ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Absolute Binding Free Energies:  A Quantitative Approach for Their Calculation

View Author Information
Molecular Dynamics and Biomolecular Simulation Group, Department of Theoretical Chemistry and Molecular Structural Biology, University of Vienna, Währingerstrasse 17, 1090 Vienna, Austria
Laboratoire de Chimie Biophysique, ISIS, Université Louis Pasteur, 67000 Strasbourg, France, and Department of Chemical Biology, 12 Oxford Street, Harvard University, Cambridge, Massachusetts 02138
Cite this: J. Phys. Chem. B 2003, 107, 35, 9535–9551
Publication Date (Web):August 13, 2003
https://doi.org/10.1021/jp0217839
Copyright © 2003 American Chemical Society

    Article Views

    6634

    Altmetric

    -

    Citations

    420
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    The computation of absolute binding affinities by molecular dynamics (MD) based free energy simulations is analyzed, and an exact method to carry out such a computation is presented. The key to obtaining converged results is the introduction of suitable, auxiliary restraints to prevent the ligand from leaving the binding site when the native ligand−receptor interactions are turned off alchemically. We describe a versatile set of restraints that (i) can be used in MD simulations, that (ii) restricts both the position and the orientation of the ligand, and that (iii) is defined relative to the receptor rather than relative to a fixed point in space. The free energy cost, ΔAr, for this set of restraints can be evaluated analytically. Although the techniques were originally developed for the gas phase, the resulting expression is exact, since all contributions from solute−solvent interactions cancel from the final result. The value of ΔAr depends only on the equilibrium values and force constants of the chosen harmonic restraint terms and, therefore, can be easily calculated. The standard state dependence of binding free energies is also investigated, and it is shown that the present approach takes this into account correctly. The analytical expression for ΔAr is verified numerically by calculations on the complex formed by benzene with the L99A mutant of T4 lysozyme. The overall approach is illustrated by a complete binding free energy calculation for a complex based on a simplified model for tyrosine bound to tyrosyl-tRNA-synthetase. The results demonstrate the usefulness of the proposed set of restraints and confirm that the calculated binding free energy is independent of the details of the restraints. Comparisons are made with earlier formulations for the calculation of binding free energies, and certain limitations of that work are described. The relationship between ΔAr and the loss of translational and rotational entropy during a binding process is analyzed.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     To whom correspondence should be addressed. E-mail:  [email protected]. E-mail:  [email protected]. Web site:  http://www.mdy.univie.ac.at/en/sbhome.html.

    Supporting Information Available

    ARTICLE SECTIONS
    Jump To

    Explicit expressions for the translational, rotational, and vibrational free energy contributions. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 420 publications.

    1. Luis Macaya, Duván González, Esteban Vöhringer-Martinez. Nonbonded Force Field Parameters from MBIS Partitioning of the Molecular Electron Density Improve Binding Affinity Predictions of the T4-Lysozyme Double Mutant. Journal of Chemical Information and Modeling 2024, 64 (8) , 3269-3277. https://doi.org/10.1021/acs.jcim.3c01912
    2. Stefan Boresch. On Analytical Corrections for Restraints in Absolute Binding Free Energy Calculations. Journal of Chemical Information and Modeling 2024, Article ASAP.
    3. Christopher M. Summa, Dillon P. Langford, Sam H. Dinshaw, Jennifer Webb, Steven W. Rick. Calculations of Absolute Free Energies, Enthalpies, and Entropies for Drug Binding. Journal of Chemical Theory and Computation 2024, 20 (7) , 2812-2819. https://doi.org/10.1021/acs.jctc.4c00057
    4. Maurice Karrenbrock, Valerio Rizzi, Piero Procacci, Francesco Luigi Gervasio. Addressing Suboptimal Poses in Nonequilibrium Alchemical Calculations. The Journal of Physical Chemistry B 2024, 128 (7) , 1595-1605. https://doi.org/10.1021/acs.jpcb.3c06516
    5. Jeffry Setiadi, Simon Boothroyd, David R. Slochower, David L. Dotson, Matthew W. Thompson, Jeffrey R. Wagner, Lee-Ping Wang, Michael K. Gilson. Tuning Potential Functions to Host–Guest Binding Data. Journal of Chemical Theory and Computation 2024, 20 (1) , 239-252. https://doi.org/10.1021/acs.jctc.3c01050
    6. Huaxin Zhou, Haohao Fu, Xueguang Shao, Wensheng Cai. Binding Thermodynamics of Fourth-Generation EGFR Inhibitors Revealed by Absolute Binding Free Energy Calculations. Journal of Chemical Information and Modeling 2023, 63 (24) , 7837-7846. https://doi.org/10.1021/acs.jcim.3c01636
    7. Runduo Liu, Wenchao Li, Yufen Yao, Yinuo Wu, Hai-Bin Luo, Zhe Li. Accelerating and Automating the Free Energy Perturbation Absolute Binding Free Energy Calculation with the RED-E Function. Journal of Chemical Information and Modeling 2023, 63 (24) , 7755-7767. https://doi.org/10.1021/acs.jcim.3c01670
    8. Naoki Ogawa, Masateru Ohta, Mitsunori Ikeguchi. Conformational Selectivity of ITK Inhibitors: Insights from Molecular Dynamics Simulations. Journal of Chemical Information and Modeling 2023, 63 (24) , 7860-7872. https://doi.org/10.1021/acs.jcim.3c01352
    9. Haohao Fu, Christophe Chipot, Xueguang Shao, Wensheng Cai. Standard Binding Free-Energy Calculations: How Far Are We from Automation?. The Journal of Physical Chemistry B 2023, 127 (49) , 10459-10468. https://doi.org/10.1021/acs.jpcb.3c04370
    10. Darrin M. York. Modern Alchemical Free Energy Methods for Drug Discovery Explained. ACS Physical Chemistry Au 2023, 3 (6) , 478-491. https://doi.org/10.1021/acsphyschemau.3c00033
    11. Michail Papadourakis, Hryhory Sinenka, Pierre Matricon, Jérôme Hénin, Grace Brannigan, Laura Pérez-Benito, Vineet Pande, Herman van Vlijmen, Chris de Graaf, Francesca Deflorian, Gary Tresadern, Marco Cecchini, Zoe Cournia. Alchemical Free Energy Calculations on Membrane-Associated Proteins. Journal of Chemical Theory and Computation 2023, 19 (21) , 7437-7458. https://doi.org/10.1021/acs.jctc.3c00365
    12. Jorge Enrique Hernández González, Alexandre Suman de Araujo. Alchemical Calculation of Relative Free Energies for Charge-Changing Mutations at Protein–Protein Interfaces Considering Fixed and Variable Protonation States. Journal of Chemical Information and Modeling 2023, 63 (21) , 6807-6822. https://doi.org/10.1021/acs.jcim.3c00972
    13. Mohammad M. Ghahremanpour, Anastasia Saar, Julian Tirado-Rives, William L. Jorgensen. Computation of Absolute Binding Free Energies for Noncovalent Inhibitors with SARS-CoV-2 Main Protease. Journal of Chemical Information and Modeling 2023, 63 (16) , 5309-5318. https://doi.org/10.1021/acs.jcim.3c00874
    14. Hannah M. Baumann, Eric Dybeck, Christopher L. McClendon, Frank C. Pickard, IV, Vytautas Gapsys, Laura Pérez-Benito, David F. Hahn, Gary Tresadern, Alan M. Mathiowetz, David L. Mobley. Broadening the Scope of Binding Free Energy Calculations Using a Separated Topologies Approach. Journal of Chemical Theory and Computation 2023, 19 (15) , 5058-5076. https://doi.org/10.1021/acs.jctc.3c00282
    15. Hesam Arabzadeh, Joseph M. Sperling, Orlando Acevedo, Thomas E. Albrecht-Schönzart. Free Energy Calculations and Conformational Analysis of Dibenzo-30-crown-10 with Sm2+, Eu2+, and Three Halide Salts in THF Using the AMOEBA Force Field. The Journal of Physical Chemistry B 2023, 127 (25) , 5676-5683. https://doi.org/10.1021/acs.jpcb.3c01800
    16. Finlay Clark, Graeme Robb, Daniel J. Cole, Julien Michel. Comparison of Receptor–Ligand Restraint Schemes for Alchemical Absolute Binding Free Energy Calculations. Journal of Chemical Theory and Computation 2023, 19 (12) , 3686-3704. https://doi.org/10.1021/acs.jctc.3c00139
    17. Silvana Vasile, Katarina Roos. Understanding the Structure–Activity Relationship through Density Functional Theory: A Simple Method Predicts Relative Binding Free Energies of Metalloenzyme Fragment-like Inhibitors. ACS Omega 2023, 8 (24) , 21438-21449. https://doi.org/10.1021/acsomega.2c08156
    18. Oriol Gracia Carmona, Michael Gillhofer, Lisa Tomasiak, Anita De Ruiter, Chris Oostenbrink. Accelerated Enveloping Distribution Sampling to Probe the Presence of Water Molecules. Journal of Chemical Theory and Computation 2023, 19 (11) , 3379-3390. https://doi.org/10.1021/acs.jctc.3c00109
    19. Wei Chen, Di Cui, Steven V. Jerome, Mayako Michino, Eelke B. Lenselink, David J. Huggins, Alexandre Beautrait, Jeremie Vendome, Robert Abel, Richard A. Friesner, Lingle Wang. Enhancing Hit Discovery in Virtual Screening through Absolute Protein–Ligand Binding Free-Energy Calculations. Journal of Chemical Information and Modeling 2023, 63 (10) , 3171-3185. https://doi.org/10.1021/acs.jcim.3c00013
    20. Ernest Awoonor-Williams, Callum J. Dickson, Pascal Furet, Andrei A. Golosov, Viktor Hornak. Leveraging Advanced In Silico Techniques in Early Drug Discovery: A Study of Potent Small-Molecule YAP-TEAD PPI Disruptors. Journal of Chemical Information and Modeling 2023, 63 (8) , 2520-2531. https://doi.org/10.1021/acs.jcim.3c00122
    21. Haohao Fu, Christophe Chipot, Xueguang Shao, Wensheng Cai. Achieving Accurate Standard Protein–Protein Binding Free Energy Calculations through the Geometrical Route and Ergodic Sampling. Journal of Chemical Information and Modeling 2023, 63 (8) , 2512-2519. https://doi.org/10.1021/acs.jcim.3c00487
    22. Filipp Gusev, Evgeny Gutkin, Maria G. Kurnikova, Olexandr Isayev. Active Learning Guided Drug Design Lead Optimization Based on Relative Binding Free Energy Modeling. Journal of Chemical Information and Modeling 2023, 63 (2) , 583-594. https://doi.org/10.1021/acs.jcim.2c01052
    23. Fábio P. S. Souza, Germano Heinzelmann, Giovanni F. Caramori. Investigating the Solvent Effects on Binding Affinity of PAHs–ExBox4+ Complexes: An Alchemical Approach. The Journal of Physical Chemistry B 2023, 127 (1) , 249-260. https://doi.org/10.1021/acs.jpcb.2c06271
    24. Oriol Gracia Carmona, Chris Oostenbrink. Accelerated Enveloping Distribution Sampling (AEDS) Allows for Efficient Sampling of Orthogonal Degrees of Freedom. Journal of Chemical Information and Modeling 2023, 63 (1) , 197-207. https://doi.org/10.1021/acs.jcim.2c01272
    25. Krystel El Hage, Giovanni Ribaudo, Louis Lagardère, Alberto Ongaro, Philippe H. Kahn, Luc Demange, Jean-Philip Piquemal, Giuseppe Zagotto, Nohad Gresh. Targeting the Major Groove of the Palindromic d(GGCGCC)2 Sequence by Oligopeptide Derivatives of Anthraquinone Intercalators. Journal of Chemical Information and Modeling 2022, 62 (24) , 6649-6666. https://doi.org/10.1021/acs.jcim.2c00337
    26. Yang Zhou, Junhao Li, Glib Baryshnikov, Yaoquan Tu. Unraveling the Abnormal Molecular Mechanism of Suicide Inhibition of Cytochrome P450 3A4. Journal of Chemical Information and Modeling 2022, 62 (23) , 6172-6181. https://doi.org/10.1021/acs.jcim.2c01035
    27. Zoe Li, Kevin C. Chan, Jonathan D. Nickels, Xiaolin Cheng. Electrostatic Contributions to the Binding Free Energy of Nicotine to the Acetylcholine Binding Protein. The Journal of Physical Chemistry B 2022, 126 (43) , 8669-8679. https://doi.org/10.1021/acs.jpcb.2c04641
    28. Haohao Fu, Yan Zhou, Xiang Jing, Xueguang Shao, Wensheng Cai. Meta-Analysis Reveals That Absolute Binding Free-Energy Calculations Approach Chemical Accuracy. Journal of Medicinal Chemistry 2022, 65 (19) , 12970-12978. https://doi.org/10.1021/acs.jmedchem.2c00796
    29. Lara A. Patel, Phuong Chau, Serena Debesai, Leah Darwin, Chris Neale. Drug Discovery by Automated Adaptation of Chemical Structure and Identity. Journal of Chemical Theory and Computation 2022, 18 (8) , 5006-5024. https://doi.org/10.1021/acs.jctc.1c01271
    30. Dan Teng, Yang Zhou, Yun Tang, Guixia Liu, Yaoquan Tu. Mechanistic Studies on the Stereoselectivity of FFAR1 Modulators. Journal of Chemical Information and Modeling 2022, 62 (15) , 3664-3675. https://doi.org/10.1021/acs.jcim.2c00417
    31. Hoshin Kim, Narayanan Srividya, Iris Lange, Eden W. Huchala, Bojana Ginovska, B. Markus Lange, Simone Raugei. Determinants of Selectivity for the Formation of Monocyclic and Bicyclic Products in Monoterpene Synthases. ACS Catalysis 2022, 12 (12) , 7453-7469. https://doi.org/10.1021/acscatal.2c01836
    32. Maria M. Reif, Martin Zacharias. Improving the Potential of Mean Force and Nonequilibrium Pulling Simulations by Simultaneous Alchemical Modifications. Journal of Chemical Theory and Computation 2022, 18 (6) , 3873-3893. https://doi.org/10.1021/acs.jctc.1c01194
    33. Ayan Majumder, Seulki Kwon, John E. Straub. On Computing Equilibrium Binding Constants for Protein–Protein Association in Membranes. Journal of Chemical Theory and Computation 2022, 18 (6) , 3961-3971. https://doi.org/10.1021/acs.jctc.2c00106
    34. Hiraku Oshima, Yuji Sugita. Modified Hamiltonian in FEP Calculations for Reducing the Computational Cost of Electrostatic Interactions. Journal of Chemical Information and Modeling 2022, 62 (11) , 2846-2856. https://doi.org/10.1021/acs.jcim.1c01532
    35. Rodrigo Aguayo-Ortiz, Laura Dominguez. Unveiling the Possible Oryzalin-Binding Site in the α-Tubulin of Toxoplasma gondii. ACS Omega 2022, 7 (22) , 18434-18442. https://doi.org/10.1021/acsomega.2c00729
    36. Paulius Kantakevičius, Calvin Mathiah, Linus O. Johannissen, Sam Hay. Chelator-Based Parameterization of the 12-6-4 Lennard-Jones Molecular Mechanics Potential for More Realistic Metal Ion–Protein Interactions. Journal of Chemical Theory and Computation 2022, 18 (4) , 2367-2374. https://doi.org/10.1021/acs.jctc.1c00898
    37. David J. Huggins. Comparing the Performance of Different AMBER Protein Forcefields, Partial Charge Assignments, and Water Models for Absolute Binding Free Energy Calculations. Journal of Chemical Theory and Computation 2022, 18 (4) , 2616-2630. https://doi.org/10.1021/acs.jctc.1c01208
    38. Mina Ebrahimi, Jérôme Hénin. Symmetry-Adapted Restraints for Binding Free Energy Calculations. Journal of Chemical Theory and Computation 2022, 18 (4) , 2494-2502. https://doi.org/10.1021/acs.jctc.1c01235
    39. Pengfei Li, Zhijie Li, Yu Wang, Huaixia Dou, Brian K. Radak, Bryce K. Allen, Woody Sherman, Huafeng Xu. Precise Binding Free Energy Calculations for Multiple Molecules Using an Optimal Measurement Network of Pairwise Differences. Journal of Chemical Theory and Computation 2022, 18 (2) , 650-663. https://doi.org/10.1021/acs.jctc.1c00703
    40. Solmaz Azimi, Sheenam Khuttan, Joe Z. Wu, Rajat K. Pal, Emilio Gallicchio. Relative Binding Free Energy Calculations for Ligands with Diverse Scaffolds with the Alchemical Transfer Method. Journal of Chemical Information and Modeling 2022, 62 (2) , 309-323. https://doi.org/10.1021/acs.jcim.1c01129
    41. Jorge Enrique Hernández González, Lucas N. Alberca, Yordanka Masforrol González, Osvaldo Reyes Acosta, Alan Talevi, Emir Salas-Sarduy. Tetracycline Derivatives Inhibit Plasmodial Cysteine Protease Falcipain-2 through Binding to a Distal Allosteric Site. Journal of Chemical Information and Modeling 2022, 62 (1) , 159-175. https://doi.org/10.1021/acs.jcim.1c01189
    42. Ido Y. Ben-Shalom, Charles Lin, Brian K. Radak, Woody Sherman, Michael K. Gilson. Fast Equilibration of Water between Buried Sites and the Bulk by Molecular Dynamics with Parallel Monte Carlo Water Moves on Graphical Processing Units. Journal of Chemical Theory and Computation 2021, 17 (12) , 7366-7372. https://doi.org/10.1021/acs.jctc.1c00867
    43. Zoe Cournia Christophe Chipot Benoît Roux Darrin M. York Woody Sherman . Free Energy Methods in Drug Discovery—Introduction. , 1-38. https://doi.org/10.1021/bk-2021-1397.ch001
    44. Paul Labute Maximilian Ebert . Optimizing Simulations Protocols for Relative Free Energy Calculations. , 227-245. https://doi.org/10.1021/bk-2021-1397.ch009
    45. Zhixiong Lin, Junjie Zou, Shuai Liu, Chunwang Peng, Zhipeng Li, Xiao Wan, Dong Fang, Jian Yin, Gianpaolo Gobbo, Yongpan Chen, Jian Ma, Shuhao Wen, Peiyu Zhang, Mingjun Yang. A Cloud Computing Platform for Scalable Relative and Absolute Binding Free Energy Predictions: New Opportunities and Challenges for Drug Discovery. Journal of Chemical Information and Modeling 2021, 61 (6) , 2720-2732. https://doi.org/10.1021/acs.jcim.0c01329
    46. Haohao Fu, Haochuan Chen, Wensheng Cai, Xueguang Shao, Christophe Chipot. BFEE2: Automated, Streamlined, and Accurate Absolute Binding Free-Energy Calculations. Journal of Chemical Information and Modeling 2021, 61 (5) , 2116-2123. https://doi.org/10.1021/acs.jcim.1c00269
    47. Hannah M. Baumann, Vytautas Gapsys, Bert L. de Groot, David L. Mobley. Challenges Encountered Applying Equilibrium and Nonequilibrium Binding Free Energy Calculations. The Journal of Physical Chemistry B 2021, 125 (17) , 4241-4261. https://doi.org/10.1021/acs.jpcb.0c10263
    48. Edward King, Ruxi Qi, Han Li, Ray Luo, Erick Aitchison. Estimating the Roles of Protonation and Electronic Polarization in Absolute Binding Affinity Simulations. Journal of Chemical Theory and Computation 2021, 17 (4) , 2541-2555. https://doi.org/10.1021/acs.jctc.0c01305
    49. Weitong Ren, Hisham M. Dokainish, Ai Shinobu, Hiraku Oshima, Yuji Sugita. Unraveling the Coupling between Conformational Changes and Ligand Binding in Ribose Binding Protein Using Multiscale Molecular Dynamics and Free-Energy Calculations. The Journal of Physical Chemistry B 2021, 125 (11) , 2898-2909. https://doi.org/10.1021/acs.jpcb.0c11600
    50. Xinqiang Ding, Bin Zhang. DeepBAR: A Fast and Exact Method for Binding Free Energy Computation. The Journal of Physical Chemistry Letters 2021, 12 (10) , 2509-2515. https://doi.org/10.1021/acs.jpclett.1c00189
    51. Timothy J. Giese, Darrin M. York. Variational Method for Networkwide Analysis of Relative Ligand Binding Free Energies with Loop Closure and Experimental Constraints. Journal of Chemical Theory and Computation 2021, 17 (3) , 1326-1336. https://doi.org/10.1021/acs.jctc.0c01219
    52. Samuel C. Gill, David L. Mobley. Reversibly Sampling Conformations and Binding Modes Using Molecular Darting. Journal of Chemical Theory and Computation 2021, 17 (1) , 302-314. https://doi.org/10.1021/acs.jctc.0c00752
    53. Haoyu S. Yu, Kalyan Modugula, Osamu Ichihara, Kimberly Kramschuster, Simon Keng, Robert Abel, Lingle Wang. General Theory of Fragment Linking in Molecular Design: Why Fragment Linking Rarely Succeeds and How to Improve Outcomes. Journal of Chemical Theory and Computation 2021, 17 (1) , 450-462. https://doi.org/10.1021/acs.jctc.0c01004
    54. Ronald M. Levy, Nobuyuki Matubayasi, Bin W. Zhang. Solvation Thermodynamics from the Perspective of Endpoints DFT. The Journal of Physical Chemistry B 2020, 124 (52) , 11771-11782. https://doi.org/10.1021/acs.jpcb.0c08988
    55. Sergio Decherchi, Andrea Cavalli. Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation. Chemical Reviews 2020, 120 (23) , 12788-12833. https://doi.org/10.1021/acs.chemrev.0c00534
    56. Christoph Öhlknecht, Jan Walther Perthold, Bettina Lier, Chris Oostenbrink. Charge-Changing Perturbations and Path Sampling via Classical Molecular Dynamic Simulations of Simple Guest–Host Systems. Journal of Chemical Theory and Computation 2020, 16 (12) , 7721-7734. https://doi.org/10.1021/acs.jctc.0c00719
    57. Michal Biler, Rory M. Crean, Anna K. Schweiger, Robert Kourist, Shina Caroline Lynn Kamerlin. Ground-State Destabilization by Active-Site Hydrophobicity Controls the Selectivity of a Cofactor-Free Decarboxylase. Journal of the American Chemical Society 2020, 142 (47) , 20216-20231. https://doi.org/10.1021/jacs.0c10701
    58. Hiraku Oshima, Suyong Re, Yuji Sugita. Prediction of Protein–Ligand Binding Pose and Affinity Using the gREST+FEP Method. Journal of Chemical Information and Modeling 2020, 60 (11) , 5382-5394. https://doi.org/10.1021/acs.jcim.0c00338
    59. Gerhard König, Nina Glaser, Benjamin Schroeder, Alžbeta Kubincová, Philippe H. Hünenberger, Sereina Riniker. An Alternative to Conventional λ-Intermediate States in Alchemical Free Energy Calculations: λ-Enveloping Distribution Sampling. Journal of Chemical Information and Modeling 2020, 60 (11) , 5407-5423. https://doi.org/10.1021/acs.jcim.0c00520
    60. Lin Frank Song, Kenneth M. Merz, Jr.. Evolution of Alchemical Free Energy Methods in Drug Discovery. Journal of Chemical Information and Modeling 2020, 60 (11) , 5308-5318. https://doi.org/10.1021/acs.jcim.0c00547
    61. Tai-Sung Lee, Bryce K. Allen, Timothy J. Giese, Zhenyu Guo, Pengfei Li, Charles Lin, T. Dwight McGee, Jr., David A. Pearlman, Brian K. Radak, Yujun Tao, Hsu-Chun Tsai, Huafeng Xu, Woody Sherman, Darrin M. York. Alchemical Binding Free Energy Calculations in AMBER20: Advances and Best Practices for Drug Discovery. Journal of Chemical Information and Modeling 2020, 60 (11) , 5595-5623. https://doi.org/10.1021/acs.jcim.0c00613
    62. Seonghoon Kim, Hiraku Oshima, Han Zhang, Nathan R. Kern, Suyong Re, Jumin Lee, Benoît Roux, Yuji Sugita, Wei Jiang, Wonpil Im. CHARMM-GUI Free Energy Calculator for Absolute and Relative Ligand Solvation and Binding Free Energy Simulations. Journal of Chemical Theory and Computation 2020, 16 (11) , 7207-7218. https://doi.org/10.1021/acs.jctc.0c00884
    63. Gregory A. Ross, Ellery Russell, Yuqing Deng, Chao Lu, Edward D. Harder, Robert Abel, Lingle Wang. Enhancing Water Sampling in Free Energy Calculations with Grand Canonical Monte Carlo. Journal of Chemical Theory and Computation 2020, 16 (10) , 6061-6076. https://doi.org/10.1021/acs.jctc.0c00660
    64. Zoe Cournia, Bryce K. Allen, Thijs Beuming, David A. Pearlman, Brian K. Radak, Woody Sherman. Rigorous Free Energy Simulations in Virtual Screening. Journal of Chemical Information and Modeling 2020, 60 (9) , 4153-4169. https://doi.org/10.1021/acs.jcim.0c00116
    65. Thomas J. Paul, Jonah Z. Vilseck, Ryan L. Hayes, Charles L. Brooks, III. Exploring pH Dependent Host/Guest Binding Affinities. The Journal of Physical Chemistry B 2020, 124 (30) , 6520-6528. https://doi.org/10.1021/acs.jpcb.0c03671
    66. David F. Hahn, Rhiannon A. Zarotiadis, Philippe H. Hünenberger. The Conveyor Belt Umbrella Sampling (CBUS) Scheme: Principle and Application to the Calculation of the Absolute Binding Free Energies of Alkali Cations to Crown Ethers. Journal of Chemical Theory and Computation 2020, 16 (4) , 2474-2493. https://doi.org/10.1021/acs.jctc.9b00998
    67. Jeffrey Cruz, Lauren Wickstrom, Danzhou Yang, Emilio Gallicchio, Nanjie Deng. Combining Alchemical Transformation with a Physical Pathway to Accelerate Absolute Binding Free Energy Calculations of Charged Ligands to Enclosed Binding Sites. Journal of Chemical Theory and Computation 2020, 16 (4) , 2803-2813. https://doi.org/10.1021/acs.jctc.9b01119
    68. Lin Frank Song, Arkajyoti Sengupta, Kenneth M. Merz, Jr.. Thermodynamics of Transition Metal Ion Binding to Proteins. Journal of the American Chemical Society 2020, 142 (13) , 6365-6374. https://doi.org/10.1021/jacs.0c01329
    69. Huafeng Xu. Optimal Measurement Network of Pairwise Differences. Journal of Chemical Information and Modeling 2019, 59 (11) , 4720-4728. https://doi.org/10.1021/acs.jcim.9b00528
    70. Yue Qian, Israel Cabeza de Vaca, Jonah Z. Vilseck, Daniel J. Cole, Julian Tirado-Rives, William L. Jorgensen. Absolute Free Energy of Binding Calculations for Macrophage Migration Inhibitory Factor in Complex with a Druglike Inhibitor. The Journal of Physical Chemistry B 2019, 123 (41) , 8675-8685. https://doi.org/10.1021/acs.jpcb.9b07588
    71. Wei Jiang, Christophe Chipot, Benoît Roux. Computing Relative Binding Affinity of Ligands to Receptor: An Effective Hybrid Single-Dual-Topology Free-Energy Perturbation Approach in NAMD. Journal of Chemical Information and Modeling 2019, 59 (9) , 3794-3802. https://doi.org/10.1021/acs.jcim.9b00362
    72. Wei Jiang. Accelerating Convergence of Free Energy Computations with Hamiltonian Simulated Annealing of Solvent (HSAS). Journal of Chemical Theory and Computation 2019, 15 (4) , 2179-2186. https://doi.org/10.1021/acs.jctc.8b01147
    73. Jose Antonio Garate, Alejandro Bernardin, Yerko Escalona, Carlos Yanez, Niall J. English, Tomas Perez-Acle. Orientational and Folding Thermodynamics via Electric Dipole Moment Restraining. The Journal of Physical Chemistry B 2019, 123 (12) , 2599-2608. https://doi.org/10.1021/acs.jpcb.8b09374
    74. Reza Salari, Thomas Joseph, Ruchi Lohia, Jérôme Hénin, Grace Brannigan. A Streamlined, General Approach for Computing Ligand Binding Free Energies and Its Application to GPCR-Bound Cholesterol. Journal of Chemical Theory and Computation 2018, 14 (12) , 6560-6573. https://doi.org/10.1021/acs.jctc.8b00447
    75. Denise Kilburg, Emilio Gallicchio. Analytical Model of the Free Energy of Alchemical Molecular Binding. Journal of Chemical Theory and Computation 2018, 14 (12) , 6183-6196. https://doi.org/10.1021/acs.jctc.8b00967
    76. Hannes H. Loeffler, Stefano Bosisio, Guilherme Duarte Ramos Matos, Donghyuk Suh, Benoit Roux, David L. Mobley, Julien Michel. Reproducibility of Free Energy Calculations across Different Molecular Simulation Software Packages. Journal of Chemical Theory and Computation 2018, 14 (11) , 5567-5582. https://doi.org/10.1021/acs.jctc.8b00544
    77. Paul Santner, João Miguel da Silva Martins, Jonas S. Laursen, Lars Behrendt, Leise Riber, Christian A. Olsen, Isaiah T. Arkin, Jakob R. Winther, Martin Willemoës, Kresten Lindorff-Larsen. A Robust Proton Flux (pHlux) Assay for Studying the Function and Inhibition of the Influenza A M2 Proton Channel. Biochemistry 2018, 57 (41) , 5949-5956. https://doi.org/10.1021/acs.biochem.8b00721
    78. Francesco Villa, Alexander D. MacKerell, Jr., Benoît Roux, Thomas Simonson. Classical Drude Polarizable Force Field Model for Methyl Phosphate and Its Interactions with Mg2+. The Journal of Physical Chemistry A 2018, 122 (29) , 6147-6155. https://doi.org/10.1021/acs.jpca.8b04418
    79. Junchao Xia, William Flynn, Ronald M. Levy. Improving Prediction Accuracy of Binding Free Energies and Poses of HIV Integrase Complexes Using the Binding Energy Distribution Analysis Method with Flattening Potentials. Journal of Chemical Information and Modeling 2018, 58 (7) , 1356-1371. https://doi.org/10.1021/acs.jcim.8b00194
    80. Hongsuk Kang, Zaixing Yang, Ruhong Zhou. Lanosterol Disrupts Aggregation of Human γD-Crystallin by Binding to the Hydrophobic Dimerization Interface. Journal of the American Chemical Society 2018, 140 (27) , 8479-8486. https://doi.org/10.1021/jacs.8b03065
    81. Agastya P. Bhati, Shunzhou Wan, Yuan Hu, Brad Sherborne, Peter V. Coveney. Uncertainty Quantification in Alchemical Free Energy Methods. Journal of Chemical Theory and Computation 2018, 14 (6) , 2867-2880. https://doi.org/10.1021/acs.jctc.7b01143
    82. Benedict W. J. Irwin, David J. Huggins. Estimating Atomic Contributions to Hydration and Binding Using Free Energy Perturbation. Journal of Chemical Theory and Computation 2018, 14 (6) , 3218-3227. https://doi.org/10.1021/acs.jctc.8b00027
    83. Samuel C. Gill, Nathan M. Lim, Patrick B. Grinaway, Ariën S. Rustenburg, Josh Fass, Gregory A. Ross, John D. Chodera, David L. Mobley. Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo. The Journal of Physical Chemistry B 2018, 122 (21) , 5579-5598. https://doi.org/10.1021/acs.jpcb.7b11820
    84. Di Cui, Bin W. Zhang, Nobuyuki Matubayasi, and Ronald M. Levy . The Role of Interfacial Water in Protein–Ligand Binding: Insights from the Indirect Solvent Mediated Potential of Mean Force. Journal of Chemical Theory and Computation 2018, 14 (2) , 512-526. https://doi.org/10.1021/acs.jctc.7b01076
    85. Billy J. Williams-Noonan, Elizabeth Yuriev, and David K. Chalmers . Free Energy Methods in Drug Design: Prospects of “Alchemical Perturbation” in Medicinal Chemistry. Journal of Medicinal Chemistry 2018, 61 (3) , 638-649. https://doi.org/10.1021/acs.jmedchem.7b00681
    86. Edoardo Giovannelli, Piero Procacci, Gianni Cardini, Marco Pagliai, Victor Volkov, and Riccardo Chelli . Binding Free Energies of Host–Guest Systems by Nonequilibrium Alchemical Simulations with Constrained Dynamics: Theoretical Framework. Journal of Chemical Theory and Computation 2017, 13 (12) , 5874-5886. https://doi.org/10.1021/acs.jctc.7b00594
    87. Edoardo Giovannelli, Matteo Cioni, Piero Procacci, Gianni Cardini, Marco Pagliai, Victor Volkov, and Riccardo Chelli . Binding Free Energies of Host–Guest Systems by Nonequilibrium Alchemical Simulations with Constrained Dynamics: Illustrative Calculations and Numerical Validation. Journal of Chemical Theory and Computation 2017, 13 (12) , 5887-5899. https://doi.org/10.1021/acs.jctc.7b00595
    88. Nanjie Deng, Lauren Wickstrom, Piotr Cieplak, Clement Lin, and Danzhou Yang . Resolving the Ligand-Binding Specificity in c-MYC G-Quadruplex DNA: Absolute Binding Free Energy Calculations and SPR Experiment. The Journal of Physical Chemistry B 2017, 121 (46) , 10484-10497. https://doi.org/10.1021/acs.jpcb.7b09406
    89. Jeffry Setiadi and Serdar Kuyucak . Elucidation of the Role of a Conserved Methionine in Glutamate Transporters and Its Implication for Force Fields. The Journal of Physical Chemistry B 2017, 121 (41) , 9526-9531. https://doi.org/10.1021/acs.jpcb.7b07366
    90. Robert C. Harris, Cheng-Chieh Tsai, Christopher R. Ellis, and Jana Shen . Proton-Coupled Conformational Allostery Modulates the Inhibitor Selectivity for β-Secretase. The Journal of Physical Chemistry Letters 2017, 8 (19) , 4832-4837. https://doi.org/10.1021/acs.jpclett.7b02309
    91. Matteo Aldeghi, Michael J. Bodkin, Stefan Knapp, and Philip C. Biggin . Statistical Analysis on the Performance of Molecular Mechanics Poisson–Boltzmann Surface Area versus Absolute Binding Free Energy Calculations: Bromodomains as a Case Study. Journal of Chemical Information and Modeling 2017, 57 (9) , 2203-2221. https://doi.org/10.1021/acs.jcim.7b00347
    92. Mauro Lapelosa . Free Energy of Binding and Mechanism of Interaction for the MEEVD-TPR2A Peptide–Protein Complex. Journal of Chemical Theory and Computation 2017, 13 (9) , 4514-4523. https://doi.org/10.1021/acs.jctc.7b00105
    93. Albert C. Pan, Huafeng Xu, Timothy Palpant, and David E. Shaw . Quantitative Characterization of the Binding and Unbinding of Millimolar Drug Fragments with Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2017, 13 (7) , 3372-3377. https://doi.org/10.1021/acs.jctc.7b00172
    94. Germano Heinzelmann, Niel M. Henriksen, Michael K. Gilson. Attach-Pull-Release Calculations of Ligand Binding and Conformational Changes on the First BRD4 Bromodomain. Journal of Chemical Theory and Computation 2017, 13 (7) , 3260-3275. https://doi.org/10.1021/acs.jctc.7b00275
    95. Bing Xie, Trung Hai Nguyen, and David D. L. Minh . Absolute Binding Free Energies between T4 Lysozyme and 141 Small Molecules: Calculations Based on Multiple Rigid Receptor Configurations. Journal of Chemical Theory and Computation 2017, 13 (6) , 2930-2944. https://doi.org/10.1021/acs.jctc.6b01183
    96. Piero Procacci and Riccardo Chelli . Statistical Mechanics of Ligand–Receptor Noncovalent Association, Revisited: Binding Site and Standard State Volumes in Modern Alchemical Theories. Journal of Chemical Theory and Computation 2017, 13 (5) , 1924-1933. https://doi.org/10.1021/acs.jctc.6b01192
    97. Matteo Aldeghi, Alexander Heifetz, Michael J. Bodkin, Stefan Knapp, and Philip C. Biggin . Predictions of Ligand Selectivity from Absolute Binding Free Energy Calculations. Journal of the American Chemical Society 2017, 139 (2) , 946-957. https://doi.org/10.1021/jacs.6b11467
    98. Xavier Periole . Interplay of G Protein-Coupled Receptors with the Membrane: Insights from Supra-Atomic Coarse Grain Molecular Dynamics Simulations. Chemical Reviews 2017, 117 (1) , 156-185. https://doi.org/10.1021/acs.chemrev.6b00344
    99. Baofeng Zhang, Michael P. D’Erasmo, Ryan P. Murelli, and Emilio Gallicchio . Free Energy-Based Virtual Screening and Optimization of RNase H Inhibitors of HIV-1 Reverse Transcriptase. ACS Omega 2016, 1 (3) , 435-447. https://doi.org/10.1021/acsomega.6b00123
    100. Nathan M. Lim, Lingle Wang, Robert Abel, and David L. Mobley . Sensitivity in Binding Free Energies Due to Protein Reorganization. Journal of Chemical Theory and Computation 2016, 12 (9) , 4620-4631. https://doi.org/10.1021/acs.jctc.6b00532
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect