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Half-hourly or hourly records of eddy-covariance derived ET and ancillary meteorological data were 1 
obtained from 38 Ameriflux sites in the continental U.S. Sites were chosen for inclusion in the study if at 2 
least four years of data, including soil moisture data, were available and generally free of large gaps, 3 
though most flux records were much longer (see Table S1).  4 

Hourly data quality control: The ET data were subjected to a standardized quality control procedure 5 
whereby data were first filtered to remove missing data and ET measurements greater than 2 mm/hour or 6 
less than 0.6 mm/hour. Meteorological data were also screened for obvious outliers (i.e. air temperature 7 
less than -30oC or greater than 50oC, VPD < 0, net radiation less than -500 W m-2 or greater than 1500 W 8 
m-2). Data were not gapfilled; rather, all analysis relied only on screened observations. Most of the 9 
analysis was limited to daytime periods (Rn > 50 W m-2) when wind speed exceeded 1 m s-1 and VPD > 10 
0.6 kPa (to minimize stability effects). 11 

Filtering data to periods of relatively stationary leaf area index: Our analysis includes sites that span a 12 
wide range of leaf area index and canopy height, which are variables known to affect vegetative hydraulic 13 
functioning29, 30. Within a site, temporal variation in leaf area or other aspects of canopy architecture were 14 
not explicitly considered, though they may also have affected the temporal dynamics of ET. To minimize 15 
the influence of those effects, we filtered our data to exclude periods when leaf area was expected to be 16 
low or highly dynamic. In evergreen forests, the analysis period was defined to start two weeks after the 17 
average date of the last sub-zero hourly air temperature observation, and was defined to end one week 18 
before the average date of the first sub-zero hourly air temperature observation in the fall/winter. In 19 
deciduous forests and temperate grasslands, the analysis period was defined to start three weeks after the 20 
average date of the last sub-zero hourly air temperature observation, and was defined to end two weeks 21 
before the average date of the first sub-zero hourly air temperature observation in the fall/winter. In 22 
croplands, semi-arid grassland and shrublands, and Mediterranean ecosystems (i.e. US-TON, US-VAR), 23 
the analysis period was defined based on previously published site-specific estimates of leaf area or 24 
communication from site data providers. The start and end of the analysis period at each site are given in 25 
Table S1.   26 

Limiting the analysis to exclude low VPD: When parameterizing the model of Eq. 1 in the main text, we 27 
limited the data to those collected when VPD > 1.0 kPa. This approach is consistent with other work31, 28 
and recognizes that estimates of conductances become unreliable when they are derived by dividing 29 
measured water fluxes by near-zero VPD. Furthermore, at low VPD when atmospheric conditions are 30 
often stable, boundary layer conductances may become an important constraint on observations of ET. 31 
These challenges are exacerbated by the fact that, at low VPD, ET fluxes are also low and of a magnitude 32 
comparable to the uncertainty in the observations themselves.  33 

When using the soil-moisture-specific parameterizations of Eq. 1 to determine the total growing season 34 
limitations to GS and ET, we assume that VPD is not limiting when it is less than 0.6 kPa. To an extent, 35 
this assumption is one of convenience, since the model of Eq. 1 can produce large errors when VPD is 36 
close to zero (and ln(VPD) is approaching infinity). We note, however, that the difference between PET 37 
and ET is typically near zero or negative when VPD < 0.6 kPa (Figure S1). Specifically, across all sites, a 38 
linear model for PET-ET as a function of VPD tends to cross zero at VPD = 0.6 kPa on average (std.dev = 39 
0.3 kPa), indicating that at low VPD, ET is not limited from its potential rate.  40 

 41 
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 42 

Figure S1: The relationship between PET-ET (i.e. the difference between potential and observed ET) as a function 43 
of VPD for four representative sites. The slope (a) and intercept (b) of the derived linear relationship are also 44 

shown, together with the coefficient of correlation (r2) 45 

 46 

Estimating the dryness index: The estimates of the dryness index (DI = PET/P), which rely on annual 47 
estimate of PET and P, are sensitive to missing meteorological data, and in particular missing 48 
precipitation data. As evidence, when the mean annual precipitation was determined from the hourly 49 
Level 2 Ameriflux data, the ratio of observed ET to observed precipitation (i.e. the evaporative fraction)  50 
exceeded 1.0 for about 30% of sites. A multi-year evaporative fraction greater than 1.0 is physically 51 
possible if a site experiences significant run-on soil moisture or groundwater convergence; however, in 52 
Ameriflux sites that tend to be biased to flat locations, significant run-on is not likely in most sites. 53 
Therefore, we calculated the DI using the long-term mean annual precipitation reported by each site to the 54 
Fluxnet Database (http://fluxnet.ornl.gov/) instead of calculating mean annual precipitation from the 55 
Level 2 Ameriflux data. There may be some discrepancies between the DI estimated this way and the true 56 
DI for each site’s study period if the mean annual precipitation during the study period is much different 57 
than the longer-term reported average. However, because the site-specific study periods are generally 58 
long and are not limited to the same years (see Table S1), systematic biases across sites (for example due 59 
to the occurrence of a large regional drought event) should be minimal.  60 

 61 

 62 

4 NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE3114



© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

4 
 

Half-hourly or hourly records of eddy-covariance derived ET and ancillary meteorological data were 1 
obtained from 38 Ameriflux sites in the continental U.S. Sites were chosen for inclusion in the study if at 2 
least four years of data, including soil moisture data, were available and generally free of large gaps, 3 
though most flux records were much longer (see Table S1).  4 

Hourly data quality control: The ET data were subjected to a standardized quality control procedure 5 
whereby data were first filtered to remove missing data and ET measurements greater than 2 mm/hour or 6 
less than 0.6 mm/hour. Meteorological data were also screened for obvious outliers (i.e. air temperature 7 
less than -30oC or greater than 50oC, VPD < 0, net radiation less than -500 W m-2 or greater than 1500 W 8 
m-2). Data were not gapfilled; rather, all analysis relied only on screened observations. Most of the 9 
analysis was limited to daytime periods (Rn > 50 W m-2) when wind speed exceeded 1 m s-1 and VPD > 10 
0.6 kPa (to minimize stability effects). 11 

Filtering data to periods of relatively stationary leaf area index: Our analysis includes sites that span a 12 
wide range of leaf area index and canopy height, which are variables known to affect vegetative hydraulic 13 
functioning29, 30. Within a site, temporal variation in leaf area or other aspects of canopy architecture were 14 
not explicitly considered, though they may also have affected the temporal dynamics of ET. To minimize 15 
the influence of those effects, we filtered our data to exclude periods when leaf area was expected to be 16 
low or highly dynamic. In evergreen forests, the analysis period was defined to start two weeks after the 17 
average date of the last sub-zero hourly air temperature observation, and was defined to end one week 18 
before the average date of the first sub-zero hourly air temperature observation in the fall/winter. In 19 
deciduous forests and temperate grasslands, the analysis period was defined to start three weeks after the 20 
average date of the last sub-zero hourly air temperature observation, and was defined to end two weeks 21 
before the average date of the first sub-zero hourly air temperature observation in the fall/winter. In 22 
croplands, semi-arid grassland and shrublands, and Mediterranean ecosystems (i.e. US-TON, US-VAR), 23 
the analysis period was defined based on previously published site-specific estimates of leaf area or 24 
communication from site data providers. The start and end of the analysis period at each site are given in 25 
Table S1.   26 

Limiting the analysis to exclude low VPD: When parameterizing the model of Eq. 1 in the main text, we 27 
limited the data to those collected when VPD > 1.0 kPa. This approach is consistent with other work31, 28 
and recognizes that estimates of conductances become unreliable when they are derived by dividing 29 
measured water fluxes by near-zero VPD. Furthermore, at low VPD when atmospheric conditions are 30 
often stable, boundary layer conductances may become an important constraint on observations of ET. 31 
These challenges are exacerbated by the fact that, at low VPD, ET fluxes are also low and of a magnitude 32 
comparable to the uncertainty in the observations themselves.  33 

When using the soil-moisture-specific parameterizations of Eq. 1 to determine the total growing season 34 
limitations to GS and ET, we assume that VPD is not limiting when it is less than 0.6 kPa. To an extent, 35 
this assumption is one of convenience, since the model of Eq. 1 can produce large errors when VPD is 36 
close to zero (and ln(VPD) is approaching infinity). We note, however, that the difference between PET 37 
and ET is typically near zero or negative when VPD < 0.6 kPa (Figure S1). Specifically, across all sites, a 38 
linear model for PET-ET as a function of VPD tends to cross zero at VPD = 0.6 kPa on average (std.dev = 39 
0.3 kPa), indicating that at low VPD, ET is not limited from its potential rate.  40 

 41 

5 
 

 42 

Figure S1: The relationship between PET-ET (i.e. the difference between potential and observed ET) as a function 43 
of VPD for four representative sites. The slope (a) and intercept (b) of the derived linear relationship are also 44 

shown, together with the coefficient of correlation (r2) 45 

 46 

Estimating the dryness index: The estimates of the dryness index (DI = PET/P), which rely on annual 47 
estimate of PET and P, are sensitive to missing meteorological data, and in particular missing 48 
precipitation data. As evidence, when the mean annual precipitation was determined from the hourly 49 
Level 2 Ameriflux data, the ratio of observed ET to observed precipitation (i.e. the evaporative fraction)  50 
exceeded 1.0 for about 30% of sites. A multi-year evaporative fraction greater than 1.0 is physically 51 
possible if a site experiences significant run-on soil moisture or groundwater convergence; however, in 52 
Ameriflux sites that tend to be biased to flat locations, significant run-on is not likely in most sites. 53 
Therefore, we calculated the DI using the long-term mean annual precipitation reported by each site to the 54 
Fluxnet Database (http://fluxnet.ornl.gov/) instead of calculating mean annual precipitation from the 55 
Level 2 Ameriflux data. There may be some discrepancies between the DI estimated this way and the true 56 
DI for each site’s study period if the mean annual precipitation during the study period is much different 57 
than the longer-term reported average. However, because the site-specific study periods are generally 58 
long and are not limited to the same years (see Table S1), systematic biases across sites (for example due 59 
to the occurrence of a large regional drought event) should be minimal.  60 

 61 

 62 

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange 5

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCLIMATE3114



© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

6 
 

Section S2: Selecting the model for potential evapotranspiration (PET) 63 

In this study, the potential evapotranspiration rate (PET) is used to calculate the dryness index, and also to 64 
quantify limitations to ET imposed by soil moisture and VPD. In many previous studies focused on 65 
understanding ecosystem hydrologic processes, the PET has been calculated using the Priestley-Taylor 66 
equation32, which may be represented as: 67 

PETPT = 𝑎𝑎𝑃𝑃𝑃𝑃
𝑆𝑆∙𝑅𝑅𝑛𝑛
𝑆𝑆+γ ∙ 1

𝜆𝜆𝑉𝑉
        (S1) 68 

where 𝑎𝑎𝑃𝑃𝑃𝑃 = 1.26 is the Priestley-Taylor coefficient, 𝑆𝑆 is the temperature-dependent slope of the 69 
saturation-vapor pressure curve, 𝛾𝛾 is the temperature-dependent psychrometric constant, and 𝜆𝜆𝑉𝑉 is the 70 
temperature-dependent latent heat of vaporization. In this study, which is strongly focused on atmospheric 71 
limitations to ET, we estimate PET using the Penman-Monteith33, 34 approach, which in addition to 72 
accounting for energy constraints to ET, also accounts for aerodynamic and atmospheric constraints. The 73 
Penman-Monteith equation for PET may be expressed as:  74 

PETPM = 𝑆𝑆∙𝑅𝑅𝑛𝑛+𝑐𝑐𝑝𝑝𝜌𝜌𝑎𝑎𝑔𝑔𝑎𝑎𝑉𝑉𝑃𝑃𝑉𝑉
𝜆𝜆𝑉𝑉[S+𝛾𝛾(1+𝑔𝑔𝑎𝑎

𝐺𝐺𝑆𝑆
)]

        (S2) 75 

where S is the temperature-dependent slope of the saturation-vapor pressure curve, Rn is net radiation, pa 76 
is the density of dry air,  𝛾𝛾 is the temperature-dependent psychrometric constant, 𝜆𝜆V is the temperature-77 
dependent latent heat of vaporization, ga is the aerodynamic conductance, and cp is the specific heat 78 
capacity for dry air.  79 

The formal definition of the Penman-Monteith equation for canopy evapotranspiration relies on a big-leaf 80 
assumption, and in many applications 𝐺𝐺𝑆𝑆 is equated to the canopy-level stomatal conductance35. However, 81 
ecosystem evapotranspiration includes a significant contribution from soil evaporation (typically on the 82 
order of 15-30% for a range of biomes36, 37, 38, 39, 40). In modeling studies, this problem is often met with a 83 
two-source (i.e. canopy and soil) modeling procedure where both canopy and soil evaporation are 84 
independently simulated from Penman-Monteith type equations. However, in data driven applications like 85 
this one, when surface conductance is derived by inverting the Penman-Monteith equation from measured 86 
ecosystem scale ET observations, the derived 𝐺𝐺𝑆𝑆 is influenced by soil evaporation, and should not be 87 
assumed to be representative of canopy stomatal conductance alone35, 41, 42, 43, 44. Because soil evaporation 88 
increases linearly with VPD, a greater ratio of soil evaporation to total evapotranspiration will tend to 89 
reduce the magnitude of the VPD sensitivity parameter m.  90 

The aerodynamic conductance (ga) is formulated as a function of wind speed and canopy height after 91 
Campbell & Norman (1998)45 as: 92 

𝑔𝑔𝑎𝑎 = 𝑈𝑈∙𝑘𝑘2

[ln(𝑧𝑧𝑚𝑚−𝑧𝑧𝑑𝑑
𝑧𝑧𝑜𝑜

)]
2         (S3) 93 

Where U is the measured wind speed (m/s), k is the Von Karman Constant, zm is the measurement height, 94 
zd is the zero plane displacement, and zo is the momentum roughness length. The zd and zo where taken as 95 
0.67h and 0.1h, respectively, where h is canopy height, as is common practice in the absence of other 96 
information about these parameters45, 46. In some applications, it is common to incorporate a correction for 97 
stability effects on ga via the modification:  98 

𝑔𝑔𝑎𝑎 = 𝑈𝑈∙𝑘𝑘2

[ln(𝑧𝑧𝑚𝑚−𝑧𝑧𝑑𝑑
𝑧𝑧𝑜𝑜

) + Ψ𝐻𝐻 ]
2         (S4) 99 
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where the diabatic correction factor Ψ𝐻𝐻 can be specified as a function of the ratio of convective to 101 
mechanical production of turbulence as described in Campbell & Norman (1998)45.  102 

Filtering the data to remove observations collected when VPD < 0.6 kPa and wind speed < 1 m s-1 should 103 
minimize the influence of stability effects on the derived surface conductance. To be sure, we repeated the 104 
analysis in a subset of sites spanning the range of dryness index for three scenarios: 1) no stability 105 
corrections to ga (i.e. using Eq. S3) and no wind speed filter, 2) no stability corrections to ga (i.e. using Eq. 106 
S3) with the wind speed filter, and 3) stability corrections to ga using Eq. S4 with the wind speed filter. In 107 
US-DK3, the relationship between ga and VPD was similar in all scenarios. In the other sites, the 108 
relationship between ga and VPD was similar for scenario 1 & 2, but scenario 3 resulted in higher ga at 109 
high VPD.  110 

Importantly, however, regardless of which scenario was used, the relationship between GS and VPD was 111 
similar in all sites, and nearly indistinguishable in most. Thus, we elected not to correct ga for stability 112 
effects in order to minimize additional uncertainties associated with the parameterization of the stability 113 
correction itself.  114 

 115 

Figure S2: The relationship between aerodynamic conductance and VPD (panels a, c, e, g), and surface 116 
conductance (GS)  and VPD (panels b, d, f, and h), showing results from the three stability correction scenarios.  117 

 118 
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When calculating PETPM for use in determining the site dryness index, we elected to set GS in Eq. S2 119 
equal to .0148 m/s. This represents the highest value of the reference, well-watered surface conductance 120 
rate (i.e. GS,ref,ww) observed across the study domain. This approach of using a finite GS to determine PET 121 
is conceptually consistent with the use of the Priestly-Taylor equation, since the parameter  𝑎𝑎𝑃𝑃𝑃𝑃 is set to 122 
approximate well-watered evapotranspiration rates from terrestrial ecosystems, and not, for example, 123 
open water (over which GS is infinite). 124 

The agreement between the dryness index calculated using PETPT and PETPM is shown for reference in 125 
Figure S3. The dryness index values tend to be higher when calculated using the Penman-Monteith 126 
equation, but overall the two estimates of PET are strongly correlated.  127 

 128 

Figure S3: The relationship between dryness index estimated using the Penman-Monteith and Priestly-Taylor 129 
Models for PET.  130 

 131 

 132 
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 142 

Section S3: The use of soil moisture content as an indicator of plant water 143 
availability 144 

We elected to use the total volumetric soil moisture (𝜃𝜃) in the top 30 cm as the primary proxy for plant 145 
water availability. Most Ameriflux sites rely on time-domain reflectrometry (TDR) measurements for θ, 146 
which often require a site-specific calibration. Details of these site-specific calibrations are not available 147 
in the Ameriflux database, and thus cross-site comparisons of soil moisture content should be approached 148 
with caution. In other studies, the relative extractable water (REW, which represents soil moisture content 149 
scaled by the minimum and maximum observed values) is used instead to facilitate cross-site comparisons 150 
of ecosystem water use47, 48.   151 

It could be argued that soil water potential (Ψ𝑆𝑆) is a more appropriate measure of soil water availability 152 
than either 𝜃𝜃 or REW, since water tension in the soil is an important physical driver of water movement 153 
through soil matrices and plants49, 50. Unfortunately, soil water potential is rarely measured in the field. 154 
Occasionally, laboratory-based dry down experiments are used to derive an empirical relationship 155 
between 𝜃𝜃 and Ψ𝑆𝑆. This relationship is not linear49, though it is monotonically increasing. As illustrated in 156 
Figure S4, in sites for which estimates of Ψ𝑆𝑆 are available, Ψ𝑆𝑆 increases more rapidly with increasing 𝜃𝜃 157 
when the latter is low; consequently, the results of this study associated with the drier soil moisture bins 158 
will likely reflect the response to a relatively wider range of  Ψ𝑆𝑆 conditions.  159 

It is important to note that the choice of the soil moisture variable (i.e. 𝜃𝜃 vs. REW vs. Ψ𝑆𝑆) has no effect on 160 
our primary results concerning the relative importance of soil moisture versus VPD limitations to surface 161 
conductance and ET (e.g. the results presented in Figures 2, 3 & 4 in the main text). This is because the 162 
analytical approach relies on binning the data into quantiles defined by the 0-15th, 15th-30th, 30th-50th, 50th-163 
70th, 70th-90th, and 90th-100th percentiles of 𝜃𝜃, and then parameterizing Eq. 1 within each bin. Because the 164 
relationships between 𝜃𝜃 and REW and Ψ𝑆𝑆 are all monotonically increasing, the same data will fall into the 165 
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 172 

S4. Determining the well-watered reference surface conductance (i.e. GS,ref,ww).  173 

The limitations to GS imposed by soil moisture and VPD were estimated by comparing hourly estimates 174 
of GS to the well-watered reference value of surface conductance (i.e. GS,ref,ww). This parameter represents 175 
the surface conductance when soil moisture content exceeds the 90th percentile in each site, and 0.9 < 176 
VPD < 1.1 kPa. Choosing the reference VPD of 1.0 kPa is consistent with previous work31. The approach 177 
recognizes the fact that surface conductance estimates at low VPD are sensitive to biases introduced by 178 
low boundary layer conductance and instabilities in the determination of GS from ET when VPD is low.  179 

The magnitude of GS,ref,ww tends to be low in sites with a high dryness index, and variable but generally 180 
higher in more mesic sites (Figure S5). The low GS,ref,ww  in the driest sites is expected, as canopy stomatal 181 
conductance – an important component of GS - is driven by leaf area51, which is very low in semi-arid 182 
ecosystems. The variability in GS,ref,ww  in more mesic sites may be explained, to an extent, by variation in 183 
leaf area as well as variation in canopy height, which introduces another important structural control on 184 
canopy stomatal conductance30, 52. While these sources of variability in well-watered GS are an important 185 
long-term constraint on ecosystem carbon and water cycling, they are not the focus of this present study. 186 
We point readers elsewhere32 for a more thorough treatment of the topic.  187 

 188 

Figure S5: The relationship between the well-watered reference surface conductance (GS,ref,ww) and dryness index. 189 
Error bars indicates the 50% confidence interval on the estimate of GS,ref,ww as derived from a non-parametric 190 
bootstrap.  191 
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Section S5:  The relationship between VPD and 𝜽𝜽 at various timescales   199 

Our analysis leverages the fact that while VPD and 𝜃𝜃 are moderately to strongly correlated at long time-200 
scales (i.e. monthly to annual), they are relatively weakly coupled at the hourly and daily timescales over 201 
which Ameriflux data is gathered. In Figure 1 of the main text, we present a summary of the correlation 202 
between 𝜃𝜃 and VPD averaged across all study sites for varying averaging periods (i.e. seasonal, monthly, 203 
weekly, daily, and hourly). For illustrative purpose, we show the data that inform that summary 204 
presentation for one representative site in Figure S6, and present the statistics of the linear regressions 205 
between the two variables over the various timescales in Table S2.  206 

 207 
Figure S6: The relationship between vapor pressure deficit (VPD) and soil moisture content (𝜃𝜃) when both are 208 
averaged over various timescales. Data are from the US-DK3 (Duke Pine Forest).  209 
 210 
 211 
 212 
 213 
 214 
 215 
 216 
 217 
 218 
 219 
 220 
 221 
 222 
 223 
 224 
 225 
 226 

10 NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE3114



© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

10 
 

 171 

 172 

S4. Determining the well-watered reference surface conductance (i.e. GS,ref,ww).  173 

The limitations to GS imposed by soil moisture and VPD were estimated by comparing hourly estimates 174 
of GS to the well-watered reference value of surface conductance (i.e. GS,ref,ww). This parameter represents 175 
the surface conductance when soil moisture content exceeds the 90th percentile in each site, and 0.9 < 176 
VPD < 1.1 kPa. Choosing the reference VPD of 1.0 kPa is consistent with previous work31. The approach 177 
recognizes the fact that surface conductance estimates at low VPD are sensitive to biases introduced by 178 
low boundary layer conductance and instabilities in the determination of GS from ET when VPD is low.  179 

The magnitude of GS,ref,ww tends to be low in sites with a high dryness index, and variable but generally 180 
higher in more mesic sites (Figure S5). The low GS,ref,ww  in the driest sites is expected, as canopy stomatal 181 
conductance – an important component of GS - is driven by leaf area51, which is very low in semi-arid 182 
ecosystems. The variability in GS,ref,ww  in more mesic sites may be explained, to an extent, by variation in 183 
leaf area as well as variation in canopy height, which introduces another important structural control on 184 
canopy stomatal conductance30, 52. While these sources of variability in well-watered GS are an important 185 
long-term constraint on ecosystem carbon and water cycling, they are not the focus of this present study. 186 
We point readers elsewhere32 for a more thorough treatment of the topic.  187 

 188 

Figure S5: The relationship between the well-watered reference surface conductance (GS,ref,ww) and dryness index. 189 
Error bars indicates the 50% confidence interval on the estimate of GS,ref,ww as derived from a non-parametric 190 
bootstrap.  191 

 192 

 193 

 194 

 195 

11 
 

 196 

 197 

 198 

Section S5:  The relationship between VPD and 𝜽𝜽 at various timescales   199 

Our analysis leverages the fact that while VPD and 𝜃𝜃 are moderately to strongly correlated at long time-200 
scales (i.e. monthly to annual), they are relatively weakly coupled at the hourly and daily timescales over 201 
which Ameriflux data is gathered. In Figure 1 of the main text, we present a summary of the correlation 202 
between 𝜃𝜃 and VPD averaged across all study sites for varying averaging periods (i.e. seasonal, monthly, 203 
weekly, daily, and hourly). For illustrative purpose, we show the data that inform that summary 204 
presentation for one representative site in Figure S6, and present the statistics of the linear regressions 205 
between the two variables over the various timescales in Table S2.  206 

 207 
Figure S6: The relationship between vapor pressure deficit (VPD) and soil moisture content (𝜃𝜃) when both are 208 
averaged over various timescales. Data are from the US-DK3 (Duke Pine Forest).  209 
 210 
 211 
 212 
 213 
 214 
 215 
 216 
 217 
 218 
 219 
 220 
 221 
 222 
 223 
 224 
 225 
 226 

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange 11

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCLIMATE3114



© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

12 
 

 227 

 228 

Table S2: The slope, intercept, and correlation coefficient of the relationship between vapor pressure deficit (VPD) 229 
as a linear function of soil moisture content (𝜃𝜃) inferred by averaging the data over various timescales. In general, 230 
the slope and intercept parameters are relatively stationary across timescales, but the two variables become 231 
increasingly decoupled (i.e. r2 is lower) at shorter timescales.  232 

year month week day hour year month week day hour year month week day hour
ARM -0.91 -1.10 -1.28 -1.36 -0.98 2.54 2.54 2.70 2.76 1.96 0.38 0.12 0.15 0.14 0.06
BAR -0.46 -0.13 -0.24 -0.24 -0.37 1.15 0.97 1.00 0.98 0.94 0.55 0.02 0.04 0.02 0.03
BLK -0.65 -0.32 -0.47 -0.60 -0.19 1.73 1.50 1.63 1.67 1.06 0.40 0.04 0.07 0.04 0.01
BLO 0.18 -0.81 -0.39 -0.21 -1.16 1.80 1.95 1.90 1.89 2.08 0.08 0.20 0.04 0.01 0.32
BO1 -0.41 -0.44 -0.63 -0.48 -0.29 1.30 1.36 1.45 1.28 1.01 0.26 0.22 0.24 0.10 0.01
BR3 0.73 0.27 -0.31 -0.50 0.13 0.62 0.94 1.22 1.28 0.88 0.65 0.10 0.09 0.15 0.00
DK1 -1.40 -0.96 -1.04 -0.96 -0.82 1.83 1.60 1.66 1.60 1.53 0.67 0.40 0.31 0.19 0.13
DK2 -1.79 -0.94 -1.08 -1.01 -0.78 1.97 1.57 1.65 1.61 1.53 0.81 0.36 0.31 0.21 0.13
DK3 -1.07 -0.92 -0.79 -0.72 -0.86 1.69 1.56 1.49 1.45 1.55 0.57 0.42 0.25 0.12 0.15
FMF 0.10 -0.56 -0.65 -1.09 -0.88 1.55 1.82 1.94 2.25 1.79 0.01 0.07 0.09 0.12 0.08
FR2 -1.70 -0.92 -1.50 -1.30 -1.13 2.42 1.98 2.34 2.21 2.00 0.98 0.18 0.55 0.33 0.14
FUF -1.25 -1.20 -1.32 -1.43 -0.91 2.18 2.09 2.20 2.25 1.66 0.95 0.64 0.57 0.40 0.16
GLE 0.06 0.03 0.13 0.14 0.61 0.96 0.93 0.91 0.90 0.20 0.03 0.01 0.04 0.01 0.16
IB1 -0.64 -0.56 -0.65 -0.79 -1.10 1.52 1.45 1.51 1.57 1.62 0.56 0.30 0.42 0.29 0.16
IB2 -0.45 -0.53 -0.44 -0.61 -0.84 1.40 1.39 1.36 1.46 1.39 0.24 0.23 0.12 0.10 0.10
KFS -2.75 -1.60 -1.66 -1.52 -1.67 2.74 2.02 2.16 2.16 2.17 0.99 0.34 0.36 0.25 0.28
KON -0.68 -1.42 -1.41 -1.21 -1.23 2.05 2.41 2.49 2.34 2.10 0.49 0.32 0.28 0.18 0.14
KSO 0.25 0.10 -0.09 -0.20 -0.22 1.10 1.11 1.20 1.22 1.25 0.03 0.00 0.00 0.01 0.01
ME2 -0.48 -0.68 -0.38 -0.61 -1.27 1.63 1.53 1.51 1.64 1.78 0.11 0.07 0.02 0.04 0.32
ME3 0.62 -0.48 -0.37 -0.63 -1.38 1.79 2.00 2.03 2.17 2.11 0.06 0.08 0.02 0.04 0.28
MMS -0.96 -0.42 -0.29 -0.33 -0.78 1.52 1.18 1.09 1.12 1.32 0.43 0.13 0.05 0.04 0.11
MOZ -0.67 -0.82 -0.93 -1.02 -1.09 1.71 1.75 1.84 1.89 1.69 0.28 0.26 0.27 0.19 0.15
MRF 0.66 -0.76 -0.66 -0.59 -0.72 0.50 0.94 0.93 0.89 0.99 0.09 0.52 0.27 0.10 0.17
NC2 -0.24 -0.27 -0.21 -0.27 -0.45 1.34 1.30 1.28 1.30 1.29 0.48 0.12 0.04 0.03 0.04
NE1 -0.96 -0.98 -0.80 -1.03 -0.20 1.77 1.77 1.66 1.80 1.15 0.30 0.33 0.21 0.18 0.00
NE3 -1.52 -0.84 -0.58 -0.73 -0.57 1.97 1.69 1.58 1.65 1.42 0.56 0.32 0.18 0.15 0.04
NR1 -0.31 -0.25 -0.38 -0.38 -0.05 1.07 1.03 1.07 1.08 0.66 0.27 0.17 0.16 0.06 0.00
OHO -1.58 -0.86 -0.63 -0.57 -0.86 1.79 1.42 1.34 1.31 1.33 0.47 0.35 0.19 0.11 0.15
SRC 0.82 -1.09 -1.08 -1.11 -1.18 2.25 2.98 3.03 3.02 2.92 0.27 0.10 0.10 0.09 0.07
SRG -1.17 -1.90 -1.73 -1.73 -1.95 2.90 3.13 3.07 3.09 3.14 0.64 0.45 0.34 0.24 0.33
SRM -1.61 -0.80 -1.22 -1.38 -1.72 3.04 2.74 2.93 2.99 2.85 0.17 0.07 0.20 0.20 0.22
SYV 0.04 -0.16 -0.13 -0.08 -0.51 1.00 1.03 1.06 1.04 1.11 0.00 0.02 0.01 0.00 0.04
TON -0.33 -0.27 -0.45 -0.51 -0.64 0.88 0.83 0.90 0.91 1.06 0.47 0.05 0.12 0.11 0.08
UMB 0.09 -0.95 -0.69 -0.68 -0.80 0.88 1.25 1.15 1.13 1.20 0.03 0.54 0.30 0.18 0.17
VAR -0.32 -0.57 -0.51 -0.56 -0.56 0.87 0.98 0.93 0.95 0.98 0.17 0.27 0.18 0.13 0.09
WBW -0.83 -0.22 -0.30 -0.41 -0.59 1.52 1.12 1.18 1.23 1.32 0.13 0.03 0.05 0.06 0.07
WCR 0.12 0.04 -0.06 -0.16 0.02 0.47 0.49 0.56 0.60 0.41 0.05 0.00 0.00 0.01 0.00
WHS -2.49 -0.69 -1.38 -1.49 -0.95 3.65 2.76 3.17 3.24 2.61 0.51 0.03 0.16 0.17 0.05
WKG -0.03 -1.05 -1.09 -1.16 -0.99 2.38 2.63 2.77 2.82 2.41 0.00 0.12 0.15 0.13 0.06
Mean -0.62 -0.67 -0.71 -0.76 -0.77 1.68 1.63 1.69 1.71 1.55 0.36 0.20 0.18 0.13 0.12
Std 0.84 0.47 0.48 0.46 0.52 0.71 0.65 0.69 0.70 0.66 0.29 0.17 0.14 0.09 0.09

Slope Intercept correlation coefficient (r2)
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 240 

Section S6: Determining soil moisture as compared to VPD constraints to GS and ET: The 241 
growing season ET and meteorological data were sorted into bins representing the 0-15th, 15th-30th, 30th-242 
50th, 50th-70th, 70th-90th, and 90th-100th percentiles of 𝜃𝜃, spanning a gradient of dry to wet conditions in 243 
each site. Within each soil moisture bin, we further sorted the data on the basis of VPD; the VPD bins had 244 
a width of 0.2 kPa, and there were j = 1,2….Ni VPD bins in each soil moisture bin, where Ni varies as a 245 
function of the maximum VPD observed at each site. The mean GS in each bin was determined provided 246 
there were more than 10 data points in any given (i,j) bin.  247 
 248 
The binned averages were used to derive site- and soil-moisture-specific parameterizations for Eq. 1 in 249 
the main text, which were leveraged to quantify the total growing season average supply and demand 250 
limitations to GS and ET. Briefly, 𝜃𝜃 constraints were inferred from changes in the intercept parameter 251 
(GS,ref), and VPD constraints were inferred from the sensitivity parameter m. Estimates of hourly GS 252 
reflecting either 𝜃𝜃 or VPD control for all daytime periods were then subtracted from the GS,ref,ww to 253 
quantify the magnitude of limitations to GS attributable to each driver. These estimates of hourly GS were 254 
then used in Eq. S2 to generate estimates of ET that reflect either 𝜃𝜃 of VPD constraints to GS. Limitations 255 
to ET were then defined as the difference between hourly PET and ET, where the PET is generated using 256 
Eq. S2 forced with the site-specific GS,ref,ww. In most sites, the reported 𝜃𝜃 corresponds to integrated 257 
observations over the top 30 cm of the soil. The soil moisture dynamics in the top 30 cm may not always 258 
be well coupled to soil moisture at depth, which represents a potential source of bias in sites with deeper 259 
roots. 260 
 261 
In Figure 2 of the main text, we show representative results from four sites. Here are analogous figures for 262 
all study sites. The fitted lines, which show the model of Eq. 1 within each soil moisture bin, do not 263 
extend below VPD < 1.0 kPa, as those data were not used to drive the regressions due again to 264 
instabilities in the observations at low VPD.  265 
 266 
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Table S2: The slope, intercept, and correlation coefficient of the relationship between vapor pressure deficit (VPD) 229 
as a linear function of soil moisture content (𝜃𝜃) inferred by averaging the data over various timescales. In general, 230 
the slope and intercept parameters are relatively stationary across timescales, but the two variables become 231 
increasingly decoupled (i.e. r2 is lower) at shorter timescales.  232 

year month week day hour year month week day hour year month week day hour
ARM -0.91 -1.10 -1.28 -1.36 -0.98 2.54 2.54 2.70 2.76 1.96 0.38 0.12 0.15 0.14 0.06
BAR -0.46 -0.13 -0.24 -0.24 -0.37 1.15 0.97 1.00 0.98 0.94 0.55 0.02 0.04 0.02 0.03
BLK -0.65 -0.32 -0.47 -0.60 -0.19 1.73 1.50 1.63 1.67 1.06 0.40 0.04 0.07 0.04 0.01
BLO 0.18 -0.81 -0.39 -0.21 -1.16 1.80 1.95 1.90 1.89 2.08 0.08 0.20 0.04 0.01 0.32
BO1 -0.41 -0.44 -0.63 -0.48 -0.29 1.30 1.36 1.45 1.28 1.01 0.26 0.22 0.24 0.10 0.01
BR3 0.73 0.27 -0.31 -0.50 0.13 0.62 0.94 1.22 1.28 0.88 0.65 0.10 0.09 0.15 0.00
DK1 -1.40 -0.96 -1.04 -0.96 -0.82 1.83 1.60 1.66 1.60 1.53 0.67 0.40 0.31 0.19 0.13
DK2 -1.79 -0.94 -1.08 -1.01 -0.78 1.97 1.57 1.65 1.61 1.53 0.81 0.36 0.31 0.21 0.13
DK3 -1.07 -0.92 -0.79 -0.72 -0.86 1.69 1.56 1.49 1.45 1.55 0.57 0.42 0.25 0.12 0.15
FMF 0.10 -0.56 -0.65 -1.09 -0.88 1.55 1.82 1.94 2.25 1.79 0.01 0.07 0.09 0.12 0.08
FR2 -1.70 -0.92 -1.50 -1.30 -1.13 2.42 1.98 2.34 2.21 2.00 0.98 0.18 0.55 0.33 0.14
FUF -1.25 -1.20 -1.32 -1.43 -0.91 2.18 2.09 2.20 2.25 1.66 0.95 0.64 0.57 0.40 0.16
GLE 0.06 0.03 0.13 0.14 0.61 0.96 0.93 0.91 0.90 0.20 0.03 0.01 0.04 0.01 0.16
IB1 -0.64 -0.56 -0.65 -0.79 -1.10 1.52 1.45 1.51 1.57 1.62 0.56 0.30 0.42 0.29 0.16
IB2 -0.45 -0.53 -0.44 -0.61 -0.84 1.40 1.39 1.36 1.46 1.39 0.24 0.23 0.12 0.10 0.10
KFS -2.75 -1.60 -1.66 -1.52 -1.67 2.74 2.02 2.16 2.16 2.17 0.99 0.34 0.36 0.25 0.28
KON -0.68 -1.42 -1.41 -1.21 -1.23 2.05 2.41 2.49 2.34 2.10 0.49 0.32 0.28 0.18 0.14
KSO 0.25 0.10 -0.09 -0.20 -0.22 1.10 1.11 1.20 1.22 1.25 0.03 0.00 0.00 0.01 0.01
ME2 -0.48 -0.68 -0.38 -0.61 -1.27 1.63 1.53 1.51 1.64 1.78 0.11 0.07 0.02 0.04 0.32
ME3 0.62 -0.48 -0.37 -0.63 -1.38 1.79 2.00 2.03 2.17 2.11 0.06 0.08 0.02 0.04 0.28
MMS -0.96 -0.42 -0.29 -0.33 -0.78 1.52 1.18 1.09 1.12 1.32 0.43 0.13 0.05 0.04 0.11
MOZ -0.67 -0.82 -0.93 -1.02 -1.09 1.71 1.75 1.84 1.89 1.69 0.28 0.26 0.27 0.19 0.15
MRF 0.66 -0.76 -0.66 -0.59 -0.72 0.50 0.94 0.93 0.89 0.99 0.09 0.52 0.27 0.10 0.17
NC2 -0.24 -0.27 -0.21 -0.27 -0.45 1.34 1.30 1.28 1.30 1.29 0.48 0.12 0.04 0.03 0.04
NE1 -0.96 -0.98 -0.80 -1.03 -0.20 1.77 1.77 1.66 1.80 1.15 0.30 0.33 0.21 0.18 0.00
NE3 -1.52 -0.84 -0.58 -0.73 -0.57 1.97 1.69 1.58 1.65 1.42 0.56 0.32 0.18 0.15 0.04
NR1 -0.31 -0.25 -0.38 -0.38 -0.05 1.07 1.03 1.07 1.08 0.66 0.27 0.17 0.16 0.06 0.00
OHO -1.58 -0.86 -0.63 -0.57 -0.86 1.79 1.42 1.34 1.31 1.33 0.47 0.35 0.19 0.11 0.15
SRC 0.82 -1.09 -1.08 -1.11 -1.18 2.25 2.98 3.03 3.02 2.92 0.27 0.10 0.10 0.09 0.07
SRG -1.17 -1.90 -1.73 -1.73 -1.95 2.90 3.13 3.07 3.09 3.14 0.64 0.45 0.34 0.24 0.33
SRM -1.61 -0.80 -1.22 -1.38 -1.72 3.04 2.74 2.93 2.99 2.85 0.17 0.07 0.20 0.20 0.22
SYV 0.04 -0.16 -0.13 -0.08 -0.51 1.00 1.03 1.06 1.04 1.11 0.00 0.02 0.01 0.00 0.04
TON -0.33 -0.27 -0.45 -0.51 -0.64 0.88 0.83 0.90 0.91 1.06 0.47 0.05 0.12 0.11 0.08
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Section S6: Determining soil moisture as compared to VPD constraints to GS and ET: The 241 
growing season ET and meteorological data were sorted into bins representing the 0-15th, 15th-30th, 30th-242 
50th, 50th-70th, 70th-90th, and 90th-100th percentiles of 𝜃𝜃, spanning a gradient of dry to wet conditions in 243 
each site. Within each soil moisture bin, we further sorted the data on the basis of VPD; the VPD bins had 244 
a width of 0.2 kPa, and there were j = 1,2….Ni VPD bins in each soil moisture bin, where Ni varies as a 245 
function of the maximum VPD observed at each site. The mean GS in each bin was determined provided 246 
there were more than 10 data points in any given (i,j) bin.  247 
 248 
The binned averages were used to derive site- and soil-moisture-specific parameterizations for Eq. 1 in 249 
the main text, which were leveraged to quantify the total growing season average supply and demand 250 
limitations to GS and ET. Briefly, 𝜃𝜃 constraints were inferred from changes in the intercept parameter 251 
(GS,ref), and VPD constraints were inferred from the sensitivity parameter m. Estimates of hourly GS 252 
reflecting either 𝜃𝜃 or VPD control for all daytime periods were then subtracted from the GS,ref,ww to 253 
quantify the magnitude of limitations to GS attributable to each driver. These estimates of hourly GS were 254 
then used in Eq. S2 to generate estimates of ET that reflect either 𝜃𝜃 of VPD constraints to GS. Limitations 255 
to ET were then defined as the difference between hourly PET and ET, where the PET is generated using 256 
Eq. S2 forced with the site-specific GS,ref,ww. In most sites, the reported 𝜃𝜃 corresponds to integrated 257 
observations over the top 30 cm of the soil. The soil moisture dynamics in the top 30 cm may not always 258 
be well coupled to soil moisture at depth, which represents a potential source of bias in sites with deeper 259 
roots. 260 
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 266 
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 267 
Figure S7. Same as Figure 2a-d in the main text, but for the first sixteen study sites (in alphabetical order).  268 
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 269 
Figure S8. Same as Figure 2a-d in the main text, but for the second sixteen study sites (in alphabetical order).  270 
 271 
 272 
 273 
 274 
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 275 
Figure S9. Same as Figure 2a-d in the main text, but for the last seven study sites (in alphabetical order).  276 
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Section S7: Effects of other meteorological drivers on GS,ref 292 

Other work has demonstrated that the reference surface or stomatal conductance may be sensitive to 293 
variations in photosynthetically active radiation (PAR) and air temperature (Ta)51, 53. In this study, 294 
variations in GS,ref with PAR or Ta were not explicitly considered, due primarily to the fact that accounting 295 
for them (for example, by introducing additional dimensions to the data binning matrix) often results in an 296 
insufficient amount of data within each soil moisture bin to properly parameterize Eq. 1. This is 297 
particularly true in sites with a short active season, which include both the hottest and coolest sites in the 298 
dataset.  299 

In all sites, VPD is directly correlated with temperature (reflecting the fact that the saturation vapor 300 
pressure depends exponentially on Ta), and also directly correlated with PAR (since Ta tends to be highest 301 
when radiation loads are high, see Figure S10). Soil moisture tends to be inversely correlated with Ta in 302 
most sites, and only weakly related to PAR (again, see Figure S10).  303 

 304 

Figure S10: The relationship between vapor pressured deficit (VPD), photosynthetically active radiation (VPD) and 305 
air temperature (Ta) at the Duke Forest pine plantation (US-DK3). Light blue dots show all data, and blue circles 306 
show binned averages. Error bars show one standard deviation.  307 

 308 

It is possible that high Ta may limit Gs and ET through biochemical imitations to leaf-level gas exchange54 309 
that occur independent of limitations to Gs imposed by high VPD. In that case, failure to resolve 310 
temperature effects on Gs could lead us to overestimate the VPD limitations and underestimate the soil 311 
moisture limitations. On the other hand, because canopy stomatal conductance is known to be 312 
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monotonically related to PAR51, 55, failure to account for independent PAR effects could lead us to 313 
underestimate VPD limitations and overestimate soil moisture limitations.  314 

To explore the extent to which these biases are significant, in each site, we attempted separate 315 
parameterizations for Eq. 1 when PAR was limited to high values (PAR > 1500 μmol m-2 s-1) and when Ta 316 
was limited to a relatively narrow range of 5 oC. In both cases, data were binned according to soil 317 
moisture content as described in the methods of the main text. The range of temperature depended on the 318 
mean growing season Ta at each site but was usually between 20 and 25 oC. Enough growing season data 319 
were available to support this effort in 23 of the sites. In general, the Gs,ref,j (i.e. GS,ref for each of the j=6 320 
soil moisture bins) were similar regardless of whether the full or filtered datasets were used (see Fig S11 321 
for results from representative sites). Specifically, across all sites, the slope of the relationship between 322 
the  Gs,ref values obtained from the full dataset as compared to the dataset filtered to a narrow temperature 323 
range was 0.97 on average (st. dev. = 0.44), and the average correlation coefficient was 0.75. Similarly, 324 
the slope of the relationship between the  GS,ref values obtained from the full dataset as compared to the 325 
dataset filtered to a PAR range was 1.02 on average (std dev. = 0.40), and the average correlation 326 
coefficient was 0.80. Thus, the decision not to account for PAR and Ta effects on GS,ref does not introduce 327 
systematic biases across the sites. 328 

19 
 

 329 

Figure S11: The relationship between the reference Gs within each soil moisture bin (i.e. Gs,ref,j) as derived from all 330 
growing season data (subject to the filtering constraints described in Section S1), and data subjected to an 331 

additional temperature filter (left hand column) or PAR filter (right hand column). The sites shown here span a 332 
range of dryness index (see Table S1).  333 

 334 
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Section S8: Future projections – model estimates and downscaling 335 

Projections for future meteorological variables, including Rn, VPD, air temperature, and precipitation 336 
were obtained from ten general circulation models for the period from 2071-2080, chosen as the transition 337 
point between the mid- and late-21st century. Modeled data were downscaled in space using parametric 338 
approaches, and downscaled in time using representative diurnal patterns measured at each study site. 339 
Future soil moisture was estimated from a marginal distribution sampling approach based on short- and 340 
long-term dynamics of VPD and precipitation that reproduced observed soil moisture dynamics with little 341 
bias. The future VPD and soil moisture limitations to GS and ET were then determined in a matter 342 
analogous to the approach for present day conditions. 343 

Obtaining projections of future meteorological drivers: Estimates of the key drivers of the Penman-344 
Monteith model were obtained from the Multivariate Adaptive Constructed Analogs (MACA56) data 345 
warehouse (http://maca.northwestknowledge.net/) for a representative selection of twelve Ameriflux sites 346 
that include long-running towers and that span a wide gradient in climate (See Table S1). Specifically, we 347 
obtained daily time series of net radiation, air temperature, specific humidity, and wind speed projected 348 
from 10 General Circulation Models from the Coupled Model Intercomparison Project – Phase 5 349 
(CMIP5) archive driven by representative concentration pathway 8.5 (highest greenhouse gas emission 350 
scenario) were downloaded for the period 1950-2099. The ten models are listed in Table S3.  351 

Table S3: The models used to obtain estimates of future meteorological drivers 352 

Model Name Model Country Model Agency 
CanESM2 Canada Canadian Centre for Climate Modeling and 

Analysis 
CNRM-CM5 France National Centre of Meteorological Research, 

France 
 

CSIRO-Mk3-6-0 Australia Commonwealth Scientific and Industrial 
Research Organization/Queensland Climate 
Change Centre of Excellence, Australia 

GFDL-ESM2G USA NOAA Geophysical Fluid Dynamics 
Laboratory, USA 

HadGEM2-ES United Kingdom Met Office Hadley Center, UK 
inmcm4 Russia Institute for Numerical Mathematics, Russia 
IPSL-CM5A-LR France Institut Pierre Simon Laplace, France 
MIROC-ESM-CHEM Japan Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean Research 
Institute (The University of Tokyo), and 
National Institute for Environmental Studies 

MIROC5 Japan Atmosphere and Ocean Research Institute (The 
University of Tokyo), National Institute for 
Environmental Studies,and Japan Agency for 
Marine-Earth Science and Technology 

 353 

Spatial downscaling of the model data:  While the MACA CMIP data have already been downscaled 354 
with respect to the climate models, the spatial resolution of these data (4 km x 4 km) still exceeds the size 355 
of a typical flux footprint (typically <1 square km during the daytime). Furthermore, significant biases 356 
were observed between the CMIP and observed meteorological drivers. Thus, the meteorological data 357 
were further downscaled using a parametric approach driven by the site-level observations.  358 

21 
 

Specifically, for air temperature, VPD, Rn, and wind speed, histograms of the downscaled GCM data for 359 
the period coincident with the study period at each site were compared to histograms of the measured data 360 
after the latter was aggregated to daily averages to match the temporal resolution of the modeled data. 361 
Biases were removed by first log-transforming both datasets, and then determining the mean and standard 362 
deviation of the resulting log-normal distributions. The modeled time series were then further transformed 363 
to a standard log-normal variable that was then scaled using the mean and standard deviation of the log-364 
transformed measured time series, and exponentiated (hereafter the “modeledpresent,scaled” data). This 365 
downscaling was performed separately for each model. 366 

Next, the modeled meteorological time series for the period 2071-2080 were extracted as representative 367 
of the mid-to-late 21st century.  The shift in the mean of each modeled variable between the measurement 368 
(“present”) time period and the future was determined from the unscaled daily projections according to: 369 

𝜇𝜇factor = (mean[ln(modeled2071−2080)]
mean[ln(modeled𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)]

)      (S4) 370 

𝜎𝜎factor = (stdev[ln(modeled2071−2080)]
stdev[ln(modeled𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)]

)      (S5) 371 

The time series for the period 2071-2080 was then transformed into a standard normal variable that was 372 
scaled using the mean and standard deviation of the modeledpresent,scaled distributions after correcting those 373 
moments by μ-factor and  σ-factor, respectively. This approach preserves the projected relative changes in 374 
the mean and variance of the modeled time series between the present and future conditions, but retains 375 
the spatial downscaling to the site level.  376 

Projecting future relative extractable soil water: Projections of downscaled soil moisture were not 377 
available from the MACA data warehouse. Thus, future soil moisture (at a daily time step) was estimated 378 
using a site-specific marginal distribution sampling approach (i.e. a look-up table), similar to the 379 
approaches frequently used to gapfill missing eddy covariance data57. Accordingly, measured 𝜃𝜃 data were 380 
binned according to the following classification scheme, which depends on the total time since a 381 
significant rain event (>20 mm), among other hydrologic variables: 382 

  1) If the time since a significant (>20 mm) rain event is less than two days, then soil moisture is the 383 
mean of measured values when:  384 

 The total precipitation within the last 7 days agrees to within 10 mm 385 
 The day-of-year agrees to within 10 days; 386 

else, 2) If the time since a significant (>20 mm) rain event is between 2 and 3 days, then  soil moisture is 387 
the mean of measured values when:  388 

 The total precipitation within the last 30 days agrees to 20 mm 389 
 The total precipitation within the last 7 days agrees to 10 mm 390 
 The mean VPD within the last 30 days agrees to within 0.15 kPa 391 
 The day-of-year agrees to within 10 days; 392 

else, 3) If the time since a significant (>20 mm) rain event is greater than three days, then soil moisture is 393 
the mean of measured values when:  394 

 The time since a significant rain event agrees to within 5 days 395 
 The total precipitation within the last 30 days agrees to 20 mm 396 
 The total precipitation within the last 7 days agrees to 10 mm 397 
 The mean VPD within the last 30 days agrees to within 0.15 kPa 398 
 The day-of-year agrees to within 10 days 399 
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Most of the data fall into category three. We found that it was sometimes necessary to iteratively relax the 400 
search criteria in order to obtain at least two observations of soil moisture that match the criteria for every 401 
hourly or half-hour observation in the record. Specifically, for category three data, the criteria were 402 
loosened as follows:  403 

ITERATION 2:   404 
 The time since a significant rain event agrees to within 8 days 405 
 The total precipitation within the last 30 days agrees to 30 mm 406 
 The total precipitation within the last 7 days agrees to 20 mm 407 
 The mean VPD within the last 30 days agrees to within .25 kPa 408 
 The Julian day of year agrees to within 20 days 409 

ITERATION 3:   410 
 The time since a significant rain event agrees to within 10 days 411 
 The total precipitation within the last 30 days agrees to 40 mm 412 
 The total precipitation within the last 7 days agrees to 30 mm 413 
 The mean VPD within the last 30 days agrees to within 0.4 kPa 414 
 The day-of-year agrees to within 180 days 415 

ITERATION 4:   416 
 The mean VPD within the last 30 days agrees to within 0.4 kPa 417 

Any remaining gaps in the modeled 𝜃𝜃 record were linearly interpreted.  418 

In general, the marginal distribution sampling approach reproduced measured 𝜃𝜃 time series very well. A 419 
representative case is shown in Figure S10 and S11 for US-DK3, the Duke Pine Forest Site. Figure S12 420 
shows the slope and correlation coefficient (r2) between the measured and modeled 𝜃𝜃 for all sites used in 421 
this portion of the analysis. Biases in the slope were less than 5% in most sites, and correlation was 422 
generally between 0.8 and 1.0.  423 

 424 

 425 

 426 

 427 

  428 

 429 
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 430 
 431 

Figure S10: The measured (red) and modeled (blue line) trends in growing season, daily-averaged soil 432 
moisture content (𝜃𝜃) for the eight site-years of data available from the Duke Pine Forest Site (US-DK3).  433 
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hourly or half-hour observation in the record. Specifically, for category three data, the criteria were 402 
loosened as follows:  403 

ITERATION 2:   404 
 The time since a significant rain event agrees to within 8 days 405 
 The total precipitation within the last 30 days agrees to 30 mm 406 
 The total precipitation within the last 7 days agrees to 20 mm 407 
 The mean VPD within the last 30 days agrees to within .25 kPa 408 
 The Julian day of year agrees to within 20 days 409 

ITERATION 3:   410 
 The time since a significant rain event agrees to within 10 days 411 
 The total precipitation within the last 30 days agrees to 40 mm 412 
 The total precipitation within the last 7 days agrees to 30 mm 413 
 The mean VPD within the last 30 days agrees to within 0.4 kPa 414 
 The day-of-year agrees to within 180 days 415 

ITERATION 4:   416 
 The mean VPD within the last 30 days agrees to within 0.4 kPa 417 

Any remaining gaps in the modeled 𝜃𝜃 record were linearly interpreted.  418 

In general, the marginal distribution sampling approach reproduced measured 𝜃𝜃 time series very well. A 419 
representative case is shown in Figure S10 and S11 for US-DK3, the Duke Pine Forest Site. Figure S12 420 
shows the slope and correlation coefficient (r2) between the measured and modeled 𝜃𝜃 for all sites used in 421 
this portion of the analysis. Biases in the slope were less than 5% in most sites, and correlation was 422 
generally between 0.8 and 1.0.  423 

 424 

 425 

 426 

 427 

  428 

 429 
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 430 
 431 

Figure S10: The measured (red) and modeled (blue line) trends in growing season, daily-averaged soil 432 
moisture content (𝜃𝜃) for the eight site-years of data available from the Duke Pine Forest Site (US-DK3).  433 
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 434 
Figure S11: The 1:1 comparison between modeled and measured daily soil moisture content in the Duke 435 
Forest Pine Site (US-DK 3).  436 

 437 
 438 
 439 
 440 
 441 
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 442 

Figure S12: The slope (top panel) and correlation coefficient (bottom panel) between modeled and 443 
measured soil moisture content across all of the sites included in the analysis of future limitations to 444 
surface conductance and ET.  445 

 446 

Future changes in key meteorological drivers: The following figures (Figure S13-16) show the present 447 
and projected future means for the key drivers of the Penman-Monteith equation. In every site, nearly all 448 
models project increases in future VPD relative to present, occurring concurrently with projected 449 
increases in air temperature (Ta). Projected changes in net radiation (Rn) and wind speed (U) are relatively 450 
small. Models tend to agree on the change in 𝜃𝜃 at each site, although across sites no clear trends emerged 451 
(i.e., it increases in some, but decreases in others).  452 

Because it is important to preserve the coupling between precipitation and VPD when determining how 453 
soil moisture and VPD limit ET, the models were not ensemble averaged. Rather, each of the ten models 454 
was used to quantify the limitation to future ET from soil moisture and VPD, and these limitations were 455 
then ensemble averaged across the model runs. 456 

 457 
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 458 

Figure S13: The mean (filled symbols) and median (open symbols) daytime growing season value for key 459 
meteorological drivers for present climate conditions (black symbols, derived from Ameriflux 460 
observations) and the future (red symbols, derived from model predictions) for select study sites. Error 461 
bars show the 50% range daytime values of each variable, and are expected to overlap as these 462 
meteorological drivers experience wide shifts over the course of a day and the course of the growing 463 
season. The future data and associated error lines are associated with the ten models of Table S3, in 464 
sequential order.  465 

27 
 

 466 

Figure S14: Same as Figure S13, but for additional sites 467 

 468 

 469 

 470 

 471 

 472 

 473 

 474 

26 NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE3114



© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

26 
 

 458 

Figure S13: The mean (filled symbols) and median (open symbols) daytime growing season value for key 459 
meteorological drivers for present climate conditions (black symbols, derived from Ameriflux 460 
observations) and the future (red symbols, derived from model predictions) for select study sites. Error 461 
bars show the 50% range daytime values of each variable, and are expected to overlap as these 462 
meteorological drivers experience wide shifts over the course of a day and the course of the growing 463 
season. The future data and associated error lines are associated with the ten models of Table S3, in 464 
sequential order.  465 

27 
 

 466 

Figure S14: Same as Figure S13, but for additional sites 467 
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 475 

Figure S15: Same as Figure 14, but for additional sites 476 
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Figure S16: Same as Figure 15, but for additional sites 487 
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Figure S15: Same as Figure 14, but for additional sites 476 
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Figure S16: Same as Figure 15, but for additional sites 487 

 488 

 489 

 490 

. 491 

 492 

 493 

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange 29

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCLIMATE3114



© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

30 
 

 494 

Works Cited in the Supplementary Information: 495 

 496 

1. Fischer ML, Billesbach DP, Berry JA, Riley WJ, Torn MS. Spatiotemporal variations in growing 497 
season exchanges of CO2, H2O, and sensible heat in agricultural fields of the Southern Great 498 
Plains. Earth Interactions 2007, 11: DOI: 10.1175/EI231.1. 499 

 500 
2. Jenkins JP, Richardson AD, Braswell BH, Ollinger SV, Hollinger DY, Smith ML. Refining light-501 

use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon 502 
flux and radiometric measurements. Agricultural and Forest Meteorology 2007, 143(1-2): 64-79. 503 

 504 
3. Goldstein A, Hultman N, Fracheboud J, Bauer M, Panek J, Xu M, et al. Effects of climate 505 

variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine 506 
plantation in the Sierra Nevada (CA). Agricultural and Forest Meteorology 2000, 101(2): 113-507 
129. 508 

 509 
4. Meyers TP, Hollinger SE. An assessment of storage terms in the surface energy balance of maize 510 

and soybean. Agricultural and Forest Meteorology 2004, 125(1-2): 105-115. 511 

 512 
5. Hernandez-Ramirez G, Hatfield JL, Parkin TB, Sauer TJ, Prueger JH. Carbon dioxide fluxes in 513 

corn-soybean rotation in the midwestern US: Inter- and intra-annual variations, and biophysical 514 
controls. Agricultural and Forest Meteorology 2011, 151(12): 1831-1842. 515 

 516 
6. Novick KA, Oishi AC, Ward EJ, Siqueira MBS, Juang JY, Stoy PC. On the difference in the net 517 

ecosystem exchange of CO2 between deciduous and evergreen forests in the southeastern U.S. 518 
Global Change Biology 2015, 21: 827-842. . 519 

 520 
7. Stoy PC, Katul GG, Siqueira MBS, Juang JY, Novick KA, McCarthy HR, et al. Role of 521 

vegetation in determining carbon sequestration along ecological succession in the southeastern 522 
United States. Global Change Biology 2008, 14(6): 1409-1427. 523 

 524 
8. Allison VJ, Miller RM, Jastrow JD, Matamala R, Zak DR. Changes in soil microbial community 525 

structure in a tallgrass prairie chronosequence. Soil Science Society of America Journal 2005, 526 
69(5): 1412-1421. 527 

 528 
9. Dore S, Kolb TE, Montes-Helu M, Eckert SE, Sullivan BW, Hungate BA, et al. Carbon and 529 

water fluxes from ponderosa pine forests disturbed by wildfire and thinning. Ecological 530 
Applications 2010, 20(3): 663-683. 531 

 532 

31 
 

10. Heinsch F, Heilman J, McInnes K, Cobos D, Zuberer D, Roelke D. Carbon dioxide exchange in a 533 
high marsh on the Texas Gulf Coast: effects of freshwater availability. Agricultural and Forest 534 
Meteorology 2004, 125(1): 159-172. 535 

 536 
11. Musselman R, Massman W, Frank J, Korfmacher J. The temporal dynamics of carbon dioxide 537 

under snow in a high elevation Rocky Mountain subalpine forest and meadow. Arctic, antarctic, 538 
and alpine research 2005, 37(4): 527-538. 539 

 540 
12. Brunsell N, Nippert J, Buck T. Impacts of seasonality and surface heterogeneity on water‐use 541 

efficiency in mesic grasslands. Ecohydrology 2014, 7(4): 1223-1233. 542 

 543 
13. Scott, R.L., Biederman, J.A., Hamerlynck, E.P. and Barron-Gafford, G.A. 2015. The carbon 544 

balance pivot point of southwestern U.S. semiarid ecosystems: Insights from the 21st century 545 
drought. Journal of Geophysical Research: Biogeosciences, 120, 2612-2624. doi: 546 
10.1002/2015JG003181.  547 

 548 
14. Thomas CK, Martin JG, Law BE, Davis K. Toward biologically meaningful net carbon exchange 549 

estimates for tall, dense canopies: Multi-level eddy covariance observations and canopy coupling 550 
regimes in a mature Douglas-fir forest in Oregon. Agricultural and Forest Meteorology 2013, 551 
173: 14-27. 552 

 553 
15. Verma SB, Dobermann A, Cassman KG, Walters DT, Knops JM, Arkebauer TJ, et al. Annual 554 

carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and 555 
Forest Meteorology 2005, 131(1): 77-96. 556 

 557 
16. Campbell J, Sun O, Law B. Supply‐side controls on soil respiration among Oregon forests. 558 

Global Change Biology 2004, 10(11): 1857-1869. 559 

 560 
17. Vickers D, Thomas C, Law BE. Random and systematic CO 2 flux sampling errors for tower 561 

measurements over forests in the convective boundary layer. Agricultural and Forest 562 
Meteorology 2009, 149(1): 73-83. 563 

 564 
18. Gu L, Pallardy S, Hosman K, Sun Y. Drought-influenced mortality of tree species with different 565 

predawn leaf water dynamics in a decade-long study of a central US forest. Biogeosciences 2015, 566 
12(10): 2831-2845. 567 

 568 
19. Seco R, Karl T, Guenther A, Hosman KP, Pallardy SG, Gu L, et al. Ecosystem‐scale VOC fluxes 569 

during an extreme drought in a broad‐leaf temperate forest of the Missouri Ozarks (central USA). 570 
Global Change Biology 2015, 21: 3657–3674 . 571 

 572 
20. Roman DT, Novick KA, Brzostek ER, Dragoni D, Rahman AF, Phillipps R. The role of isohydric 573 

and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia 574 
2015, 179(3): 641-654. 575 

30 NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE3114



© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

30 
 

 494 

Works Cited in the Supplementary Information: 495 

 496 

1. Fischer ML, Billesbach DP, Berry JA, Riley WJ, Torn MS. Spatiotemporal variations in growing 497 
season exchanges of CO2, H2O, and sensible heat in agricultural fields of the Southern Great 498 
Plains. Earth Interactions 2007, 11: DOI: 10.1175/EI231.1. 499 

 500 
2. Jenkins JP, Richardson AD, Braswell BH, Ollinger SV, Hollinger DY, Smith ML. Refining light-501 

use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon 502 
flux and radiometric measurements. Agricultural and Forest Meteorology 2007, 143(1-2): 64-79. 503 

 504 
3. Goldstein A, Hultman N, Fracheboud J, Bauer M, Panek J, Xu M, et al. Effects of climate 505 

variability on the carbon dioxide, water, and sensible heat fluxes above a ponderosa pine 506 
plantation in the Sierra Nevada (CA). Agricultural and Forest Meteorology 2000, 101(2): 113-507 
129. 508 

 509 
4. Meyers TP, Hollinger SE. An assessment of storage terms in the surface energy balance of maize 510 

and soybean. Agricultural and Forest Meteorology 2004, 125(1-2): 105-115. 511 

 512 
5. Hernandez-Ramirez G, Hatfield JL, Parkin TB, Sauer TJ, Prueger JH. Carbon dioxide fluxes in 513 

corn-soybean rotation in the midwestern US: Inter- and intra-annual variations, and biophysical 514 
controls. Agricultural and Forest Meteorology 2011, 151(12): 1831-1842. 515 

 516 
6. Novick KA, Oishi AC, Ward EJ, Siqueira MBS, Juang JY, Stoy PC. On the difference in the net 517 

ecosystem exchange of CO2 between deciduous and evergreen forests in the southeastern U.S. 518 
Global Change Biology 2015, 21: 827-842. . 519 

 520 
7. Stoy PC, Katul GG, Siqueira MBS, Juang JY, Novick KA, McCarthy HR, et al. Role of 521 

vegetation in determining carbon sequestration along ecological succession in the southeastern 522 
United States. Global Change Biology 2008, 14(6): 1409-1427. 523 

 524 
8. Allison VJ, Miller RM, Jastrow JD, Matamala R, Zak DR. Changes in soil microbial community 525 

structure in a tallgrass prairie chronosequence. Soil Science Society of America Journal 2005, 526 
69(5): 1412-1421. 527 

 528 
9. Dore S, Kolb TE, Montes-Helu M, Eckert SE, Sullivan BW, Hungate BA, et al. Carbon and 529 

water fluxes from ponderosa pine forests disturbed by wildfire and thinning. Ecological 530 
Applications 2010, 20(3): 663-683. 531 

 532 

31 
 

10. Heinsch F, Heilman J, McInnes K, Cobos D, Zuberer D, Roelke D. Carbon dioxide exchange in a 533 
high marsh on the Texas Gulf Coast: effects of freshwater availability. Agricultural and Forest 534 
Meteorology 2004, 125(1): 159-172. 535 

 536 
11. Musselman R, Massman W, Frank J, Korfmacher J. The temporal dynamics of carbon dioxide 537 

under snow in a high elevation Rocky Mountain subalpine forest and meadow. Arctic, antarctic, 538 
and alpine research 2005, 37(4): 527-538. 539 

 540 
12. Brunsell N, Nippert J, Buck T. Impacts of seasonality and surface heterogeneity on water‐use 541 

efficiency in mesic grasslands. Ecohydrology 2014, 7(4): 1223-1233. 542 

 543 
13. Scott, R.L., Biederman, J.A., Hamerlynck, E.P. and Barron-Gafford, G.A. 2015. The carbon 544 

balance pivot point of southwestern U.S. semiarid ecosystems: Insights from the 21st century 545 
drought. Journal of Geophysical Research: Biogeosciences, 120, 2612-2624. doi: 546 
10.1002/2015JG003181.  547 

 548 
14. Thomas CK, Martin JG, Law BE, Davis K. Toward biologically meaningful net carbon exchange 549 

estimates for tall, dense canopies: Multi-level eddy covariance observations and canopy coupling 550 
regimes in a mature Douglas-fir forest in Oregon. Agricultural and Forest Meteorology 2013, 551 
173: 14-27. 552 

 553 
15. Verma SB, Dobermann A, Cassman KG, Walters DT, Knops JM, Arkebauer TJ, et al. Annual 554 

carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and 555 
Forest Meteorology 2005, 131(1): 77-96. 556 

 557 
16. Campbell J, Sun O, Law B. Supply‐side controls on soil respiration among Oregon forests. 558 

Global Change Biology 2004, 10(11): 1857-1869. 559 

 560 
17. Vickers D, Thomas C, Law BE. Random and systematic CO 2 flux sampling errors for tower 561 

measurements over forests in the convective boundary layer. Agricultural and Forest 562 
Meteorology 2009, 149(1): 73-83. 563 

 564 
18. Gu L, Pallardy S, Hosman K, Sun Y. Drought-influenced mortality of tree species with different 565 

predawn leaf water dynamics in a decade-long study of a central US forest. Biogeosciences 2015, 566 
12(10): 2831-2845. 567 

 568 
19. Seco R, Karl T, Guenther A, Hosman KP, Pallardy SG, Gu L, et al. Ecosystem‐scale VOC fluxes 569 

during an extreme drought in a broad‐leaf temperate forest of the Missouri Ozarks (central USA). 570 
Global Change Biology 2015, 21: 3657–3674 . 571 

 572 
20. Roman DT, Novick KA, Brzostek ER, Dragoni D, Rahman AF, Phillipps R. The role of isohydric 573 

and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia 574 
2015, 179(3): 641-654. 575 

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange 31

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCLIMATE3114



© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

32 
 

 576 
21. Noomets A, Gavazzi MJ, McNulty SG, Domec J-C, Sun G, King JS, et al. Response of carbon 577 

fluxes to drought in a coastal plain loblolly pine forest. Global Change Biology 2009, 16: 272-578 
287. 579 

22. Monson R, Turnipseed A, Sparks J, Harley P, Scott‐Denton L, Sparks K, et al. Carbon 580 
sequestration in a high‐elevation, subalpine forest. Global Change Biology 2002, 8(5): 459-478. 581 

 582 
23. DeForest JL, Noormets A, McNulty SG, Sun G, Tenney G, Chen J. Phenophases alter the soil 583 

respiration–temperature relationship in an oak-dominated forest. International Journal of 584 
Biometeorology 2006, 51(2): 135-144. 585 

 586 
24. Sanchez‐Mejia ZM, Papuga SA. Observations of a two‐layer soil moisture influence on surface 587 

energy dynamics and planetary boundary layer characteristics in a semiarid shrubland. Water 588 
Resources Research 2014, 50(1): 306-317. 589 

 590 
25. Desai AR, Bolstad PV, Cook BD, Davis KJ, Carey EV. Comparing net ecosystem exchange of 591 

carbon dioxide between an old-growth and mature forest in the upper Midwest, USA. 592 
Agricultural and Forest Meteorology 2005, 128(1-2): 33-55. 593 

 594 
26. Ma S, Baldocchi DD, Xu L, Hehn T. Inter-annual variability in carbon dioxide exchange of an 595 

oak/grass savanna and open grassland in California. Agricultural and Forest Meteorology 2007, 596 
147(3): 157-171. 597 

 598 
27. Curtis PS, Hanson PJ, Bolstad P, Barford C, Randolph J, Schmid H, et al. Biometric and eddy-599 

covariance based estimates of annual carbon storage in five eastern North American deciduous 600 
forests. Agricultural and Forest Meteorology 2002, 113(1): 3-19. 601 

 602 
28. Verma SB, Baldocchi DD, Anderson DE, Matt DR, Clement RJ. Eddy fluxes of CO2, water 603 

vapor, and sensible heat over a deciduous forest. Boundary-Layer Meteorology 1986, 36(1-2): 604 
71-91.  605 

29. McDowell N, Barnard H, Bond BJ, Hinckley T, Hubbard RM, Ishii H, et al. The relationship 606 
between tree height and leaf area: sapwood area ratio. Oecologia 2002, 132(1): 12-20. 607 

 608 
30. Novick K, Oren R, Stoy P, Juang JY, Siqueira M, Katul G. The relationship between reference 609 

canopy conductance and simplified hydraulic architecture. Advances in Water Resources 2009, 610 
32(6): 809-819. 611 

 612 
31. Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, et al. Survey and synthesis of 613 

intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell 614 
Environ 1999, 22(12): 1515-1526. 615 

 616 

33 
 

32. Williams CA, Reichstein M, Buchmann N, Baldocchi D, Beer C, Schwalm C, et al. Climate and 617 
vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across 618 
a global network of flux towers. Water Resources Research 2012, 48(6). 619 

 620 
33. Penman HL. Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the 621 

Royal Society of London Series a-Mathematical and Physical Sciences 1948, 193(1032): 120-&. 622 

 623 
34. Monteith JL. Evaporation and environment. In: Fogg BD (ed). The State and Movement of water 624 

in Living Organisms, Symposium of the Society of Experimental Biology, vol. 19. Cambridge 625 
University Press: Cambridge, 1965, pp 205-234. 626 

 627 
35. Yan H, Wang S, Billesbach D, Oechel W, Zhang J, Meyers T, et al. Global estimation of 628 

evapotranspiration using a leaf area index-based surface energy and water balance model. Remote 629 
sensing of environment 2012, 124: 581-595. 630 

 631 
36. Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, Wullschleger SD. A comparison of 632 

methods for determining forest evapotranspiration and its components: sap-flow, soil water 633 
budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology 634 
2001, 106(2): 153-168. 635 

 636 
37. Scanlon TM, Kustas WP. Partitioning evapotranspiration using an eddy covariance-based 637 

technique: Improved assessment of soil moisture and land–atmosphere exchange dynamics. 638 
Vadose Zone Journal 2012, 11(3). 639 

 640 
38. Wang L, Niu S, Good SP, Soderberg K, McCabe MF, Sherry RA, et al. The effect of warming on 641 

grassland evapotranspiration partitioning using laser-based isotope monitoring techniques. 642 
Geochimica Et Cosmochimica Acta 2013, 111: 28-38. 643 

 644 
39. Oishi AC, Oren R, Novick KA, Palmroth S, Katul GG. Interannual Invariability of Forest 645 

Evapotranspiration and Its Consequence to Water Flow Downstream. Ecosystems 2010, 13(3): 646 
421-436. 647 

 648 
40. Sulman BN, Roman DT, Scanlon TM, Wang L, Novick KA. Comparing methods for partitioning 649 

a decade of carbon dioxide and water vapor fluxes in a temperate forest. Agricultural and Forest 650 
Meteorology 2016, In press. 651 

 652 
41. Baldocchi D, Meyers T. On using eco-physiological, micrometeorological and biogeochemical 653 

theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: a perspective. 654 
Agricultural and Forest Meteorology 1998, 90(1): 1-25. 655 

 656 
42. Schulze E-D, Kelliher FM, Korner C, Lloyd J, Leuning R. Relationships among maximum 657 

stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant 658 

32 NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE3114



© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

32 
 

 576 
21. Noomets A, Gavazzi MJ, McNulty SG, Domec J-C, Sun G, King JS, et al. Response of carbon 577 

fluxes to drought in a coastal plain loblolly pine forest. Global Change Biology 2009, 16: 272-578 
287. 579 

22. Monson R, Turnipseed A, Sparks J, Harley P, Scott‐Denton L, Sparks K, et al. Carbon 580 
sequestration in a high‐elevation, subalpine forest. Global Change Biology 2002, 8(5): 459-478. 581 

 582 
23. DeForest JL, Noormets A, McNulty SG, Sun G, Tenney G, Chen J. Phenophases alter the soil 583 

respiration–temperature relationship in an oak-dominated forest. International Journal of 584 
Biometeorology 2006, 51(2): 135-144. 585 

 586 
24. Sanchez‐Mejia ZM, Papuga SA. Observations of a two‐layer soil moisture influence on surface 587 

energy dynamics and planetary boundary layer characteristics in a semiarid shrubland. Water 588 
Resources Research 2014, 50(1): 306-317. 589 

 590 
25. Desai AR, Bolstad PV, Cook BD, Davis KJ, Carey EV. Comparing net ecosystem exchange of 591 

carbon dioxide between an old-growth and mature forest in the upper Midwest, USA. 592 
Agricultural and Forest Meteorology 2005, 128(1-2): 33-55. 593 

 594 
26. Ma S, Baldocchi DD, Xu L, Hehn T. Inter-annual variability in carbon dioxide exchange of an 595 

oak/grass savanna and open grassland in California. Agricultural and Forest Meteorology 2007, 596 
147(3): 157-171. 597 

 598 
27. Curtis PS, Hanson PJ, Bolstad P, Barford C, Randolph J, Schmid H, et al. Biometric and eddy-599 

covariance based estimates of annual carbon storage in five eastern North American deciduous 600 
forests. Agricultural and Forest Meteorology 2002, 113(1): 3-19. 601 

 602 
28. Verma SB, Baldocchi DD, Anderson DE, Matt DR, Clement RJ. Eddy fluxes of CO2, water 603 

vapor, and sensible heat over a deciduous forest. Boundary-Layer Meteorology 1986, 36(1-2): 604 
71-91.  605 

29. McDowell N, Barnard H, Bond BJ, Hinckley T, Hubbard RM, Ishii H, et al. The relationship 606 
between tree height and leaf area: sapwood area ratio. Oecologia 2002, 132(1): 12-20. 607 

 608 
30. Novick K, Oren R, Stoy P, Juang JY, Siqueira M, Katul G. The relationship between reference 609 

canopy conductance and simplified hydraulic architecture. Advances in Water Resources 2009, 610 
32(6): 809-819. 611 

 612 
31. Oren R, Sperry JS, Katul GG, Pataki DE, Ewers BE, Phillips N, et al. Survey and synthesis of 613 

intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell 614 
Environ 1999, 22(12): 1515-1526. 615 

 616 

33 
 

32. Williams CA, Reichstein M, Buchmann N, Baldocchi D, Beer C, Schwalm C, et al. Climate and 617 
vegetation controls on the surface water balance: Synthesis of evapotranspiration measured across 618 
a global network of flux towers. Water Resources Research 2012, 48(6). 619 

 620 
33. Penman HL. Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the 621 

Royal Society of London Series a-Mathematical and Physical Sciences 1948, 193(1032): 120-&. 622 

 623 
34. Monteith JL. Evaporation and environment. In: Fogg BD (ed). The State and Movement of water 624 

in Living Organisms, Symposium of the Society of Experimental Biology, vol. 19. Cambridge 625 
University Press: Cambridge, 1965, pp 205-234. 626 

 627 
35. Yan H, Wang S, Billesbach D, Oechel W, Zhang J, Meyers T, et al. Global estimation of 628 

evapotranspiration using a leaf area index-based surface energy and water balance model. Remote 629 
sensing of environment 2012, 124: 581-595. 630 

 631 
36. Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, Wullschleger SD. A comparison of 632 

methods for determining forest evapotranspiration and its components: sap-flow, soil water 633 
budget, eddy covariance and catchment water balance. Agricultural and Forest Meteorology 634 
2001, 106(2): 153-168. 635 

 636 
37. Scanlon TM, Kustas WP. Partitioning evapotranspiration using an eddy covariance-based 637 

technique: Improved assessment of soil moisture and land–atmosphere exchange dynamics. 638 
Vadose Zone Journal 2012, 11(3). 639 

 640 
38. Wang L, Niu S, Good SP, Soderberg K, McCabe MF, Sherry RA, et al. The effect of warming on 641 

grassland evapotranspiration partitioning using laser-based isotope monitoring techniques. 642 
Geochimica Et Cosmochimica Acta 2013, 111: 28-38. 643 

 644 
39. Oishi AC, Oren R, Novick KA, Palmroth S, Katul GG. Interannual Invariability of Forest 645 

Evapotranspiration and Its Consequence to Water Flow Downstream. Ecosystems 2010, 13(3): 646 
421-436. 647 

 648 
40. Sulman BN, Roman DT, Scanlon TM, Wang L, Novick KA. Comparing methods for partitioning 649 

a decade of carbon dioxide and water vapor fluxes in a temperate forest. Agricultural and Forest 650 
Meteorology 2016, In press. 651 

 652 
41. Baldocchi D, Meyers T. On using eco-physiological, micrometeorological and biogeochemical 653 

theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: a perspective. 654 
Agricultural and Forest Meteorology 1998, 90(1): 1-25. 655 

 656 
42. Schulze E-D, Kelliher FM, Korner C, Lloyd J, Leuning R. Relationships among maximum 657 

stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant 658 

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange 33

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCLIMATE3114



© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

34 
 

nitrogen nutrition: a global ecology scaling exercise. Annual Review of Ecology and Systematics 659 
1994: 629-660. 660 

 661 
43. Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration-Guidelines for computing crop 662 

water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 1998, 300(9): D05109. 663 

 664 
44. Kelliher F, Leuning R, Raupach M, Schulze E-D. Maximum conductances for evaporation from 665 

global vegetation types. Agricultural and Forest Meteorology 1995, 73(1): 1-16. 666 

 667 
45. Campbell GS, Norman JM. An Introduction to Environmental Biophysics. Springer-Verlag: New 668 

York, 1998. 669 

 670 
46. Stull RB. An Introduction to Boundary Layer Meteorology, vol. 13. Springer, 1988. 671 

 672 
47. Ruehr NK, Martin JG, Law BE. Effects of water availability on carbon and water exchange in a 673 

young ponderosa pine forest: Above-and belowground responses. Agricultural and forest 674 
meteorology 2012, 164: 136-148. 675 

 676 
48. Breda N, Huc R, Granier A, Dreyer E. Temperate forest trees and stands under severe drought: a 677 

review of ecophysiological responses, adaptation processes and long-term consequences. Annals 678 
of Forest Science 2006, 63(6): 625-644. 679 

 680 
49. Clapp RB, Hornberger GM. Empirical equations for some hydraulic properties. Water Resources 681 

Research 1978, 14(4): 601-604. 682 

 683 
50. Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and embolism. Annual review of plant 684 

biology 1989, 40(1): 19-36. 685 

 686 
51. Granier A, Loustau D, Breda N. A generic model of forest canopy conductance dependent on 687 

climate, soil water availability and leaf area index. Annals of Forest Science 2000, 57(8): 755-688 
765. 689 

 690 
52. Ryan MG, Yoder BJ. Hydraulic limits to tree height and tree growth. Bioscience 1997, 47(4): 691 

235-242. 692 

 693 
53. Jarvis PG. Interpretation of Variations in Leaf Water Potential and Stomatal Conductance Found 694 

in Canopies in Field. Philosophical Transactions of the Royal Society of London Series B-695 
Biological Sciences 1976, 273(927): 593-610. 696 

 697 
54. Bernacchi CJ, Pimentel C, Long SP. In vivo temperature response functions of parameters 698 

required to model RuBP-limited photosynthesis. Plant Cell Environ 2003, 26(9): 1419-1430. 699 

35 
 

 700 
55. Oren R, Sperry JS, Ewers BE, Pataki DE, Phillips N, Megonigal JP. Sensitivity of mean canopy 701 

stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: 702 
hydraulic and non-hydraulic effects. Oecologia 2001, 126(1): 21-29. 703 

 704 
56. Abatzoglou JT, Brown TJ. A comparison of statistical downscaling methods suited for wildfire 705 

applications. International Journal of Climatology 2012, 32(5): 772-780. 706 

 707 
57. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, et al. On the separation 708 

of net ecosystem exchange into assimilation and ecosystem respiration: review and improved 709 
algorithm. Global Change Biology 2005, 11(9): 1424-1439. 710 

 711 

 712 

 713 

 714 

34 NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

SUPPLEMENTARY INFORMATION DOI: 10.1038/NCLIMATE3114



© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

34 
 

nitrogen nutrition: a global ecology scaling exercise. Annual Review of Ecology and Systematics 659 
1994: 629-660. 660 

 661 
43. Allen RG, Pereira LS, Raes D, Smith M. Crop evapotranspiration-Guidelines for computing crop 662 

water requirements-FAO Irrigation and drainage paper 56. FAO, Rome 1998, 300(9): D05109. 663 

 664 
44. Kelliher F, Leuning R, Raupach M, Schulze E-D. Maximum conductances for evaporation from 665 

global vegetation types. Agricultural and Forest Meteorology 1995, 73(1): 1-16. 666 

 667 
45. Campbell GS, Norman JM. An Introduction to Environmental Biophysics. Springer-Verlag: New 668 

York, 1998. 669 

 670 
46. Stull RB. An Introduction to Boundary Layer Meteorology, vol. 13. Springer, 1988. 671 

 672 
47. Ruehr NK, Martin JG, Law BE. Effects of water availability on carbon and water exchange in a 673 

young ponderosa pine forest: Above-and belowground responses. Agricultural and forest 674 
meteorology 2012, 164: 136-148. 675 

 676 
48. Breda N, Huc R, Granier A, Dreyer E. Temperate forest trees and stands under severe drought: a 677 

review of ecophysiological responses, adaptation processes and long-term consequences. Annals 678 
of Forest Science 2006, 63(6): 625-644. 679 

 680 
49. Clapp RB, Hornberger GM. Empirical equations for some hydraulic properties. Water Resources 681 

Research 1978, 14(4): 601-604. 682 

 683 
50. Tyree MT, Sperry JS. Vulnerability of xylem to cavitation and embolism. Annual review of plant 684 

biology 1989, 40(1): 19-36. 685 

 686 
51. Granier A, Loustau D, Breda N. A generic model of forest canopy conductance dependent on 687 

climate, soil water availability and leaf area index. Annals of Forest Science 2000, 57(8): 755-688 
765. 689 

 690 
52. Ryan MG, Yoder BJ. Hydraulic limits to tree height and tree growth. Bioscience 1997, 47(4): 691 

235-242. 692 

 693 
53. Jarvis PG. Interpretation of Variations in Leaf Water Potential and Stomatal Conductance Found 694 

in Canopies in Field. Philosophical Transactions of the Royal Society of London Series B-695 
Biological Sciences 1976, 273(927): 593-610. 696 

 697 
54. Bernacchi CJ, Pimentel C, Long SP. In vivo temperature response functions of parameters 698 

required to model RuBP-limited photosynthesis. Plant Cell Environ 2003, 26(9): 1419-1430. 699 

35 
 

 700 
55. Oren R, Sperry JS, Ewers BE, Pataki DE, Phillips N, Megonigal JP. Sensitivity of mean canopy 701 

stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: 702 
hydraulic and non-hydraulic effects. Oecologia 2001, 126(1): 21-29. 703 

 704 
56. Abatzoglou JT, Brown TJ. A comparison of statistical downscaling methods suited for wildfire 705 

applications. International Journal of Climatology 2012, 32(5): 772-780. 706 

 707 
57. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, et al. On the separation 708 

of net ecosystem exchange into assimilation and ecosystem respiration: review and improved 709 
algorithm. Global Change Biology 2005, 11(9): 1424-1439. 710 

 711 

 712 

 713 

 714 

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange 35

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NCLIMATE3114


