ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

A Synthetic 7,8-Dihydroxyflavone Derivative Promotes Neurogenesis and Exhibits Potent Antidepressant Effect

View Author Information
Department of Pathology and Laboratory Medicine Emory University School of Medicine, Room 141 Whitehead Building, 615 Michael Street, Atlanta, Georgia 30322, United States
School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, NW, Atlanta, Georgia 30332-0400, United States
§ Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, Georgia 30341, United States
Department of Pathology and Lab Medicine, Harvard Medical School and Children's Hospital Boston, 10214 Karp Research Building, 1 Blackfan Circle, Boston, Massachusetts 02115, United States
*To whom correspondence should be addressed. Phone: 404-712-2814. E-mail: [email protected]
Cite this: J. Med. Chem. 2010, 53, 23, 8274–8286
Publication Date (Web):November 12, 2010
https://doi.org/10.1021/jm101206p
Copyright © 2010 American Chemical Society

    Article Views

    4388

    Altmetric

    -

    Citations

    163
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    7,8-Dihydroxyflavone is a recently identified small molecular tropomyosin-receptor-kinase B (TrkB) agonist. Our preliminary structural−activity relationship (SAR) study showed that the 7,8-dihydroxy groups are essential for the agonistic effect. To improve the lead compound’s agonistic activity, we have conducted an extensive SAR study and synthesized numerous derivatives. We have successfully identified 4′-dimethylamino-7,8-dihydroxyflavone that displays higher TrkB agonistic activity than that of the lead. This novel compound also exhibits a more robust and longer TrkB activation effect in animals. Consequently, this new compound reveals more potent antiapoptotic activity. Interestingly, chronic oral administration of 4′-dimethylamino-7,8-dihydroxyflavone and its lead strongly promotes neurogenesis in dentate gyrus and demonstrates marked antidepressant effects. Hence, our data support that the synthetic 4′-dimethylamino-7,8-dihydroxyflavone and its lead both are orally bioavailable TrkB agonists and possess potent antidepressant effects.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    CBC analysis of TrkB agonist-treated mice; structure−activity relationship study; 2,4′-DMA-7,8-DHF is more potent than 7,8-DHF in triggering TrkB activation in primary neurons; TrkB is activated by 7,8-DHF via oral administration in a dose dependent manner. histology exampination of drug-treated mice and control saline-treated mice; cell growth and cytotoxicity assays. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 163 publications.

    1. Chun Chen, Eun H. Ahn, Xia Liu, Zhi-Hao Wang, Shilin Luo, Jianming Liao, Keqiang Ye. Optimized TrkB Agonist Ameliorates Alzheimer’s Disease Pathologies and Improves Cognitive Functions via Inhibiting Delta-Secretase. ACS Chemical Neuroscience 2021, 12 (13) , 2448-2461. https://doi.org/10.1021/acschemneuro.1c00181
    2. R. Gajendra Reddy, Soma Shekar Dachavaram, B. Raghunath Reddy, Kondbarao Balasaheb Kalyankar, Wenson D. Rajan, Scherazad Kootar, Arvind Kumar, Saibal Das, Sumana Chakravarty. Fellutamide B Synthetic Path Intermediates with in Vitro Neuroactive Function Shows Mood-Elevating Effect in Stress-Induced Zebrafish Model. ACS Omega 2018, 3 (9) , 10534-10544. https://doi.org/10.1021/acsomega.8b00456
    3. Qiujie Tang, Zhaogang Bian, Wei Wu, Jin Wang, Ping Xie, Charles U. Pittman, Jr., and Aihua Zhou . Making Flavone Thioethers Using Halides and Powdered Sulfur or Na2S2O3. The Journal of Organic Chemistry 2017, 82 (19) , 10617-10622. https://doi.org/10.1021/acs.joc.7b01320
    4. Vadim Bernard-Gauthier, Arturo Aliaga, Antonio Aliaga, Mehdi Boudjemeline, Robert Hopewell, Alexey Kostikov, Pedro Rosa-Neto, Alexander Thiel, and Ralf Schirrmacher . Syntheses and Evaluation of Carbon-11- and Fluorine-18-Radiolabeled pan-Tropomyosin Receptor Kinase (Trk) Inhibitors: Exploration of the 4-Aza-2-oxindole Scaffold as Trk PET Imaging Agents. ACS Chemical Neuroscience 2015, 6 (2) , 260-276. https://doi.org/10.1021/cn500193f
    5. Amrutha Swaminathan, Manoj Kumar, Sarmistha Halder Sinha, Anne Schneider-Anthony, Anne-Laurence Boutillier, and Tapas K Kundu . Modulation of Neurogenesis by Targeting Epigenetic Enzymes Using Small Molecules: An Overview. ACS Chemical Neuroscience 2014, 5 (12) , 1164-1177. https://doi.org/10.1021/cn500117a
    6. Xia Liu, Chi-Bun Chan, Qi Qi, Ge Xiao, Hongbo R. Luo, Xiaolin He, and Keqiang Ye . Optimization of a Small Tropomyosin-Related Kinase B (TrkB) Agonist 7,8-Dihydroxyflavone Active in Mouse Models of Depression. Journal of Medicinal Chemistry 2012, 55 (19) , 8524-8537. https://doi.org/10.1021/jm301099x
    7. Rengasamy Balakrishnan, Khoshnur Jannat, Dong-Kug Choi. Development of dietary small molecules as multi-targeting treatment strategies for Alzheimer's disease. Redox Biology 2024, 71 , 103105. https://doi.org/10.1016/j.redox.2024.103105
    8. Man-Ru Zhang, Bang-Yun Zuo, Yu-Chen Song, Dan-Dan Guo, Qing-Liu Li, Jin-Xiu Lyu, Hua Zhu, Jing Zhao, Peng-Zhou Hang. BDNF mimetics recover palmitic acid-induced injury in cardiomyocytes by ameliorating Akt-dependent mitochondrial impairments. Toxicology and Applied Pharmacology 2024, 486 , 116951. https://doi.org/10.1016/j.taap.2024.116951
    9. Si-Si Liu, Cong-Xuan Ma, Zheng-Yang Quan, Jing Ding, Liang Yang, Si-Meng Liu, He-Ao Zhang, Hong Qing, Jian-Hua Liang. Discovery of Novel Diphenyl Acrylonitrile Derivatives That Promote Adult Rats’ Hippocampal Neurogenesis. International Journal of Molecular Sciences 2024, 25 (2) , 1241. https://doi.org/10.3390/ijms25021241
    10. Ya-Xin Sun, Yun-Ai Su, Qi Wang, Jia-Ya Zheng, Chen-Chen Zhang, Ting Wang, Xiao Liu, Yu-Nu Ma, Xue-Xin Li, Xian-Qiang Zhang, Xiao-Meng Xie, Xiao-Dong Wang, Ji-Tao Li, Tian-Mei Si. The causal involvement of the BDNF-TrkB pathway in dentate gyrus in early-life stress-induced cognitive deficits in male mice. Translational Psychiatry 2023, 13 (1) https://doi.org/10.1038/s41398-023-02476-5
    11. Jing Zhao, Hua-qing Yu, Feng-qin Ge, Man-ru Zhang, Yu-chen Song, Dan-dan Guo, Qi-hang Li, Hua Zhu, Peng-zhou Hang. 7,8,3′-Trihydroxyflavone prevents doxorubicin-induced cardiotoxicity and mitochondrial dysfunction via activating Akt signaling pathway in H9c2 cells. Cellular Signalling 2023, 112 , 110924. https://doi.org/10.1016/j.cellsig.2023.110924
    12. Henk A. Vink, Dyan Ramekers, Alan C. Foster, Huib Versnel. The efficacy of a TrkB monoclonal antibody agonist in preserving the auditory nerve in deafened guinea pigs. Hearing Research 2023, 439 , 108895. https://doi.org/10.1016/j.heares.2023.108895
    13. Yujin Wang, Jing Liang, Boyu Xu, Jin Yang, Zhourui Wu, Liming Cheng. TrkB/BDNF signaling pathway and its small molecular agonists in CNS injury. Life Sciences 2023, 7 , 122282. https://doi.org/10.1016/j.lfs.2023.122282
    14. Jian-Bin Ge, Bo Jiang, Tian-Shun Shi, Wei-Yu Li, Wei-Jia Chen, Bao-Lun Zhu, Zheng-Hong Qin. Cucurbitacin B Exerts Significant Antidepressant-Like Effects in a Chronic Unpredictable Mild Stress Model of Depression: Involvement of the Hippocampal BDNF-TrkB System. International Journal of Neuropsychopharmacology 2023, 26 (10) , 680-691. https://doi.org/10.1093/ijnp/pyad052
    15. Yanan Wu, Liwen Chen, Feng Zhong, Kaiyi Zhou, Chao Lu, Xiao Cheng, Sheng Wang. Cognitive impairment in patients with heart failure: molecular mechanism and therapy. Heart Failure Reviews 2023, 28 (4) , 807-820. https://doi.org/10.1007/s10741-022-10289-9
    16. Muhammed Fatih Karakaya, Faik Gokalp, Erol Sener, Orhan Tansel Korkmaz. Investigation of the Pharmacokinetic Properties and Theoretical Chemical Activities of 7,8-Dihydroxyflavone and 4'-Dimethylamino-7,8-Dihydroxyflavone. Current Pharmaceutical Analysis 2023, 19 (4) , 317-323. https://doi.org/10.2174/1573412919666230313143549
    17. Gang Sun, Cheng-Hsien Lin, Guiping Mei, Jia Gu, Sheng-Fang Fan, Xiaohong Liu, Ruoxu Liu, Xun-Wei Liu, Xiao-Sen Chen, Cheng Zhou, Xueqing Yi, Peng Jin, Ching-Ping Chang, Xiao-Jing Lin. Recovery of neurosurgical high-frequency electroporation injury in the canine brain can be accelerated by 7,8-dihydroxyflavone. Biomedicine & Pharmacotherapy 2023, 160 , 114372. https://doi.org/10.1016/j.biopha.2023.114372
    18. Makoto Kinoshita, Chisato Fujimoto, Shinichi Iwasaki, Kenji Kondo, Tatsuya Yamasoba. Oral Administration of TrkB Agonist, 7, 8–Dihydroxyflavone Regenerates Hair Cells and Restores Function after Gentamicin–Induced Vestibular Injury in Guinea Pig. Pharmaceutics 2023, 15 (2) , 493. https://doi.org/10.3390/pharmaceutics15020493
    19. Veerta Sharma, Thakur Gurjeet Singh, Amarjot Kaur, Ashi Mannan, Sonia Dhiman. Brain-Derived Neurotrophic Factor: A Novel Dynamically Regulated Therapeutic Modulator in Neurological Disorders. Neurochemical Research 2023, 48 (2) , 317-339. https://doi.org/10.1007/s11064-022-03755-1
    20. Jennifer Holborn, Alicyia Walczyk-Mooradally, Colby Perrin, Begüm Alural, Cara Aitchison, Adina Borenstein, Nina Jones, Jibran Y. Khokhar, Tariq A. Akhtar, Jasmin Lalonde. Interference of neuronal TrkB signaling by the cannabis-derived flavonoids cannflavins A and B. Phytomedicine Plus 2023, 3 (1) , 100410. https://doi.org/10.1016/j.phyplu.2023.100410
    21. Orhan Tansel Korkmaz. Can Brain-derived Neurotrophic Factor (BDNF) Mimetics be a Way Out for Neurodegenerative Diseases?. Current Pharmaceutical Design 2023, 29 (4) , 246-250. https://doi.org/10.2174/1381612829666230127142414
    22. ItzelOrtiz Flores, Samuel Treviño, Alfonso Díaz. Neurotrophic fragments as therapeutic alternatives to ameliorate brain aging. Neural Regeneration Research 2023, 18 (1) , 51. https://doi.org/10.4103/1673-5374.331867
    23. Mohd Aizuddin Mohd Lazaldin, Lidawani Lambuk, Suhana Ahmad, Rohimah Mohamud. Growth factors and their receptors. 2023, 187-243. https://doi.org/10.1016/B978-0-443-18677-6.00005-1
    24. Xin‐Yi Jiang, Xi Wang, Cheng‐Li Yang, Zhi‐Bing Dong. Iodine Promoted Synthesis of S ‐Benzoazolyl Chromones by a Three‐Component One‐Pot Reaction. European Journal of Organic Chemistry 2022, 2022 (46) https://doi.org/10.1002/ejoc.202201196
    25. Jing Xiong, Jianming Liao, Xia Liu, Zhaohui Zhang, Jonathan Adams, Roberto Pacifici, Keqiang Ye. A TrkB agonist prodrug prevents bone loss via inhibiting asparagine endopeptidase and increasing osteoprotegerin. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-32435-5
    26. Plinio Casarotto, Juzoh Umemori, Eero Castrén. BDNF receptor TrkB as the mediator of the antidepressant drug action. Frontiers in Molecular Neuroscience 2022, 15 https://doi.org/10.3389/fnmol.2022.1032224
    27. Wei-Song Xie, Kiran Shehzadi, Hong-Le Ma, Jian-Hua Liang. A Potential Strategy for Treatment of Neurodegenerative Disorders by Regulation of Adult Hippocampal Neurogenesis in Human Brain. Current Medicinal Chemistry 2022, 29 (32) , 5315-5347. https://doi.org/10.2174/0929867329666220509114232
    28. Wahid Zada, Jonathan W. VanRyzin, Miguel Perez‐Pouchoulen, Samantha L. Baglot, Matthew N. Hill, Ghulam Abbas, Sarah M. Clark, Umer Rashid, Margaret M. McCarthy, Abdul Mannan. Fatty acid amide hydrolase inhibition and N‐arachidonoylethanolamine modulation by isoflavonoids: A novel target for upcoming antidepressants. Pharmacology Research & Perspectives 2022, 10 (5) https://doi.org/10.1002/prp2.999
    29. Xiaojing Lin, Tingbao Zhao, Guiping Mei, Ruoxu Liu, Chenyi Li, Xiaowen Wang, Zixuan Qu, Shide Lin, MJ Walker, Xueqing Yi, Peng Zhang, Kuang-Wen Tseng, Xiao-Ming Xu, Cheng-Hsien Lin, Gang Sun. 7,8-Dihydroxyflavone accelerates recovery of Brown-Sequard syndrome in adult female rats with spinal cord lateral hemisection. Biomedicine & Pharmacotherapy 2022, 153 , 113397. https://doi.org/10.1016/j.biopha.2022.113397
    30. Shaojie Yang, Guoqi Zhu. 7,8-Dihydroxyflavone and Neuropsychiatric Disorders: A Translational Perspective from the Mechanism to Drug Development. Current Neuropharmacology 2022, 20 (8) , 1479-1497. https://doi.org/10.2174/1570159X19666210915122820
    31. Ye Tian, Lina Pan, Xin Yuan, Min Xiong, Zhaohui Zhang, Lanxia Meng, Yongfa Zheng, Lihong Bu, Ximing Xu, Zhentao Zhang. 7,8-Dihydroxyflavone ameliorates mitochondrial impairment and motor dysfunction in the α-synuclein 1–103 transgenic mice. Neurobiology of Disease 2022, 169 , 105736. https://doi.org/10.1016/j.nbd.2022.105736
    32. Seong Su Kang, Zhourui Wu, Xia Liu, Laura Edgington-Mitchell, Keqiang Ye. Treating Parkinson's Disease via Activation of BDNF/TrkB Signaling Pathways and Inhibition of Delta-Secretase. Neurotherapeutics 2022, 19 (4) , 1283-1297. https://doi.org/10.1007/s13311-022-01248-1
    33. Vivek Gupta, Nitin Chitranshi, Veer Gupta, Yuyi You, Rashi Rajput, Joao A. Paulo, Mehdi Mirzaei, Maarten van den Buuse, Stuart L. Graham. TrkB Receptor Agonist 7,8 Dihydroxyflavone is Protective Against the Inner Retinal Deficits Induced by Experimental Glaucoma. Neuroscience 2022, 490 , 36-48. https://doi.org/10.1016/j.neuroscience.2022.01.020
    34. Yuan-yuan Fang, Miao Luo, Shuang Yue, Yin Han, Huo-jun Zhang, Yu-hao Zhou, Kui Liu, Hui-guo Liu. 7,8-Dihydroxyflavone protects retinal ganglion cells against chronic intermittent hypoxia-induced oxidative stress damage via activation of the BDNF/TrkB signaling pathway. Sleep and Breathing 2022, 26 (1) , 287-295. https://doi.org/10.1007/s11325-021-02400-5
    35. Asan Yalmaz Hasan Almulla, Rasim Mogulkoc, Abdulkerim Kasim Baltaci, Dervis Dasdelen. Learning, Neurogenesis and Effects of Flavonoids on Learning. Mini-Reviews in Medicinal Chemistry 2022, 22 (2) , 355-364. https://doi.org/10.2174/1389557521666210707120719
    36. Ting Li, Xiao Li, Xi Huang, Hao Yu, Shupeng Li, Zaijun Zhang, Yongmei Xie, Xiangrong Song, Jianjun Liu, Xifei Yang, Gongping Liu. Mitochondriomics reveals the underlying neuroprotective mechanism of TrkB receptor agonist R13 in the 5×FAD mice. Neuropharmacology 2022, 204 , 108899. https://doi.org/10.1016/j.neuropharm.2021.108899
    37. Marco Emili, Sandra Guidi, Beatrice Uguagliati, Andrea Giacomini, Renata Bartesaghi, Fiorenza Stagni. Treatment with the flavonoid 7,8-Dihydroxyflavone: a promising strategy for a constellation of body and brain disorders. Critical Reviews in Food Science and Nutrition 2022, 62 (1) , 13-50. https://doi.org/10.1080/10408398.2020.1810625
    38. Makoto Naoi, Wakako Maruyama, Peter Riederer. TCM Substances in Neuropsychopharmacotherapy: Basic Aspects with a Focus on Depression. 2022, 415-449. https://doi.org/10.1007/978-3-030-62059-2_394
    39. Madeline Nicholson, SangWon Yoo, Georgina A. Craig, Simon S. Murray, Jessica L. Fletcher. BDNF-TrkB Signaling in Lifelong Central Nervous System Myelination and Myelin Repair. 2022, 95-122. https://doi.org/10.1007/978-3-031-15080-7_219
    40. Yulia V. Vakhitova, Tatiana S. Kalinina, Liana F. Zainullina, Anastasiya Yu. Lusta, Anna V. Volkova, Nikita V. Kudryashov, Tatiana A. Gudasheva, Alexander A. Shimshirt, Ilya A. Kadnikov, Mikhail V. Voronin, Sergei B. Seredenin. Analysis of Antidepressant-like Effects and Action Mechanisms of GSB-106, a Small Molecule, Affecting the TrkB Signaling. International Journal of Molecular Sciences 2021, 22 (24) , 13381. https://doi.org/10.3390/ijms222413381
    41. Fiorenza Stagni, Beatrice Uguagliati, Marco Emili, Andrea Giacomini, Renata Bartesaghi, Sandra Guidi. The flavonoid 7,8-DHF fosters prenatal brain proliferation potency in a mouse model of Down syndrome. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-85284-5
    42. Caridad Galindo-Romero, Beatriz Vidal-Villegas, Javier Asís-Martínez, Fernando Lucas-Ruiz, Alejandro Gallego-Ortega, Manuel Vidal-Sanz. 7,8-Dihydroxiflavone Protects Adult Rat Axotomized Retinal Ganglion Cells through MAPK/ERK and PI3K/AKT Activation. International Journal of Molecular Sciences 2021, 22 (19) , 10896. https://doi.org/10.3390/ijms221910896
    43. Jianming Liao, Chun Chen, Eun Hee Ahn, Xia Liu, Hua Li, Laura E. Edgington-Mitchell, Zhonghua Lu, Shuping Ming, Keqiang Ye. Targeting both BDNF/TrkB pathway and delta-secretase for treating Alzheimer's disease. Neuropharmacology 2021, 197 , 108737. https://doi.org/10.1016/j.neuropharm.2021.108737
    44. Beatriz Vidal-Villegas, Johnny Di Pierdomenico, Alejandro Gallego-Ortega, Caridad Galindo-Romero, Jose M. Martínez-de-la-Casa, Julian García-Feijoo, María P. Villegas-Pérez, Manuel Vidal-Sanz. Systemic treatment with 7,8-Dihydroxiflavone activates TtkB and affords protection of two different retinal ganglion cell populations against axotomy in adult rats. Experimental Eye Research 2021, 210 , 108694. https://doi.org/10.1016/j.exer.2021.108694
    45. Rajib Paul, Joyobrato Nath, Satinath Paul, Muhammed Khairujjaman Mazumder, Banashree Chetia Phukan, Rubina Roy, Pallab Bhattacharya, Anupom Borah. Suggesting 7,8-dihydroxyflavone as a promising nutraceutical against CNS disorders. Neurochemistry International 2021, 148 , 105068. https://doi.org/10.1016/j.neuint.2021.105068
    46. Tatiana A. Gudasheva, Polina Y. Povarnina, Aleksey V. Tarasiuk, Sergey B. Seredenin. Low‐molecular mimetics of nerve growth factor and brain‐derived neurotrophic factor: Design and pharmacological properties. Medicinal Research Reviews 2021, 41 (5) , 2746-2774. https://doi.org/10.1002/med.21721
    47. Piotr Pankiewicz, Marcin Szybiński, Katarzyna Kisielewska, Filip Gołębiowski, Patryk Krzemiński, Izabela Rutkowska-Włodarczyk, Rafał Moszczyński-Pętkowski, Lidia Gurba-Bryśkiewicz, Monika Delis, Krzysztof Mulewski, Damian Smuga, Jakub Dominowski, Artur Janusz, Michał Górka, Krzysztof Abramski, Agnieszka Napiórkowska, Marcin Nowotny, Krzysztof Dubiel, Katarzyna Kalita, Maciej Wieczorek, Jerzy Pieczykolan, Mikołaj Matłoka. Do Small Molecules Activate the TrkB Receptor in the Same Manner as BDNF? Limitations of Published TrkB Low Molecular Agonists and Screening for Novel TrkB Orthosteric Agonists. Pharmaceuticals 2021, 14 (8) , 704. https://doi.org/10.3390/ph14080704
    48. Emily J. Jaehne, Elaine Mei San Chong, Alyssa Sbisa, Brendan Gillespie, Rachel Hill, Andrea Gogos, Maarten van den Buuse. TrkB agonist 7,8-dihydroxyflavone reverses an induced prepulse inhibition deficit selectively in maternal immune activation offspring: implications for schizophrenia. Behavioural Pharmacology 2021, 32 (5) , 404-412. https://doi.org/10.1097/FBP.0000000000000632
    49. Jessica E. Malberg, René Hen, Torsten M. Madsen. Adult Neurogenesis and Antidepressant Treatment: The Surprise Finding by Ron Duman and the Field 20 Years Later. Biological Psychiatry 2021, 90 (2) , 96-101. https://doi.org/10.1016/j.biopsych.2021.01.010
    50. Billie J. Matchett, Lea T. Grinberg, Panos Theofilas, Melissa E. Murray. The mechanistic link between selective vulnerability of the locus coeruleus and neurodegeneration in Alzheimer’s disease. Acta Neuropathologica 2021, 141 (5) , 631-650. https://doi.org/10.1007/s00401-020-02248-1
    51. Shizuka Mei Bautista Maezono, Hari Datta Khanal, Priyanka Chaudhary, Ga Eul Park, Yong Rok Lee. In( III )‐Catalyzed O ‐Annulation of Cyclic Diazodicarbonyls with 2‐Naphthol , 6‐Quinolinol , β‐Tetralone , and 9‐Phenanthrol to Access Diverse Benzochromones. Bulletin of the Korean Chemical Society 2021, 42 (3) , 533-536. https://doi.org/10.1002/bkcs.12207
    52. Madeline Nicholson, SangWon Yoo, Georgina A. Craig, Simon S. Murray, Jessica L. Fletcher. BDNF-TrkB Signaling in Lifelong Central Nervous System Myelination and Myelin Repair. 2021, 1-28. https://doi.org/10.1007/978-3-030-71519-9_219-1
    53. Makoto Naoi, Wakako Maruyama, Peter Riederer. TCM Substances in Neuropsychopharmacotherapy: Basic Aspects with a Focus on Depression. 2021, 1-36. https://doi.org/10.1007/978-3-319-56015-1_394-1
    54. You Jung Kang, Yen N. Diep, Minh Tran, Hansang Cho. Therapeutic Targeting Strategies for Early- to Late-Staged Alzheimer’s Disease. International Journal of Molecular Sciences 2020, 21 (24) , 9591. https://doi.org/10.3390/ijms21249591
    55. Thangavel Mohankumar, Vivek Chandramohan, Haralur Shankaraiah Lalithamba, Richard L. Jayaraj, Poomani Kumaradhas, Magudeeswaran Sivanandam, Govindasamy Hunday, Rajendran Vijayakumar, Rangasamy Balakrishnan, Dharmar Manimaran, Namasivayam Elangovan. Design and Molecular dynamic Investigations of 7,8-Dihydroxyflavone Derivatives as Potential Neuroprotective Agents Against Alpha-synuclein. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-57417-9
    56. Natalia Cichon, Joanna Saluk-Bijak, Leslaw Gorniak, Lukasz Przyslo, Michal Bijak. Flavonoids as a Natural Enhancer of Neuroplasticity—An Overview of the Mechanism of Neurorestorative Action. Antioxidants 2020, 9 (11) , 1035. https://doi.org/10.3390/antiox9111035
    57. Henk A. Vink, Willem C. van Dorp, Hans G. X. M. Thomeer, Huib Versnel, Dyan Ramekers. BDNF Outperforms TrkB Agonist 7,8,3′-THF in Preserving the Auditory Nerve in Deafened Guinea Pigs. Brain Sciences 2020, 10 (11) , 787. https://doi.org/10.3390/brainsci10110787
    58. Thangavel Mohankumar, Haralur Shankaraiah Lalithamba, Krishnan Manigandan, Arunachalam Muthaiyan, Namasivayam Elangovan. DHF-BAHPC molecule exerts ameliorative antioxidant status and reduced cadmium-induced toxicity in zebrafish (Danio rerio) embryos. Environmental Toxicology and Pharmacology 2020, 79 , 103425. https://doi.org/10.1016/j.etap.2020.103425
    59. Marta Zagrebelsky, Charlotte Tacke, Martin Korte. BDNF signaling during the lifetime of dendritic spines. Cell and Tissue Research 2020, 382 (1) , 185-199. https://doi.org/10.1007/s00441-020-03226-5
    60. Claudia Frick, Stefan Fink, Dominik Schmidbauer, Francis Rousset, Holger Eickhoff, Anke Tropitzsch, Benedikt Kramer, Pascal Senn, Rudolf Glueckert, Helge Rask-Andersen, Karl-Heinz Wiesmüller, Hubert Löwenheim, Marcus Müller. Age-Dependency of Neurite Outgrowth in Postnatal Mouse Cochlear Spiral Ganglion Explants. Brain Sciences 2020, 10 (9) , 580. https://doi.org/10.3390/brainsci10090580
    61. A. G. Mezhlumyan, A. V. Tallerova, P. Yu. Povarnina, N. M. Sazonova, A. V. Tarasiuk, T. A. Gudasheva. Screening study of nerve growth factor's and brain-derived neurotrophic factor's mimetics effects at the experimental depression model. Pharmacokinetics and Pharmacodynamics 2020, (1) , 11-17. https://doi.org/10.37489/2587-7836-2020-1-11-17
    62. Jakub Benko, Stanislava Vranková. Natural Psychoplastogens As Antidepressant Agents. Molecules 2020, 25 (5) , 1172. https://doi.org/10.3390/molecules25051172
    63. Wen-yuan Li, Hua Jia, Zhen-Dong Wang, Feng-guo Zhai, Guang-da Sun, Duo Ma, Gui-Bo Liu, Chun-Mei Li, Ying Wang. Combinatory transplantation of mesenchymal stem cells with flavonoid small molecule in acellular nerve graft promotes sciatic nerve regeneration. Journal of Tissue Engineering 2020, 11 , 204173142098013. https://doi.org/10.1177/2041731420980136
    64. Jin. Regulation of BDNF-TrkB Signaling and Potential Therapeutic Strategies for Parkinson’s Disease. Journal of Clinical Medicine 2020, 9 (1) , 257. https://doi.org/10.3390/jcm9010257
    65. Chi Bun Chan, Palak Ahuja, Keqiang Ye. Developing Insulin and BDNF Mimetics for Diabetes Therapy. Current Topics in Medicinal Chemistry 2019, 19 (24) , 2188-2204. https://doi.org/10.2174/1568026619666191010160643
    66. Shuguang Wang, Xiangyu Meng, Yuxing Wang, Yemao Liu, Jingbo Xia. HPO-Shuffle: an associated gene prioritization strategy and its application in drug repurposing for the treatment of canine epilepsy. Bioscience Reports 2019, 39 (9) https://doi.org/10.1042/BSR20191247
    67. N. A. Sinyakova, E. Y. Bazhenova, D. V. Bazovkina, A. V. Kulikov. Effects of the TrkB Receptor Agonist 7,8-Dihydroxyflavone on the Serotonin System and the Genes Encoding BDNF, TrkB, and Bax in the Mouse Brain. Neuroscience and Behavioral Physiology 2019, 49 (6) , 672-678. https://doi.org/10.1007/s11055-019-00786-0
    68. Tatiana A. Gudasheva, Polina Povarnina, Alexey V. Tarasiuk, Sergey B. Seredenin. The Low Molecular Weight Brain-derived Neurotrophic Factor Mimetics with Antidepressant-like Activity. Current Pharmaceutical Design 2019, 25 (6) , 729-737. https://doi.org/10.2174/1381612825666190329122852
    69. Andrea Giacomini, Fiorenza Stagni, Marco Emili, Beatrice Uguagliati, Roberto Rimondini, Renata Bartesaghi, Sandra Guidi. Timing of Treatment with the Flavonoid 7,8-DHF Critically Impacts on Its Effects on Learning and Memory in the Ts65Dn Mouse. Antioxidants 2019, 8 (6) , 163. https://doi.org/10.3390/antiox8060163
    70. Elisa Ren, Vincenzo Roncacé, Stefania Trazzi, Claudia Fuchs, Giorgio Medici, Laura Gennaccaro, Manuela Loi, Giuseppe Galvani, Keqiang Ye, Roberto Rimondini, Giorgio Aicardi, Elisabetta Ciani. Functional and Structural Impairments in the Perirhinal Cortex of a Mouse Model of CDKL5 Deficiency Disorder Are Rescued by a TrkB Agonist. Frontiers in Cellular Neuroscience 2019, 13 https://doi.org/10.3389/fncel.2019.00169
    71. Yoshiko Furukawa, Atsushi Sawamoto, Mizuki Yamaoka, Makiko Nakaya, Yuhzo Hieda, Tominari Choshi, Noriyuki Hatae, Satoshi Okuyama, Mitsunari Nakajima, Satoshi Hibino. Effects of Carbazole Derivatives on Neurite Outgrowth and Hydrogen Peroxide-Induced Cytotoxicity in Neuro2a Cells. Molecules 2019, 24 (7) , 1366. https://doi.org/10.3390/molecules24071366
    72. Ralf Schirrmacher, Justin J. Bailey, Andrew V. Mossine, Peter J. H. Scott, Lena Kaiser, Peter Bartenstein, Simon Lindner, David R. Kaplan, Alexey Kostikov, Gert Fricker, Anne Mahringer, Pedro Rosa-Neto, Esther Schirrmacher, Carmen Wängler, Björn Wängler, Alexander Thiel, Jean-Paul Soucy, Vadim Bernard-Gauthier. Radioligands for Tropomyosin Receptor Kinase (Trk) Positron Emission Tomography Imaging. Pharmaceuticals 2019, 12 (1) , 7. https://doi.org/10.3390/ph12010007
    73. Miao Wang, Bo-Cheng Tang, Jin-Tian Ma, Zi-Xuan Wang, Jia-Chen Xiang, Yan-Dong Wu, Jun-Gang Wang, An-Xin Wu. I 2 /DMSO-mediated multicomponent reaction of o -hydroxyaryl methyl ketones, rongalite, and DMSO: access to C3-sulfenylated chromones. Organic & Biomolecular Chemistry 2019, 17 (6) , 1535-1541. https://doi.org/10.1039/C8OB02994F
    74. Valentina Uivarosi, Alexandra-Cristina Munteanu, George Mihai Nițulescu. An Overview of Synthetic and Semisynthetic Flavonoid Derivatives and Analogues: Perspectives in Drug Discovery. 2019, 29-84. https://doi.org/10.1016/B978-0-444-64181-6.00002-4
    75. B. Uguagliati, F. Stagni, A. Giacomini, M. Emili, S. Guidi, R. Bartesaghi. P.4.07 Prenatal therapy with a BDNF mimetic elicits a widespread rescue of neurogenesis in a mouse model of Down syndrome. European Neuropsychopharmacology 2019, 29 , S705-S706. https://doi.org/10.1016/j.euroneuro.2019.01.097
    76. Jing Zhao, Jingjing Du, Yang Pan, Tingting Chen, Lihui Zhao, Yanmeng Zhu, Yingfu Chen, Yuyang Zheng, Yu Liu, Lihua Sun, Pengzhou Hang, Zhimin Du. Activation of cardiac TrkB receptor by its small molecular agonist 7,8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation. Free Radical Biology and Medicine 2019, 130 , 557-567. https://doi.org/10.1016/j.freeradbiomed.2018.11.024
    77. Katsunori Kobayashi, Hidenori Suzuki. Synapse‐selective rapid potentiation of hippocampal synaptic transmission by 7,8‐dihydroxyflavone. Neuropsychopharmacology Reports 2018, 38 (4) , 197-203. https://doi.org/10.1002/npr2.12033
    78. Marion J. F. Levy, Fabien Boulle, Harry W. Steinbusch, Daniël L. A. van den Hove, Gunter Kenis, Laurence Lanfumey. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology 2018, 235 (8) , 2195-2220. https://doi.org/10.1007/s00213-018-4950-4
    79. Wei Han, Yu Zhu, Binchuan Chen, Subing Liu, Yalong Dang. 7,8,3′-Trihydroxyflavone ameliorate oxidative stress in vivo and promotes neurite regeneration in vitro in rat retinal ganglion cells. European Journal of Pharmacology 2018, 833 , 283-289. https://doi.org/10.1016/j.ejphar.2018.06.007
    80. Xiu-Ling Zhu, Jing-Jing Chen, Fei Han, Chuan Pan, Ting-Ting Zhuang, Ya-Fei Cai, Ya-Ping Lu. Novel antidepressant effects of Paeonol alleviate neuronal injury with concomitant alterations in BDNF, Rac1 and RhoA levels in chronic unpredictable mild stress rats. Psychopharmacology 2018, 235 (7) , 2177-2191. https://doi.org/10.1007/s00213-018-4915-7
    81. Nurgul Aytan, Ji-Kyung Choi, Isabel Carreras, Leah Crabtree, Brian Nguyen, Margaret Lehar, Jan Krzysztof Blusztajn, Bruce G. Jenkins, Alpaslan Dedeoglu. Protective effects of 7,8-dihydroxyflavone on neuropathological and neurochemical changes in a mouse model of Alzheimer's disease. European Journal of Pharmacology 2018, 828 , 9-17. https://doi.org/10.1016/j.ejphar.2018.02.045
    82. Victor Faundez, Ilario De Toma, Barbara Bardoni, Renata Bartesaghi, Dean Nizetic, Rafael de la Torre, Roi Cohen Kadosh, Yann Herault, Mara Dierssen, Marie-Claude Potier, Stylianos Antonarakis, Renata Bartesaghi, Andrea Contestabile, Tonnie Coppus, Peter De Deyn, Alain Dekker, Jean-Maurice Delabar, Mara Dierssen, Elisabeth Fisher, Yann Hérault, Carmen Martinez-Cué, Marie-Claude Potier, Andre Strydom. Translating molecular advances in Down syndrome and Fragile X syndrome into therapies. European Neuropsychopharmacology 2018, 28 (6) , 675-690. https://doi.org/10.1016/j.euroneuro.2018.03.006
    83. Leili Jalili-Baleh, Elaheh Babaei, Shahin Abdpour, Syed Nasir Abbas Bukhari, Alireza Foroumadi, Ali Ramazani, Mohammad Sharifzadeh, Mohammad Abdollahi, Mehdi Khoobi. A review on flavonoid-based scaffolds as multi-target-directed ligands (MTDLs) for Alzheimer's disease. European Journal of Medicinal Chemistry 2018, 152 , 570-589. https://doi.org/10.1016/j.ejmech.2018.05.004
    84. Ramesh Prasad Pandey, Prakash Parajuli, Anaya Raj Pokhrel, Jae Kyung Sohng. Biosynthesis of novel 7,8‐dihydroxyflavone glycoside derivatives and in silico study of their effects on BACE1 inhibition. Biotechnology and Applied Biochemistry 2018, 65 (2) , 128-137. https://doi.org/10.1002/bab.1570
    85. Chun Chen, Zhihao Wang, Zhentao Zhang, Xia Liu, Seong Su Kang, Ying Zhang, Keqiang Ye. The prodrug of 7,8-dihydroxyflavone development and therapeutic efficacy for treating Alzheimer’s disease. Proceedings of the National Academy of Sciences 2018, 115 (3) , 578-583. https://doi.org/10.1073/pnas.1718683115
    86. Manjinder Singh, Om Silakari. Flavone. 2018, 133-174. https://doi.org/10.1016/B978-0-08-102083-8.00004-2
    87. Tomáš Pluskal, Jing-Ke Weng. Natural product modulators of human sensations and mood: molecular mechanisms and therapeutic potential. Chemical Society Reviews 2018, 47 (5) , 1592-1637. https://doi.org/10.1039/C7CS00411G
    88. Narjes Baazaoui, Khalid Iqbal. Prevention of dendritic and synaptic deficits and cognitive impairment with a neurotrophic compound. Alzheimer's Research & Therapy 2017, 9 (1) https://doi.org/10.1186/s13195-017-0273-7
    89. Fiorenza Stagni, Andrea Giacomini, Sandra Guidi, Marco Emili, Beatrice Uguagliati, Maria Elisa Salvalai, Valeria Bortolotto, Mariagrazia Grilli, Roberto Rimondini, Renata Bartesaghi. A flavonoid agonist of the TrkB receptor for BDNF improves hippocampal neurogenesis and hippocampus-dependent memory in the Ts65Dn mouse model of DS. Experimental Neurology 2017, 298 , 79-96. https://doi.org/10.1016/j.expneurol.2017.08.018
    90. Martina Parrini, Diego Ghezzi, Gabriele Deidda, Lucian Medrihan, Enrico Castroflorio, Micol Alberti, Pietro Baldelli, Laura Cancedda, Andrea Contestabile. Aerobic exercise and a BDNF-mimetic therapy rescue learning and memory in a mouse model of Down syndrome. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-17201-8
    91. Jian-Hua Liang, Liang Yang, Si Wu, Si-Si Liu, Mark Cushman, Jing Tian, Nuo-Min Li, Qing-Hu Yang, He-Ao Zhang, Yun-Jie Qiu, Lin Xiang, Cong-Xuan Ma, Xue-Meng Li, Hong Qing. Discovery of efficient stimulators for adult hippocampal neurogenesis based on scaffolds in dragon's blood. European Journal of Medicinal Chemistry 2017, 136 , 382-392. https://doi.org/10.1016/j.ejmech.2017.05.025
    92. Gerardo García-Díaz Barriga, Albert Giralt, Marta Anglada-Huguet, Nuria Gaja-Capdevila, Javier G. Orlandi, Jordi Soriano, Josep-Maria Canals, Jordi Alberch. 7,8-dihydroxyflavone ameliorates cognitive and motor deficits in a Huntington’s disease mouse model through specific activation of the PLCγ1 pathway. Human Molecular Genetics 2017, 72 https://doi.org/10.1093/hmg/ddx198
    93. Narjes Baazaoui, Khalid Iqbal. Prevention of Amyloid-β and Tau Pathologies, Associated Neurodegeneration, and Cognitive Deficit by Early Treatment with a Neurotrophic Compound. Journal of Alzheimer's Disease 2017, 58 (1) , 215-230. https://doi.org/10.3233/JAD-170075
    94. Xiaoting Wang, Jennifer Lynn Romine, Xiang Gao, Jinhui Chen. Aging impairs dendrite morphogenesis of newborn neurons and is rescued by 7, 8-dihydroxyflavone. Aging Cell 2017, 16 (2) , 304-311. https://doi.org/10.1111/acel.12553
    95. J. Romeika, M. Wurzelmann, D. Sun. TrkB Receptor Agonist 7,8-Dihydroxyflavone and Its Therapeutic Potential for Traumatic Brain Injury. 2017, 225-234. https://doi.org/10.1016/B978-0-12-802686-1.00014-6
    96. Sylvia Josephy-Hernandez, Sean Jmaeff, Iulia Pirvulescu, Tahar Aboulkassim, H. Uri Saragovi. Neurotrophin receptor agonists and antagonists as therapeutic agents: An evolving paradigm. Neurobiology of Disease 2017, 97 , 139-155. https://doi.org/10.1016/j.nbd.2016.08.004
    97. Lucian Hritcu, Radu Ionita, Paula Alexandra Postu, Girish Kumar Gupta, Hasan Turkez, Tamires Cardoso Lima, Caroline Uchôa Souza Carvalho, Damião Pergentino de Sousa. Antidepressant Flavonoids and Their Relationship with Oxidative Stress. Oxidative Medicine and Cellular Longevity 2017, 2017 , 1-18. https://doi.org/10.1155/2017/5762172
    98. Mary Wurzelmann, Jennifer Romeika, Dong Sun. Therapeutic potential of brain-derived neurotrophic factor (BDNF) and a small molecular mimics of BDNF for traumatic brain injury. Neural Regeneration Research 2017, 12 (1) , 7. https://doi.org/10.4103/1673-5374.198964
    99. Min-Wang Zhang, She-feng Zhang, Zhen-Hua Li, Fang Han. 7,8-Dihydroxyflavone reverses the depressive symptoms in mouse chronic mild stress. Neuroscience Letters 2016, 635 , 33-38. https://doi.org/10.1016/j.neulet.2016.10.035
    100. Chaoyang Liu, Chi Bun Chan, Keqiang Ye. 7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders. Translational Neurodegeneration 2016, 5 (1) https://doi.org/10.1186/s40035-015-0048-7
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect