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Abstract 

Background: Genotype status of glioma have important significance to clinical treatment and prognosis. At present, 
there are few studies on the prediction of multiple genotype status in glioma by method of multi-sequence radiom-
ics. The purpose of the study is to compare the performance of clinical features (age, sex, WHO grade, MRI morpho-
logical features etc.), radiomics features from multi MR sequence (T2WI, T1WI, DWI, ADC, CE-MRI (contrast enhance-
ment)), and a combined multiple features model in predicting biomarker status (IDH, MGMT, TERT, 1p/19q of glioma.

Methods: In this retrospective analysis, 81 glioma patients confirmed by histology were enrolled in this study. Five 
MRI sequences were used for radiomic feature extraction. Finally, 107 features were extracted from each sequence on 
Pyradiomics software, separately. These included 18 first-order metrics, such as the mean, standard deviation, skew-
ness, and kurtosis etc., 14 shape features and second-order metrics including 24 grey level run length matrix (GLCM), 
16 grey level run length matrix (GLRLM), 16 grey level size zone matrix (GLSZM), 5 neighboring gray tone difference 
matrix (NGTDM), and 14 grey level dependence matrix (GLDM). Then, Univariate analysis and LASSO (Least absolute 
shrinkage and selection operator regression model were used to data dimension reduction, feature selection, and 
radiomics signature building. Significant features (p < 0.05 by multivariate logistic regression were retained to establish 
clinical model, T1WI model, T2WI model, T1 + C (T1WI contrast enhancement model, DWI model and ADC model, 
multi sequence model. Clinical features were combined with multi sequence model to establish a combined model. 
The predictive performance was validated by receiver operating characteristic curve (ROC analysis and decision curve 
analysis (DCA).

Results: The combined model showed the better performance in some groups of genotype status among some 
models (IDH AUC = 0.93, MGMT AUC = 0.88, TERT AUC = 0.76). Multi sequence model performed better than single 
sequence model in IDH, MGMT, TERT. There was no significant difference among the models in predicting 1p/19q 
status. Decision curve analysis showed combined model has higher clinical benefit than multi sequence model.
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Introduction
Gliomas are the most common primary neoplasms in 
brain, which represent approximately 30% of all central 
nervous system (CNS tumors and 80% of all malignant 
brain tumors [1]. Malignant glioma often develop in the 
higher ages, the high incidence being mostly within the 
5th and 6th decades of life. Male and female incidence 
ratio of glioma is reported 1.47:1 [2]. Despite many 
advances have obtained in recent years, the average sur-
vival time still ranges from 17 weeks to 3 years [3]. The 
genotype status of glioma have been identified helpful 
recent years. The prognosis and survival rate of glioma 
is different with different genotype status. Accurate pre-
dicting the genotype status of glioma pre-operation 
can effectively predict prognosis and guide treatment 
strategy.

There have obtained many identifications about some 
phenotypes of glioma which are useful to prognosis, such 
as methylation of the MGMT, mutations in IDH1/2 and 
so on. More recently, co-deletion of 1q/19q and muta-
tion in TERT is also important in prognosis and treat-
ment option of glioma. However, there are little literature 
about radiomics combined with clinical characteristics to 
predict status of multiple phenotypes.

Isocitrate dehydrogenase (IDH catalyzes oxidative 
decarboxylation of isocitrate and plays an irreplaceable 
role in the Krebs cycle and cell homeostasis. IDH gene 
mutations occur in a variety of malignancies, including 
glioma, acute myeloid leukemia, cholangiocarcinoma, 
chondrosarcoma and thyroid cancer [4, 5]. Among glio-
mas, IDH mutations were found in 80% of WHO grade 
II/III gliomas [6]. A follow-up investigation showed 
that IDH mutation patients had a better prognosis. The 
median survival of GBM was 15  months in IDH wild 
type versus 31  months in IDH mutants. While anaplas-
tic astrocytomas was 20 months in IDH wild type versus 
65 months in IDH mutants [6]. Therefore, it is essential 
to predict IDH mutation status before treatment selec-
tion and patient stratification [7].

Human O6-methylguanine DNA methyltransferase 
(MGMT), also known as O6-alkylguanine DNA alkyl-
transferase (AGT), is a simple DNA repair protein 
involved in protecting the genome of normal cells from 
the mutagenicity of alkylating agents. The anti-mutation 
function of MGMT can block the cytotoxic effect of 
anticancer alkylation agents and make tumors resistant 
to chemotherapy drugs. When the MGMT promoter is 
methylated, the epigenetic expression of MGMT is inac-
tivated and its resistance to alkylation agents lost, which 
manifested sensitive to chemotherapy. It will achieve bet-
ter chemotherapy response, greater overall survival rate 
and longer progression time. Therefore, the detection of 
methylation status of MGMT promoter has become an 
important clinical procedure for the prognosis of glioma 
patients [8].

1p/19q co-deletion is that both the short arm of chro-
mosome 1 (1p and the long arm of chromosome 19 
(19q are deleted [9]. Lower-grade gliomas with both an 
IDH mutation (i.e., a mutation in either IDH1 or IDH2 
and deletion of chromosome arms 1p and 19q (1p/19q 
codeletion), which occurs most often in oligodendroglio-
mas, have better responses to radiochemotherapy and 
are associated with longer survival than diffuse gliomas 
without these alterations [10]. A research showed that 
patients without chromosome 1p/19q co-deletions was 
associated with poor overall and progression-free sur-
vival [11].

Telomerase reverse transcriptase (TERT is impor-
tant for the biology of diffuse gliomas. When DNA is 
replicated during mitosis, telomeres shorten, leading 
to apoptosis. Telomerase is an RNA-dependent DNA 
polymerase, which can prolong telomere DNA and 
maintain telomere homeostasis, leading to cell immor-
talization and the occurrence of malignant tumors. 
TRET is the rate-limiting catalytic subunit of telomerase. 
TERT promoter mutation can cause TERT transcrip-
tion upregulation and activate telomerase [12]. TERT 
promoter mutations have been found in central nervous 
system tumors, including primary glioma (up to 80%), 

Conclusion: Multi sequence model is an effective method to identify the genotype status of cerebral glioma. Com-
bined with clinical models can better distinguish genotype status of glioma.

Key Points: • The combined model showed the higher performance compare with other models in predicting 
genotype status of IDH, MGMT, TERT.

• Multi sequence model showed a better predictive model than that of a single sequence model.
• Compared with other models, the combined model and multi sequence model show no advantage in prediction 

of 1p/19q status.
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medulloblastoma (20%), and meningioma (6.4–11%) [13]. 
The frequency of TERT promoter mutations in gliomas 
increases with the increasing WHO grade. TERT pro-
moter mutations were independently associated with 
poorer overall survival in all glioma subtypes [14].

Radiomics predicting prognosis of glioma pre-oper-
ation noninvasively is invaluable as biopsy is invasively 
and test of phenotypes is difficult available. Thus, radi-
omics can bringing huge benefits to patients who just 
not complete the test of phenotypes and to guide clinical 
pathway of treatment. So far, it has been confirmed that 
many molecular biomarkers are related to the prognosis 
of glioma, including IDH, MGMT, TERT, 1p/19q, EGFR, 
TP53, BRAF etc. In this study, we aimed to explore the 
valuable of radiomics in conventional (T2W/T1W/
T1W + C and diffusion (DWI/ADC MR combined with 
clinical features (clinical and MRI imaging characteris-
tics to predict four kinds of glioma molecular biomarkers 
(IDH, MGMT, TERT, 1p/19q).

Material and methods
Patient data
Patients who were initial diagnosed with glioma between 
January 2018 and September 2021 were collected. A 
total of 235 patients with initial diagnosed as glioma 
were reviewed (Fig.  1). Inclusion criteria were (1 Gli-
oma confirmed by surgical pathology and containing all 
genetic diagnostic information (IDH1, MGMT, TREF, 
and 1q/19q and (2 MRI scan performed within 30  days 
before surgery and including four sequences (T2W, T1W, 

T1W + C and DWI). Exclusion criteria were no surgery 
or surgery in another hospital (n = 135), poor MR image 
quality (motion artifact, n = 8), prior surgery (n = 5 or 
radiotherapy (n = 6). Finally, 81 patients met the criteria, 
including infiltrative and circumscribed gliomas (Table1). 
Our study complied with the Declaration of Helsinki 
and informed consent was waived due to the retrospec-
tive nature of the study by ethical committee of Affiliated 
Hospital of Inner Mongolia Medical University. All meth-
ods were carried out in accordance with relevant guide-
lines and regulations.

Tissue samples were obtained from patients undergo-
ing resection. Then sample section was used to perform 
diagnosis of neuropathology and molecular evaluation. 
Multiplex PCR combined with next generation sequenc-
ing were used to detect IDH1/2, TERT and 1q/19q 
co-deletion status. Pyrosequencing of bisulfite-treated 
genomic DNA (CpG sites 74–78, QIAGEN was used to 
detect MGMT promoter methylation status.

MR imaging was obtained using 2 MRI scanners (Skyra 
3 T from Siemens Healthineers, Germany and Discovery 
3  T from GE, Healthcare within our radiology depart-
ment. The sequences and parameters of MR scan includ-
ing: T2W (TR/TE, 5000–8000/100–200  ms, voxel size: 
0.5 × 0.5 × 1  mm3), T1W (TR/TE, 1000–1800/10-25 ms, 
voxel size: 0.5 × 0.5 × 1  mm3), DWI (TR/TE: 3000–
3800/66–81 ms, with b values of 0 and 1000 s/mm2, voxel 
size: 0.9 × 0.9 × 5.0   mm3 and post-contrast T1W imaging 
(TR/TE, 1000–1800/10–25  ms, voxel size: 0.5 × 0.5 × 1 
 mm3). A total volume of 0.1  mmol/kg of gadobutrol 

Fig. 1 Flowchart of study population
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(Gadovist, Bayer Healthcare was injected intravenously 
for post-contrast T1W imaging.

Clinical and MRI imaging data
Clinical features: patient sex, age, WHO grade (I, II, III, 
IV), genotype status of molecular biomarkers (IDH wild 
or mutant, MGMT nonmethylated or methylated, TERT 
wild or mutant, 1p/19q wild or codeletion (Table1).

MRI imaging features: tumour size (< 6 or > 6  cm), 
tumour centre location (left side or right side), cerebral 
lobe involving (frontal lobe, occipital lobe, parietal lobe, 
temporal lobe, insular lobe), cortex matter involving 
(involving or not), deep white matter involving (involving 
or not), pial matter involving (involving or not), ependy-
mal membrane involving (involving or not), tumour cross 
midline (cross or not), oedema cross midline (cross or 
not), tumour border (clear or not), haemorrhage (yes or 
no), cystic_necrosis (no, < 25%, 25–50%, > 50%), oedema 
degree (< 1.6  cm or > 1.6  cm), enhancemengt_style (no, 
ring-enhancement, nodular-enhancement, irregular-
enhancement), enhancement_degree (no, slight, obvi-
ous), signal characteristics (homogenous, heterogenous) 
[3].

Models establishment
Clinical model Univariate analysis was used for clinical 
and imaging features, and the features with p < 0.05 were 
retained. Then multivariate stepwise regression was used 
to retain the smallest AIC (Akaike Information Criterion 
feature set. Finally, multivariate logistic regression was 
used to establish a multivariate clinical model.

Radiomics model For each patient, tumor segmenta-
tion was delineated manually slice by slice on T2WI by 

a 6 years of experience radiologist and under supervision 
of a 10  years of experience neuroradiologist. They were 
blinded to the final diagnosis and molecular biomarkers 
status. T1WI, T2WI, DWI, ADC and T1WI + C were co-
registered after interscan motion corrections. The vol-
ume of interest (VOI was generated encompassing the 
entire region of T2WI hyperintensity by segmenting the 
region of interest (ROI slice by slice on axial scans. After 
additional reviewing session, any discrepancies in ROI 
were resolved by consensus. The VOI overlaid onto co-
registered datasets, which obtained five VOI from each 
sequence. All segmentations and registrations were car-
ried out by ITK-SNAP software (version 3.8.0, https:// 
www. itksn ap. org).

Image processing and radiomics features extraction 
was performed on PHIgo-AK software (GE Health-
care, China which integrate Pyradiomics toolkit [15]. 
Automatic preprocessing was standardized for each 
case involving resampling (set vovel for 1 × 1 × 1mm to 
reduce the influence between different layer thicknesses 
and adopt linear interpolation), intensity normaliza-
tion (z-score)and discretization (set binwidth to 5). The 
above VOI corresponding to each sequence is input into 
the corresponding image in the software of Pyradiom-
ics toolkit to extract the radiomics features. The work-
flow is presented in Additional file  1: Fig. S2. At last, 
each sequence can extracted a total of 107 radiomic 
features. These included 18 first-order metrics, such as 
the mean, standard deviation, skewness, and kurtosis, 
14 shape features and second-order metrics including 
24 grey level run length matrix (GLCM), 16 grey level 
run length matrix (GLRLM), 16 grey level size zone 
matrix (GLSZM), 5 neighboring gray tone difference 
matrix (NGTDM), and 14 grey level dependence matrix 

Table 1 Demographic data for each glioma biomarker

Total Status N (%) Age (Q1, Q3) Sex (M/F) Enhancement (%) WHO grade (I/II/III/IV)
81 (100) 40/41 61 (75) 2/26/29/24

IDH

Wild-type 42 (52) 57 (44, 64) 21/21 38 (90) 2/9/10/21

Mutant 39 (48) 44 (38, 51) 19/20 22 (56) 0/17/19/3

MGMT

Nonmethylated 31 (38) 57 (42, 64) 16/15 27 (87) 2/9/8/12

Methylated 50 (62) 45 (39, 58) 24/26 33 (66) 0/17/21/12

TERT

Wild-type 34 (42) 46 (37, 57) 16/18 22 (65) 2/15/10/7

Mutant 47 (58) 52 (43, 64) 24/23 38 (81) 0/11/19/17

1p/19q

Wild-type 52 (64) 53 (39, 62) 26/26 39 (75) 2/17/15/18

codeletion 29 (36) 45 (42, 58) 14/15 21 (72) 0/9/14/6

https://www.itksnap.org
https://www.itksnap.org
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(GLDM). The radiomic features selection procedure 
were performed in the cross-validation stage as follow: 
(1 Using univariate rank sum test, the characteristics of 
p < 0.05 were retained (2 Correlation analysis was used 
to remove features with a correlation greater than 0.8; 
(3 Least Absolute Shrinkage and Selection Operator 
(LASSO [16] regularization was employed to remove 
collinear features; (4 Multivariate stepwise regres-
sion was used to retain the feature set of minimal AIC. 
Each sequence is screened in this way.The independent 

radiomic model of each sequence radiomic features 
were established by multivariate logistic regression, 
including T1WI model, T2WI model, T1 + C model, 
DWI model and ADC model. Meaningful features from 
five sequences were combined to establish a combined 
radiomics model called multi sequence model (It is 
named ‘All’ model in the Figs. 2, 5).

Combined model The combine model was established 
by combining the radscore output from multi sequence 

Fig. 2 Receiver-operating characteristic (ROC curves for prediction of each biomarker status. combined model which unites clinical and radiomics 
features shows significant improvement in predicting each biomarker status, especially in group of IDH (0.928 and MGMT (0.878). T2W, T2WI model. 
T1W, T1WI model. DWI, DWI model. ADC, ADC model. T1C, T1 + C model. All, multi sequence model. Clinical, clinical model. COMB, combined model
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model with the clinical characteristics by multivariate 
logistic regression.

All the above methods and models are completed sepa-
rately for each group of molecular biomarkers.

Statistical analysis
Statistical analysis was performed using R (version:4.1.0, 
https:// www. rproj ect. org). A two-sided p value of less 
than 0.05 was considered statistically significant. Differ-
ences in the clinical and imaging characteristics between 
group of each genic phenotype were evaluated using the 
independent samples t test, the Mann–Whitney U test, 
and the chi-squared or Fisher’s exact tests, as appropri-
ate. All models which include T2WI, T1WI, T1 + C, DWI, 
ADC, All, clinical, combined were established by logistic 
regression. Three-fold cross-validation repeated 20 times 
strategy was used to select best features subset. The cross-
validation voting strategy [17], features selected in more 
than onefold were used as the final feature set. Receiver-
operating characteristic (ROC curves and area under 
the curve (AUC was obtained. A comparative analysis 
between ROCs of all models in each group was performed 
using nonparametric methods described by DeLong et al. 
[18]. Decision curve analysis (DCA was carried out to 
assess the clinical usefulness of each model by evaluating 
the net benefit at various threshold probabilities.

Results
Clinical model assessment
Comparison of clinical and MRI imaging features of phe-
notype status for each molecular biomarker are sum-
marized in Table  2 (Only the features with significant 
differences are listed, all features are detailed in Addi-
tional file  1: Table  S1). After univariate analysis and 
multivariate stepwise regression, the differences in the 

following characteristics were statistically significant. 
Nine characteristics are predicting factors of IDH status 
including Age, Grade, Frontal lobe, Parietal lobe, Involv-
ing cortex matter, Oedema degree, Enhancement style, 
Enhancement degree and Signal characteristics. Five 
characteristics are predicting factors of MGMT status 
including Frontal lobe, Involving cortex matter, Border, 
Oedema degree and Enhancement degree. Enhancement 
style is predicting factor of 1p/19q status. Involving pial 
matter is predicting factor of TERT status. Above char-
acteristics set were further selected to perform multivari-
ate logistic regression analysis. The results are shown in 
Table 3. IDH mutant type is easier involving frontal lobe 
than wild type. IDH wild type is more common showed 
ring or irregular enhancement than mutant type. MGMT 
Methylated type is more likely involve frontal lobe and 
have a non-clear border than Nonmethylated type. 
Oedema degree of MGMT Methylated type is less than 
Nonmethylated type. TERT mutant type is more likely 
involving pial matter than wild type. Ring-enhancement 
is more likely presenting in 1p/19q wild type than co-
deletion type. Then, a clinical model of each biomarker 
was established based on the independent variables men-
tioned above. IDH: the AUC was 0.88 (95% confidence 
interval, 0.81–0.95); MGMT: the AUC was 0.78 (95% 
confidence interval, 0.68–0.88); TERT: the AUC was 0.66 
(95% confidence interval, 0.55–0.76; 1p/19q: the AUC 
was 0.66 (95% confidence interval, 0.58–0.73 (Fig. 2).

Radiomics model assessment
Following LASSO regularization and logistic regression 
analysis, multi sequence model was established. As a 
result, a total of 4 in IDH, 5 in MGMT, 4 in TERT, 2 in 
1p/19q radiomic features (Additional file 1: Table S2; Fig. 
S3 remained as contributors in our predictive model with 

Table 3 Multivariate logistic regression analysis of clinical characteristics for each Biomarker

Clinical characteristics OR 95% CI p value

IDH

Frontal lobe (ref. non-involving) 8.043 2.057–38.67 0.004

Involving cortex matter (ref. non-involving) 7.395 0.879–167.248 0.105

Ring-enhancement (ref. no enhancement) 0.026 0.001–0.185 0.002

Irregular-enhancement (ref. no enhancement) 0.183 0.046–0.629 0.009

MGMT

Frontal lobe (ref. non-involving) 5.262 1.674–18.673 0.006

Border (ref. clear) 4.031 1.317–13.326 0.017

Oedema degree(ref. < 1.6 cm) 0.184 0.054–0.546 0.004

TERT

Involving pial matter (ref. non-involving) 3.690 1.481–9.664 0.006

1p/19q

Ring-enhancement (ref. no enhancement) 0.067 0.004–0.359 0.011

https://www.rproject.org
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resultant AUC of 0.87 in IDH, 0.83 in MGMT, 0.72 in 
TERT, 0.68 in 1p/19q (Fig. 2). In different genotypes, the 
AUC of predictive performance of the model established 
according to each sequence was (IDH: 0.75 in T2W, 0.83 
in T1W, 0.66 in DWI, 0.63 ADC, 0.83 in T1 + C; MGMT: 
0.70 in T2W, 0.77 in T1W, 0.73 in DWI, 0.64 ADC, 0.72 
in T1 + C; TERT: 0.68 in T2W, 0.64 in T1W, 0.64 in DWI, 

0.65 ADC, 0.66 in T1 + C; 1p/19q: 0.63 in T2W, 0.64 in 
T1W, 0.66 in DWI, 0.67 ADC, 0.64 in T1 + C (Fig. 2).

Model comparisons
Nonparametric tests of DeLong were carried out between 
AUC of each model in each genotype. In IDH genotype, 
the AUC of multi sequence model is higher than that of 
T2WI model, DWI model and ADC model (All vs. T2W, 

Fig. 3 Heatmap comparison of the radiomic features which have significant statistic difference in each phenotypes group
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DWI, ADC: 0.865 vs. 0.752, 0.656, 0.631, p < 0.05). The 
AUC of combined model is higher than that of T2WI 
model, T1WI model, T1 + C model and “All” model 
(COMB vs. T2W, T1W, T1C, All: 0.928 vs. 0.752, 0.827, 
0.829, 0.865, p < 0.05). There was no significant differ-
ence in AUC between COMB model and clinical model 
(COMB vs. clinical: 0.928 vs. 0.880, p > 0.05). In MGMT 
genotype, the AUC of multi sequence model is higher 
than that of each single sequence model (All vs. T2W, 
T1W, DWI, ADC, T1 + C: 0.833 vs. 0.697, 0.765, 0.725, 
0.643, 0.715, p < 0.05). The AUC of combined model 
is higher than that of T2WI model, T1WI model, DWI 
model, ADC model, T1 + C model and clinical model 
(COMB vs. T2W, T1W, DWI, ADC, T1C, clinical: 0.878 
vs. 0.697, 0.765, 0.725, 0.643, 0.715, 0.781, p < 0.05). There 
was no significant difference in AUC between COMB 
model and “All” model (COMB vs. All: 0.878 vs. 0.833, 
p > 0.05). In TERT genotype, the AUC of multi sequence 
model is higher than that of DWI model and ADC model 
(All vs. DWI, ADC: 0.715 vs. 0.635, 0.654, p < 0.05). The 
AUC of combined model is higher than that of DWI 
model, ADC model and clinical model (COMB vs. DWI, 
ADC, clinical: 0.757 vs. 0.635, 0.654, 0.657, p < 0.05). In 
1p/19q genotype, there is no significant difference in 
AUC value of each model. Detailed performances and 
ROC curves of all models are summarized in Fig.  2. A 
comparison of radiomic features which have significant 
predicting value in each biomarker is shown as a heat 
map in Fig. 3, respectively. Bar and box diagram accord-
ing to radscore in each biomarker is shown in Fig.  4. 

Classification capability in IDH status group has a high-
est performance among all groups. DCA showed that the 
combined model has better predictive performance than 
the multi sequence radiomics model in each biomarker, 
and the best performance is in IDH group (Fig. 5).

Discussion
Our results showed that constructed multiparametric 
model from MRI radiomics features can identify pheno-
type status of IDH, MGMT and TERT in preoperative 
MRI scans of patients with glioma. We specifically dem-
onstrated that addition of clinical features can signifi-
cantly improve predictive performance for IDH, MGMT, 
TERT.

There have had many literatures revealed the value of 
biomarkers status of glioma for diagnosis, therapy and 
prognosis. In this paper, four kinds of glioma biomarker 
were taken into consider to further investigate the value 
of predicting by radiomics add clinical model. The result 
showed radiomics model which include multiple parame-
ters models obtained a higher predict performance (IDH 
AUC = 0.87, MGMT AUC = 0.83, TERT AUC = 0.72, 
1p/19q AUC = 0.68 than each single parameter model 
in all kinds of phenotypes. These results are consist-
ent with previous studies. A research showed an AUC 
of 0.884 and 0.669 for predicting IDH and TERT status, 
respectively [19]. Zhou et al. [20] demonstrated IDH and 
1p/19q status prediction with AUC of 0.921 and 0.685 
using a model from T1 + C and T2 FLAIR integrated 

Fig. 4 The bar (a) and box (b) chart of Radscore. The two charts showed a better performance in predicting each biomarker status, especially in 
group of IDH and MGMT
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with age. Kihira et  al. [21] demonstrated IDH1 and 
MGMT status prediction with AUC of 1 and 0.79 using a 
combination model of texture features from conventional 
and diffusion.

IDH mutations are associated with increased survival 
in glioma patients [22] and increased sensitivity to temo-
zolomide therapy [23] and radiation therapy [24]. LGG 
with IDH mutation along with 1p/19q codeletion has 
ever better clinical outcomes [10, 25]. MGMT promoter 
hypermethylation is the only known biomarker for TMZ 
response [26]. Mutation of TERT promoter as a genetic 
event is frequently detected in 60–75% of glioblasto-
mas (GBM), and associated with a poor prognosis [27]. 
1p/19q co-deletion is associated with better response 
to radiotherapy and alkylating agent chemotherapy, and 
longer progression-free and overall survival [28, 29].
Therefore, preoperative identification of IDH, MGMT, 
TERT and 1p/19q status can play an important role 
with prognostic and treatment implications. Our results 

showing that IDH mutant type is easier involving fron-
tal lobe than wild type. Feraco et  al. demonstrated that 
IDH mutational status is more likely related to a frontal 
location [30]. IDH wild type is more common showed 
ring or irregular enhancement than mutant type, indi-
cating a tendency for invasive behavior, which concurs 
with a study by Zhang et al. [31]. MGMT methylated type 
is more likely involve frontal lobe and have a non-clear 
border than Nonmethylated type, which are inconsist-
ent with other studies. Previous studies suggested that 
MGMT promoter methylation is associated with GBM in 
parietal and occipital lobes [32]. These conflicting results 
may be need Multicenter studies further confirmed. 
Oedema degree of MGMT Methylated type is less than 
Nonmethylated type, indicating MGMT Methylated type 
is less aggressive, which is consistent with a research 
by Suh et al. [33]. In addition, our study also found that 
TERT mutant type is more likely involving pial mat-
ter than wild type and ring-enhancement is more likely 

Fig. 5 The decision curve analysis for multi sequence model (All, red curve and combined model (COMB, green curve). The Y-axis represents the 
net benefit
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presenting in 1p/19q wild type than co-deletion type. 
These results should be further confirmed by subsequent 
studies. Different genetic phenotypes status has differ-
ent clinical imaging features. In-depth understanding of 
imaging features can better predict genetic phenotypes 
status of glioma. Establishing an accurate glioma bio-
marker prediction model integrate radiogenomics and 
clinical features will enable noninvasive prediction of 
prognosis and contributes to treatment planning.

Our study has several limitations. First, this is a ret-
rospective study with a possible unknown bias. Sec-
ond, as with other radiological studies, there is a risk 
of over-fitting given the large number of variables 
involved. Third, tumor segmentation is performed 
using the overall volume of the tumor with high signal 
on T2WI to increase inclusion. There was no differen-
tiation of the cystic, edema and parenchyma areas. Fur-
ther studies are needed to assess whether inclusion or 
exclusion of these components makes a significant dif-
ference in biomarker prediction. Finally, although the 
preprocessing uses techniques such as signal normali-
zation and resampling to mitigate the impact of image 
changes caused by MR scanners from different vendors, 
external testing of the developed model through multi-
institution collaboration is still required to improve the 
versatility and clinical utility of our model.

In conclusion, the described multi sequence model 
from all sequence radiomic features can better predict 
glioma biomarker status preoperatively. In particular, 
addition of clinical features provided significant added 
diagnostic value in determination of IDH, MGMT, 
TERT status.
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