distance between the patterns x . and x, assumed in the internal model of

1 2
the linear classifier. This motivates definition of a measure of similarity

between the patterns to be the cosine of the angle 8.

Note that this mecasure of similarity is naturaly built into a 1linear

classifier, énd used during the 1lcarning for pattern recognition. This
measure is derived from pattgrn recognition training of an artificial-
classifier rather than from the analysis of the patterns in the feature space.,
As in the cxperiments performed in psychology where some physiological
parametér is used , for example reaction time[34]), as a measure of similarity,
here it is done with an artificial pattern recognizer: the similarity measure
is derived from the analysis of the pattern recognition process in the

teaching space.

The function cosg where g is defined in (10) can be expressed in several
ways. e most convenient for our further discussion is the form used in the

following observation. This observation sumarizes the discussion above.

Observation 1. Given two reference patterns il'and X, which:- a 1linear
classifier is trained to distinguish and correctly classify using a(cr.cp)

fixed increment rule. Then the function
a a.
s,(%,:%,) = cos arc ( 1 .[ 12!) (12)
321 1222

is a measure of similarity between the patterns{ll. and x, assumed by that

system during the training period.
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Proof. Replacing (10) in (12)

$,(x;,x,) = cosB = cos(90°-a1-a2) = sia(aytaz) .

By definition (11) , caaluazllall and cggz-alzlazz. which substituting

above gives

317319 ¥ 397989y

2.2 .J2.2
a)ytay; " Jagtay

where we reccgnoze the expression stated in f.he Observation. Q.E.D.

cogf =

Observation 1 shows that similarity analysis is performed over Qhe

vectors of the matrix
a;q a '
A = [n 12] . ]
2,7 222 (13)

which we call feature matching matrix. Note that cosine of the angle between

either the row= or the column vectors of A will give the similarity measure

(12),

The matrix A is a Gramian matrix which means that the properties ‘of an
inner product space will be preserved in the . similarity analysis. The

properlies which- are refered to in the sequel are:

a2 0 and a,, 20 . (14.1)
apy = gy (14.2)
31130 2 a3, (14.3)
4117352 2 23y, (14.4)
(a13%1) (ay,+1) 2 (a,+1) > (14.5)

Strict inequality in (14.1) holds if and only if 51=£2=o. Relation
(14.2) is a tautology in an inner product space. The relation'(1-u.3) is the
Cauchy-Schwartz inequality for which the sign of strict inequality is valid

assuming that the patterns are not colinear. The relation (14.4) is the
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consequence of the positiveness of the euclidean distance and strict
inequality holds assuming the patterns are not identical. _Relation (14,5) is
the consequence of the all cthers, and the strict inequality holdé if and only

if the patterns are not identical.

A geometrical interpretation of the relation (12) is given on Figure 3.
Figure 3 represents the space where the pair of vectors (all.’aZl) and

(312’822) is considered. 'This space we denote as similarity space or S-space.

Figure 3

Similarity space shows actualy the vertex angle of the cone in the
twodimensional teaching space . However, those are different spaces. Given
Xx,and x,, the similarity space is a continuous and bounded , whereas the

teaching space is a unbounded discrete space in the positive quadrant.

Now the analysis of the training problem turns out to be the analysis of

the interpattern similarity. The following is the result of that analysis.

Lewma 1, ‘The measure of similarity (12) takes its extremal values iff

the patterns x_ and x, are colinear, i.e. A if there exists some scalar k for

1 2

which X33k X,. e minimal value -1 is obtained iff k<0, and the maximal

value 1 iff k>O0.

Proof. The extremal values of a cosine function are -1 and 1. Suppo‘e

l‘.fk-lz and k>0, Then it is directly evident that that gives cosg=1,

Analogously, for k<O, implies ¢cosg=-1. Now let us prove the converse.

Observe that by definition &, * |§ll |_J_=_2Icomb where | .| denotes norm and y is
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the angle between the patterns. Replacing in (12) we obtain
§a11+322)cosw

cosf =

2. . 2
+ 3,505 Vazz-i- a17c0s ¥

811

which means that cos gandcos y have always the same sign. Having that, let
2

cosg=1. Replacing in relation above we obtain ¢os®y =1 which gives two
solutions,cosy=1and cosy =-1. Since the sign must be. equal to the assumed
sign of cosSg, the solution isy =0,i.e. patterns are positively colinear.

Analogously, for assumption cos g==1, we obtain that the patterns . .are

anticolinear. Q.E.D.

Corolary 1. Two nonzero binary patterns will be assumed by a 1linear
classifier during the training process to be maximaly similar iff they are

identical, and minimaly similar iff they are orthogonal.

Proof. The proof is straight forward observing that two binary patterns
have only honnegative ccmponents, which means their.inner-product is aldays
nonnegative. Minumum value of the similarity measure is 0.'thch replacing in
(12) yiélds that the patterns are orthogonal. Further, since two binary

patterns are colinear iff k=1, i.e. if théy are identical.Q.E.D.

n-DIMENSIONAL TEACHING SPACE

Let us consider the single-prototype multiple category problem, or

pair-association problem in which n samples are learned to be distinguished
and classified into n different classes. In that case the system of n.(n-1)/2

pairs of inequalities
15.1
a34Py 23y T Ty 1s.1

P 73 Tik (15.2)
is to be considered, where rikf(bik+dik)/(cr+cp), for all i,k = },..,n.



Page 13

Using the terminology developed above, it can be shown [11] that a

sclution invariant to the initial conditions exists whenever there are no two

patternsii and XK i,k=1,..,n within the samples which are max imaly similar

i.e. positively colinear.,

It is worthy to mention that the generalization of the notion of

colinearity, 1linear dependence, is not a restriction. We will show an

example, which will illustrate that fact and also illustate the application of

the teaching space approach.

R Example 1. Three reference patterns are givep; x,=00.1,0.0],

52=[0.0.0.2]. and E3=[°-1'°’2]- Clearly, they are 1linearly~ dependent,

}' 53;51552. Let a g1 ,0) system starts from the homogeneous initial

conditiony, We will find a solution vector P=[p1'92'p3] which will set the

g System into a state being in which it distinguishes X1 X2 and Xx,.

First we compute the feature matching matrix
a1 3, a4 0.01 0.00 0.01
A= 3,1 3,5, 8549| = |0.00 0.04 0.04

831 a4 a33 0.01 0.04 0.0;
\ The inequalities (15) give
{ Py > Py P2 > P3 p3 > 4p,

Y which has, for example, a nonnegative integer_ solution at P=[7,6,5]. ’(A
' careful reader will notice a "hidden" inequality in this problem, which often

appears in the problems of 1linear inequalities given two unknowns ﬁro
;f inequality.) Thus, any teaching sequence in which X, appears 7 times, X, )
‘ times and X4 5 times will solve the of separability between the three linearly
1 dependent vectors. Since the solution region is convex cone,'any other vector

X k.P, where k is natural number, is also a solution .




Page 14

A graphical illustration is given in Figure 4, where the convex
polyhidral cone in three dimensional space is shown. The projections to the
principal cocrdinate sur faces are the geometrical interpretaions of the each

pair of inequalities above.

figure 4

The problem of linear dependence is of particular importance in the
associative memory paradigm [1],[2],[25]1,[30],[42]. It has been emphasized
that the associative memory cannot form appropriate associative mapping if the

patterns are lincarly dependent [25]. Note that the machines which are known

as lincar classifiers [31] are actualy nonlinear devices. They contain. a
max imum selector, which 1is nonlinear element and makes the classifier to be
ncnlincar even in the case when the threshold values are homogenious . This

is why these machines are capable of solving problem which associative

memories are not able to solve.
Figure b

In fact, a linear classifier with isothreshold values, i.e by which dikgo
for all 1 and k, can be represented as a system consisting bf an adaptive
asscciative memory gnd a maximum selector [11]. This is shown on . Figure 5.
Such a system called Linear Adaptive Array (LAA) was used in our experimental
investigation which is described bellow.. Let us remark that the Steinbuch's

Learning matrix [38] is actualy such a system.



Page 15

THE INFLUENCE OF SIMILARITY UPON

SEARCH THROUGH THE TEACHING SPACE

In the previous sections we have considered the problem of existence of
the solution of the problem of training a linear classifier to perform a pair
associaton, and the influcnce of the interpattern Similarity upon that
problenm. Now assuming that the solution exists, we are interested in the
influence of the interpattern similarity upon the search for the feasible
solution in the teuching space. An interpretation of the problem of search

through the training space can be given using Figure 6.

Figure 0O

Given two patterns, a cone is defined in the teaching space.‘ The system
which performs the search is assumed to start in the origin of the coordinate
system. Figure 6 shows four different starting points for four different
systems. They are searching for the solution point using iheir own searching
strategies. The coordinat system is not shown: it is relative to a

particular system which performs the search, i.e., to the initial conditions

of that system. We can imagine that each system is in the origin of its on

coordinate system and that its coordinate system moves through the space.
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Figure 6 shows also that from the point of view of hill-climbing, the
peak defined in this kind of pattern recognition problem is characrerised by a
plateau rather then by a isolated spike [39]. Moreover, wusing the

w(1,0) ~learning rule, the only allowed movements in this climbing are "east"

and "north".

The applicability of some general types of searching strategies on this
problem are considered in the sequel. 7Two training procedures will be of

interest, which we describe by the following informal code (n is the number of

patterns):

Procedure OPENLOOP
bepin 1= 0
while i < n do
ir=i+d
call TEACH(X(i))
enddo
end

Procedure PERC
begin i:=
while i < n do
ir=i+1
call EXAM(X(i),grade)
if grade="nosatisfy' call TEACH(X(i))
enddo
ond

The first strategy is open 1loop, all-or-none stratégy. which; once
started, will perform the training trials over all the reference patterns.
For our discussion is important that the probability of appearence of a
pattern within the teachiﬁg sequence is uniform. The second strategy is the
wellknown Perceptron strategy, which is responce senzitive, closed loop
strategy: ©before applying the training trial TEACH in which twe weights are
updated according to the learning rule of the a(1,0) systems , an examination

trial EXAM checks the necessity of the training. This strategy produces the
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teaching sequence in which probability of apppearence of a reference pattern

is in general not uniform.

It turns out that another aspect of similarity becomes salient in the
analysis of the speed of the convergence of the training proccess using the
fixed increment rule: the inclusion of one pattern into an other, or in other
terms, the dominance of one pattern over an cther. We say that the'pattern_)gi
dominates over the pattern x, if and only if dip 2 ;;;:In that casg we also
say that X is included in 51. If the patterns are binary, the definition is
intuitively clear: the set of features of Xy is included in the set of
features of x, if and only if 85,8, - Note that in binary case

sup(“ik)-mi“(aii’akkL If the condition of inclusion is not satisfied we say

that the patterns contain mutualy distinctive features. The following is a

result of the influence of the inclusion condition patterns upon the choice of

a training strategy.

Theorem 1. Given two patterns 1:land X, which are not maximaly similar
in the sense of (12) and for which the condition of inclusion is noﬁ
satisfied. Then the teaching procedure which iterates the subroutine OPENLOOP
will rcach the solution of the tecaching problem for a q(cr,cp) learning system
in finite number of iterations, for arbitrary initial conditions of the

learner.

Proof. The strategy OPENLOOP always generate the sequences in which
Pl=p2, which in teaching space produce a trajectory which travels along the
symmetral line of the positive quadrant. The solution willi exist 1if tne
symmetral line enters the solution }egion; But since inclusion condition is

not satisfyed, i.e. since311 3_51gbr i,k=1,2, and the angles ®; and a are

smaller than 45° + Thus, regardless initial conditions, the syﬁmeﬁral line of
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the positive quadrant enters the solution region. Q.E.D.

In fact, that is true for any strategy in which Pl'Pz . Thus, the

"inclusion condition can be a test of applicability of a training strategy in

which the probability of the appearence of the reference patterns is uniform.
In the case of n > 2 classes , the n-dimensional matching matrix should be
considered: if the diagonal elements are the maximal elements in each row,
then the strategy OPENLOOP is applicable and the training process using that

strategy will converge, regardless the initial conditions.

The other, perceptron strategy is always applicable in. the case when
solution exists, which is welknown result from the perceptron convergence
theor em [31].[28].[3].[12].[20]. In general, any strategy in which before
applying a training trial, an examination of neccessity of such a trial is
performed, will reach the goal point in the teaching space regardless “the
initial conditions providing. that solution exists. That is illustréted on

Figure 7.
Figure 7

On Figure 7 the inclusion condition is fulfilled and one of the boundary
lines has slope 1. The solution region islso tfanslated due to the initial
conditions, that the open-loop strategy in whior{p1=p2~will inever{ reach. the
goal (search A). An other strategy, which checks the justification of the

teaching trial before its implementation, will reach a goal point (search B).

-
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The influence of the mutual distinctivity is }emarkable in thq
application of the perceptron strategy in the multiple category case: Let us
assume homogeneous initial conditions: If all the patterns contains mutualy
distinctive set of features it is sufficient to show the patterns once and the
system will learn to distinguish them; 1i.e. one-trial learning will occur.
That can be dcne by an open-loop strategy as well. If there are patterns X5
which satisfy the inclusion ccndition, aikzgii for some k, then sucﬁ patterns
neccesarily appear more than once within the training sequence. But that.will
qsualy produce the neccessity fo other patterns to appear more than once,

within the teaching sequence. As effect, we have prolongation of the teaching

process repardless the strategy used. Thus, not only applicability of a

strategy is uffected by the inclusion condition, but also the speed of the
convergence of the training process. In the following section we give

experimental evidence of that phenomenon.

SIMULATION EXPERIMENTS

In Lhis scction we describe the results of our simulation experimenis 6n
the training the a(1,0) system to distinguish between a set of n binary

patterns. The experimental design is as follows:

The stimuli which we have experimented with, were three sets of 1letters
chosen [from some computer perifery devices: IBM29 card puncher, VR14 vid:0
display and VT50 video display. The three sets of letters are shown on Figure
8. The motivation for chosing sets VR4 and VTS0 are some recent

psychological experiments concerning similarity [16],{34). There is no
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particular motivation for using set IBM29 besides the fact that this set was
available. The lettgrs were enumerated in natural, lexical order giving
nunber 1 to the letter A and number 26 to Z. All of the letters are
represented by 35-dimensional binary vectors. Those vectors are denoted by

Xl.....x26 and in such a form were presented to the experimental subject.

Figure 8

The subject was a program whiéh simulates the behaviour of a «(1,0)
learner, in particular nonlinear adaptive associative memory shown on Figure 5
which we call Linear Adaptive Array (LAA). Shown the binary vector, the
program is supposed to recall the letter to which that vector is assigned. If
the decision is ambiguous, the program produces question mark "?", - In fhis
‘experimont the inital condition of the system was chosen to be homogenious:

all the memory elements was set to zero as well as the threshold values. '

The trainer was represented: by the program whigh represents the training

strategy. Both OPENLOOP and PERC strategy were used as training strategies.

The relevant variables which we have observed during - the experimental

investigation were: the teaching sequence T, the-length of the teaching
sequence L(T), the length of the entire curriculum L(C) , where the curriculum
C is defined as the sequence of all the letters appearing both in the teaching

and in the examination trials.
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Two series of experiments were performed. Here are the results:

Series 1: The influence of similarity

Experimenting with OPENLOOP we have chosen number of iteration K=100.
The strategy was not successful for such a number. The letters which the

learner failed to recognize were

from the set IBM29: C,F,J,L,P,U
from the set VR14: C,F,J,L,P
from the set VI50: C,F,J,L,0,P

qu each of these letters, the learner answered with the sign "“7?v, We
have not experimented with larger values of K. It was obvious that these are
the letters which are hardly distinguishable by the learner. The 1length of

the training sequence is L(T)=2600 and the 1length of the curriculum is .

L(C)=2026, for all the sets of letters.

Experiments using the strategy PERC has shown that that.strategy can be
successively applied in this task. Here are the training sequences produced
by this strategy for ceach set of letters. Each row represents an iteration of
the. proccdurc PERC described above. In the Appendix is given an example of

the training protocol using this strategy.

IBM29: L(T#)=135 L(C*)=395

T* = ABCDEFGHIJKLMNOPQRSTUVWXYZ
CEFGHIJKLMNOPQRSTUWXYZ
ABCDF GJLOPQRSUWZ
ACDEFHIJKLMNPRSTUVXY
BEFGHJKLMOPQRUWZ
ACJPRTWWXY
BDEFHIKLMNPQVZ
FOU
CEGJLS

VR 14: L(T*)z151 L(C¥)=411
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T# = ABCDEFGHIJKLMNOPQRSTUVWXYZ
CDEFGHIJKLMNOPQRSTUWWXYZ
ABCFGJLOPQRSUWXY
ABCDEFGHIJKLMNOPQRSTUVZ
ABCDEFGHIJKLMNOPQRSTUWXZ
ABCDEFHJLMNPRWXYZ
AHKMNPWIXY
BCEFGLOSU
J

VT50: L(T#)=207 L(C*¥)=545
T* = ABCDEFGHIJKLMNOPQRSTUWWXYZ

CDEFGH IJKLMNOPQRSTUVWXYZ
ABCDEF GHJKLMNOPQRSUWWXYZ
ABCFIJLOPQRSTUV
BCDEF GHJKLMNOPQRUVWXZ
ACDGIJOPRSTUW Y
BCDEFHJKLMNOPQSUXZ
BCDEFGIJLOQST
ABCDEFGHKLMNOPQRUWX YZ
ACDGHIJLMNOQSUWWZ

BCEFGIJPRST
K ‘

Some letters in the teaching sequence appear more frequently among
others. Table I gives the distribution of the letters within the teaching
sequences for each set of letters. It actually gives one of the solutions of

the inequalities (15) for this case.

Table I

In the second phase of this experiment we have excluded from the alphabet
the letters marked in the experiment with the strategy OPENLOOP. Now,
modified IBM29 and VTS50 sets have each 20 letters, and VT14 has 25 letters.
This series of experiments has shown the predicted result: Both the
strategies are effective and terminate after only one iteration, producing the

teaching sequence of the same length, equal to the number of the letters
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within the set. Moreover, strategy OPENLOOP produces shorter curriculum ( 20
versus 40 produced by strategy PERC). The explanation is simple: the

curriculum produced by OPENLOOP does not contain examination trials.

Analysing the letters which make "all the troubles" we can see that they
all meet the prediction of our theoretical investigation above: they all
satisfy the condition of inclusion. The pair of letters thch' satisfj that
condition are : (C,0), (F,E), (J,u), (L,E), (P,R), for all the three .sets

(U,0) for the set IBM29, and (0,D) for the set VvT50.

Series 2: The influence of the transfer of training

Although more extensive studies of this phenomenon has been performed
(71-[11], here we give Jjust two examples of the experiments. The strategy
used is PERC. First we have provided training for the set of letters VR 14,
After that, training for the set IBM29 gave the result

L(T*)=48 L(C*)=178 ~ T¥* = ADGIMNOQTUW

ACDGH JKNOQRSUWX

CDGHIJMNPSVW YZ

ABEFKLMX
whereas the training for the set VI50 gave

L(T#*)=U3 L(C*)=199 T4z ADGIMNOQTUWW

ACDGHJKOQRSV
BCDEFGILPSVZ

DQUVY
Jv

We see evidence qr the positive transfer of training. The curriculum 1is
much shorter then the one generated in the case of "tabula rasa" initial

conditions.
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Series 3: Linearly dependent patierns

In this experiment was chosen a set of 40 patterns from the set IBM40O:

~

10 digits and the special signs "+","-","=",and "/" were augmented to the set
of 26 letters, shown on Figure 8. Since each pattern is represented by a
35-dimensional vector, the patterns are neccessarily linearly dependent. Here

is the result of the experiment using strategy PERC:
L(T#*) = 204 L(C*) = 604

T# = ABCDEFGHIJKLMNOPQRSTUWXYZ=-+=/1234567890
CEFGHIJKLMNOPQRSTUWWXYZ~-+=/1234567890
ABCDF JLOPQRSUWZ-/23567890
ABCDEFHIJKLMNPRSTUVXY-+=123890
DEF GHJKLMNOPQRUWZ-/1234567890
ABCIJPRSTWXY+36
EFHKLMNPRSVZ =127
FOU15
CEGJL

As noted obove, this type of experiments is of interst in associative memory

studies. LAA has solved this particular problem in 10 iterations.

rSerics'ﬂi A multisémple problem

The task is LAA to recognize all the letters from the Figure 8 as a
letters from an alphabet. Thus, three samples pro class are given., Such a
task is actually of interest in pattern classification theory. We will not
give entire teaching sequence for this task, since it is inconvinient to.
represent for example the letter "A" in three different way, representing
three different sets. However, the task was solved in 10 iterations, with the

training sequence of the length L(T*#)=207, and length of the entire curriculum

L(C*)=987.
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Discussion on the experiments

In the experimental investigation with LAA we have been mainly concerned
on the pair-association task and the influence of similérity upoﬁ the training
procesé. We can see that in pair-association, thg mostb interésting case
appears when there are patterns which are included into some other patterns.
As predicted in the theoretical analysis, assuming homogeneous initial

conditions, all other cases are one-trial-learning cases.

The multisample problem although not main interst in this sthdy was also
considered in the experiments above. The fact that the training process in
the Series U4 has converged, shows that the sets of samples were linearly

separable,

SOME IMPLICATIONS TO THE THEORY

-OF ADAPTIVE CLASSIFIERS

Here we discuss two issues of interest in the theory of linear’
classifiers which are consequence of our ahalysis above: the usage of
augmented fixed coordinate in the set of input patterns, and " the geometrical

interpretation of the pattern recognition training.

In the theoretical discussion above it is obtained result that the input
patterns are maximaly similar, i.e. not distinguishable, by a liuear
classifier which keeps the thresholds fixed ,if they are positively colinear.

In the theory of the 1linear machines [31),{3],(12]),[20] the training is



Page 26

performed using the patterns_5'-[1m§]-[x°-l,xl,x2..-.xn] which, if different,
are never colinear by definition! Note that with augmented 1, the threshold
value wio=0i of the discriminant function gi(g) is changed 1in each teaching
step. From the teaching space approach it can be shown, that if the training

patterns are with augmented 1, the relations analogeous to‘(15) are
(aii+l)p1 >(a21+l)pk + gy (16.1)

(a HDpy >(a),+)p, + x (16.2)
for which using (14.5) can be shown that there exists solution for any x. and

X providing lftﬁk' Thus, it turns out £hat the augmented dimension with

K’
fixed value 1 assumed in the perceptron convergence theorem is - an assumption
that is not irrelevant to the analysis of the convergence of the training of
the lincar classifiers. If augmentéd dimension is not assumed, the problem of
positive colinearity cén still be avoided assuming that the vectors have unith
length, [28] in which positive colinearity means identity. The problem qf

colinearity is here emphasized rather than avoided, searching for the

similarity concept built by the learning machines.

The next problem we are considering now is the geometrical interpretation

of the recognition problem. Besides many of the distinctions in the theory of
adapiive pattern recognition, such as supervised vs. unsupervised learning,
parameter vs, nonparameter learning, distribution vs. distributionsfree
learning, geometrical vs. statistical separation, we will emphasize the

distinction as boundary vs. prototype learning. According to that

distinction, the geometrical interpretation of the pattern recognition problem
given in the theory of linear classifiers is based on the boundary learnins
paradigm, where the parameters to be learned are the coefficients of some

hyperplane. Then the pattern classification training problem in the feature

space is to find a hyperplane which‘will separate the samples of a given class
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from the samples of an another. On the other side, c¢luster analysis
techniques and so-called unsupervising learning recognition procedures are
based on the prototype learning paradigm, where for a given seg of samples and
given some wmeasure of similarity the system decides classification basing on
the similarity of the unknown pattern to the prototypes of a class. The
parameters learned in that paradigm are some statistics of the given reference
data sets. In the sequel we give geometrical interpretatioq of the behaviour
of the linear machines during 1learning and decision making in terms of

prototype learning paradigm.
Figure 9

Let us consider the case where n classes are given, each represented by
only one sample, and a linear machine which uses «(1,0) learning law. Assume

ij_andllk'are the samples which we observe (Figure 9). Let w and W, o

io

represent the initial values of the vectors_gi and_!k'which will contain the

information about the properties of the classes Cy andlck respectively. With

those initiul conditions, in the space are shown the reachable states, i.e the

values of the vectors‘gi and.gk during the teaching procedure. Let us suppose
that the training process is completed and the vectors L and !k are
represented by the points as shown on Figure 9. Now the vectors w. and w, are
prototypes, or templates, of the classes Ci and C, developed during the

teaching process. In the case when multiple samples for a particular class

are given, which is actualy of interest in the linear machines behavior, the

common prototype vector of a particular class Cj will be weighted sum of the

sample vectors, constructed during the training process:
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J.
1
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where pij is number of the appearence of the j-th sample iiquf the i-th class
withiﬁ the training sequence. Ji is the number of samples given for the class

Ci.

Observe now that the behavior of a linear classifier is noé changed‘if it

computes the functions |
£, () - Pgﬁ(w_-r_j_)w1 (18)
instead of 31(3)'defined in (1), where Pztﬂi? is the orthogonal projection of
3j"onto X. That means that if during an examination trial some, possibly
unknown, vector x appears in the feature space, then all the class prototypes
are projected toward x. If the system is equithreshold, the pattern will be
assigned the i-th class iff
Pyluy) > Pyl

for all k# i. Thus, a geometrical interpretation can be given in terms . of
the projections of the prototype vectors on the unknown vector x. This is an

" alternative to the separating surfaces point of view.

However , it cannot pe said that this interpretation is more appropriate
then the scparating surface interpretation: in general case when thresholding
is involved, it is not., It is just another point of view, pointing out the
properties that linear classifiers have in common with other pattern
recognition processes: some measure of similarity between the defined

prototypes and the unknown object.
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SOME IMPLICATIONS TO CLUSTER ANALYSIS

In this section is briefly discussed the possibility of the application

of the similarity measure derived in this paper in the cluster analysis.

Cluster analysis is a prototype based classificatioﬁ technique. :One of
the best describing metaphors for this technique is the universe in which some
attraction, or gravity, force is apriori defined, not neccessarily in
Newtonian sense. Given some reference galaxies, or star cluste;s, as
prototypes and an attraction force, the universe is divided into regions. .
when'q ncw, unknown object appears in this universe, all the objects "vote" by
means of tLheir attraction force. The process is highly parallel and
competitive, The object will be attracted to the cluster which has shown thé
strongest attraction force. The specification of the regions can be given
apriori by the set of data points (stars) and the predefined attraction force,

or designed iteratively by some outside system.

In cluster anlysis the usual term for the attraction force mentioned

above is some measure of similarity, heuristicaly predefined between the data

points in the feature space. The measure of similarity is usualy some
decreasing function of a distance function. Various functions has been
proposed as a measure of similarity for usé in cluster analysis which will be
not reviéwed ‘here. The extensive review is given in [27],(41]. However, we

will mention two principaly different measures,

, and .Eé- the "most obvious" ([12] measure of

similarity is the euclidean metric d.» which using our notation 8127%; 2X5>

Given two patterns x

can be defined
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2 -
de(x1,%9) = a);+ap)=2a;, (19)
There are a number of variations of this metric distance used, such as
Manhattan metric , weighted euclidean metric, Mahalanobis and Bathacharya

distance.

In some applications a nonmetric measure is useful. The most often used
nonmetric measure of similarity is the cosine of the angle'between the
patterns:

81 (x)02p) = 315/731339; (20)
This measure sometimes is referred as a "classical" measure of similarity

(221].

It is casy to see that the measure of similarity (12) derived in this

paper to the measure 8;(x;,X,) is related by

= cos arc ( 1% I [e ) (21)

s
2 ’
|Eg|sl ‘LEQl

Without extensive analysis, it is evident that if used as a measure of

similarity, the coefficient 32 shows disadvantage of greater computational

complexity. However, let us mention two interesting properties:

The measure of similarity 82 is senzitive to the elongation of the

amplitude of a vector, whereas s1 is not. Formaly, if x! =k.x  .for some k>0,

)
1 1

- ' ?
then s, (x1,%,)=s, (x;,x,) whereas S;(%],%))¥s,(x),x,).

Interestingly eﬁough. although the similarity measure s, is a nommetric
measure, the metric intuitive description can be given in the n-dimensional
teaching space in terms of the angles as a distance measures. Consider the

3-dimensional pyramide in the similarity space as shown on figure 4. The.

three vertex angles satisfy the the property: the sum of any two angles is
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greater Athan the third vertex angle. Thus, used as distance measures, those
angles satisfy triangle inequality. That observation can be generalized to an
n-dimensional convex polyhidron in the teaching Space: considering three
edges, one can construct a pyramid where vertex angles will satisfy the

triangle inequality.

SOME IMPLICATIONS FOR ADAPTIVE

CONTROL THEORY

The teaching space approach to adaptive pattern }ecognition used here is
based on relations which contain the parameters of the training brocess ratper
then the parameters of the learning process, as has been discussed abbve.‘_Ihe
learning process is viewed through the point of view of the teacher as a
direct reference model control [29] where the behaviour of the learner'-is

guided by a reference model stored somehow in the memory of the controller.

Now we discuss some imblication of the teaching space approach related to
the control theory. We are especially interested in issues conéerning

open=-loop vs, closed loop control in pattern recognition training.

Let us consider the experimental paradigm of closed loop training used in
our experiments. Here we will refer to this paradigm as to the paradigm I.

This paradigm is illustrated on figure 10.1,
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Figure 10

In this paradigm we have clearly distinguished two types of - experimental
trials: examination trials and teaching trials. In an examination trial, the

learner is presented with a pattern to which it responds according to the

present state of its knowledge base. In the same time the teacher generates -
3and tests its expectation about the learner's output. After that, consistent
with some training strategy, the teacher eventuallyAperforms a training trial,
in which it simultaneously presents the stimulus vpattern agd the desired

output, which unconditionaly updates the knowledge base of the learner. 'Let

Us note that this is a closed-loop control paradigm. ' Block [5] called it

"reinforced learning®,

Let us cohsider another experimental paradigm, which will be called
paradigm II, and is shown on figure 10.2. Teacher in each tfial generates the
stimulus pattern along with the desired output. The learner receives the
stimulus first, generates its output, and then compares it to the desired
output., (The delay shown on figure 10.2. compensates the feedback delay
heccesary to assure appropriate behaviour of the learner in this paradigm).

On the basis of that comparison, the learner itself decides whether it will

update its knowledge base or not. The teacher "in this paradigm has no
evidence about the actions of the learner. It generates the patterns
aécording some, possibly random order. It was shown [31],[28] that thiS
paradigm will assure the convergence of the learniné process of the learner,
Providing that it implements itself the perceptron training strategy. Note

that this is clearly open loop control paradigm. Block [5] calls it "forced"

learning.
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Thus, concerning the successfulness of the training, both paradigms I and
II are equivalent. The pattern recognition training problems can - be
considered to be either closed loop or open loop, depending of how much

structural complexity each of the player in this cooperative game has.

In paradigm I the 1earner‘is passive, causal [13], learning system: it
builds the map of the teacher's knowledge base under complete control of the
teacher. On the other hand, the teacher is an active, teleological [13] i.e.
goal §eeking system [24], which performs search through the space of its
possible actions in order to perform the successful and efficient training.

This kind of teacher is assumed and analysed in this paper.

In the paradigm II teacher is a passive system. It can be viewed as .a ,
generator of stimuli not being affected by the actions of the learner. On the
other hand, the learner is an active learning system, which builds a map of

the teacher knowledge base using some kind of error correction procedure,

Such a procedure can be fixed increment error correction procedure{ or
"perceptron learning rule" [12]). Good discussion concerning this paradigm is

given in (4],

Another issue is the problem of optimality of the training process. In
order to assure successful training in the paradigm II is to be.aséumgd the
training sequence of infinite lgngth in which .all the batterns appear
infinitely many times [31],(3],(12]). Although the traihing process converges
after a finite number of trials, the trainer has no evidence of the state of
the learner's knowledge. In the closed loop paradigm I, that intbrmatioﬁ is
available, and an algorithm can be designed which will assure stopping the

training procedure once the learner has reached the desired state.
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It is our feeling that the adaptive pattern recognition theory has not
paid enough' attention to the goal seeking character of the teacher in the
pattern recognition process. We believe that such an analysis can be

fruitfull and relevant to the general problem of control.
SOME IMPLICATIONS TO NEURAL MODELING

In séveral Places above we have confirmed the importance of a similarity
and the' applicability of that concept in the explanation of the behavior of
linear machines. Now recalling that the dot product elements mentioned as a
basic elements of a linear machine are often considered as basic models of the-

neurons, we can state a hypothesis that the neurons perfbrm similarity

Judgment rather then logical functions as proposed by McCulloch and Pitts.
Two points are consistent with this hypothesis: 1) the fact that; brains are
the best pattern recognition devices, and 2) some evidence of the existence of
the feature detecborg refered by the works of Hubel end Wiesel. Assuming the
above hypothesis as true, we can imagine certain regions of the brain as a
pattern recognitién machine consisting of the elements which are themselves
pattern rccognition devices, performing similarity judgment on the basis of
feature matching.process described above. We will not pursue tﬂis hypothesis
further. It sounds 'probably speculative, but we believe that in the_ time
McCulloch and Pitts stated their logical computation hypothesis it had sound
speculative. The 1level of eomlexitﬁ that we assign as a function of the
neurons seems to be increasing, parallely with the preéent concern of tle
sciénce. It is to be expected that the future assign the neurons even more

camplex functions than "pure" similarity judgment.
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CONCLUS IONS

The teaching space approach toward the problem of trainable linear
pattern classifiers taken here touched two problems concerning pattern
recognition and learning which have not been widely investigated in connection
with these machines: the problem of interpatﬁern similarity and the goal

seeking nature of the teacher in the pattern recognition training.

The analysis in the similarity space has made transparent'the fact' that
the perceptron training procedure considered in the proof of the perceptédn
convergence theorem is performed using the vectors which are never colinear:
otherwise the convergence is not assured. That is expressed in the terms of
maximal similarity between the reference patterns, measured by a similarity
coefficient derivéd from the learning process of the linear machines. That
similarity coefficient has not been proposed so far in either areas dealing
with . problems of similarity. The explanation is simple: all the models'
derived so far are results of the heuristics applied directly ‘on the
observation of the objects in the feature space, whereas this measure is
derived from the physiology and the behavior of an artificial classifier
during its learning process. Including the similarity concept in the theory
of linear pattern classifiers , where the terms of 1linear separability,
discriminant functions and boundary surfaces are the main concepts, to some .
extent.bridges the gap Between these artificial devices and the natural
pattern recognition systems, where the similarity is a basic coﬁcept.
Moreover, the similarity concept built by linear machines, although basically

a feature matching process, turns out not to be so trivial as was thought. It

turns out that the similarity concept built into the artificial systems has

several features, as it has similarity concept built by the human system [44].
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The analysis in the teaching space shows that the teacher in a pattern
recognition process can be viewed as a goal seeking system. It searches
through the space of its possible actions, using some seardhing strategy,
having the goal to approach ehe solution region in the teaching space. It has
been pointed out that this view is not neccessarily unique: the teaching
problem can be also viewed as a open loop control problem, assumung that the
learner has higher 1level of structural complexity, having ' at least 'one
internal 1loop which allows him to know what action has been taken in the
previous time step. However, the optimality of the training procedure gives
credit to the closed loop variant of the training process usedvin our

experiments.



APPENDIX: DETAIL OF THE SIMULATION EXPERIMENTS

TRAINER:
Strategy:
LEARNER:

@PERC
LAA

Learning constants

r eward

punishment
Initial conditions:

Threshold values:

Memory matrix:

STIMULI:
Set
Patterns:

experiment has been started !!

1
0

IBM29

A,B,C,D,E,F

iteration

EXAMINATION
TEACHING
EXAMINATION
TEACHING
EXAMINATION
TEACHING
EXAMINATION
TEACHING
EXAMINATION
TEACHING
EXAMINATION
TEACHING

shown
A

shown
B

shown
C

shown
D

shown
E

shown
l:‘

iteration

EXAMINATION
EXAMINATION
EXAMINATION
EXAMINATION
EXAMINATION
EXAMINATION

TEACHING

shown

shown

shown

shown

shown

shown
F

iteration

EXAMINATION
EXAMINATION
EXAMINATION
TEACHING
EXAMINATION
EXAMINATION
TEACHING
EXAMINATION
TEACHING

shown

shown

shown
C

shown

shown
E

shown
F

1
A recalled

B recalled
C recalled
D recalled
E recalled

F recalled

2

‘A recalled

B recalled
C recalled
D recalled
E recalled
F recalled

3
A recalled

B recalled
C recalled

D recalled
E recalled

F recalled

all zero
cleared

VHoQ W

7o MO -

-

curriculum
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iteration
EXAMINATION shown
TEACHING A
EXAMINATION shown
TEACHING B
EXAMINATION shown
EXAMINATION shown
TEACHING D
EXAMINATION shown
TEACHING E
EXAMINATION shown
TEACHING F

iteration
EXAMINATION shown
EXAMINATION shown
EXAMINATION shown
TEACHING ¢
EXAMINATION shown
EXAMINATION shown
TEACHING E -
EXAMINATION shown
TEACHING F

.iteration
EXAMINATION shown
EXAMINATION shown

TEACHING B
EXAMINATION shown
TEACHING €
EXAMINATION shown
TEACHING D
EXAMINATION shown
EXAMINATION shown

iteration
EXAMINATION shown
EXAMINATION shown
EXAMINATION shown
EXAMINATION shown
EXAMINATION shown
EXAMINATION. shown

4
A recalled

B recalled

C recalled
D recalled

E recalled

F recalled

5

A recalled
B recalled
C recalled

D recalled
E recalled

F recalled

6
A recalled
B recalled

C recalled
D recalled

E recalled
F recalled

7
A recalled

B recalled
€ recalled
Drecalled
E recalled
F recalled

end of the experiment
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FIGURE CAPTIONS

Figure 1. Adaptive classifier

Figure 2. Two-dimensional teaching space. Initial conditions of the
learner are not homogenious. Marked points are the goal states. .
2a): A case when a,, >0. Angles ajand a2 are positive and y<90°.
2b): A case when 3, <0; Angles ajand o, are negative and ¢>90°.

Figure 3. Similarity space. Two vectors (a,.,a..) and (a,,,a,,) are
considered at a time. The angle between thdose vVectors is~a measure of
dissimilarity between the pattgrns and Xx,. The shaded area is the
square of the inner product, a 12° Five casea of the relationship
between the patterns are shown®  Fig. 3a): anticolinear Fig 3b): a

in general, Fig 3¢): orthogonal Fig 3d): a;,>0, in general, Fig Be}
positively colinear.

Figure 4. Three-dimensional teaching space. Initial conditions of
the learner are homogenious. The goal points are inside the open ended
pyramide with the vertex in the coordinate origin. The projections of

the pyramide on the principal coordinate planes are solution regions
for cach pair of inequalities (15). The figure represents parcicular
case of the example 1.

Figure 5. A nonlinear associative memory. Linear machine with equi-
threshold values can be viewed as an associative mewory which outputs
are input to a maximum selector. This system is used in the exper;mental
investigation.

Figure 6. Serch through a two-dimensional teaching space. Given two
patterns, the angle B8 is defined. Four systems starting from different
initial conditions search for the goal points using different strategies.

Figure 7. Openloop versus closed loop teaching strategy. Due to the
initial conditions, the solution region is so tramnslated that strategy
OPENLOOP will never reach the goal point, since the patterns chosen
satisfy the inclusion condition (search A). The strategy PERC will
reach the goal point (sexrch B).

Figure 8. The sets of stimuli used in the experimental investigation.
Figure 9. Prototype concept applied to the theory of linear machines.
X and x, are reference samples for the class Ci and Ck respectively.

Prototypes w. and. w, are builded during the training period. 1f, duxring
the examinézion pé—iod some, possibly unknown pattern x appears in the
feature space, all the prototypes are projected toward x.

Figure 10. Closed-loop (Fig 10a) versus open-loop (Fig 1l0b) training
for pattern recognition.
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