Skip to main content
Log in

Comparative study of several algorithms for flexible ligand docking

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

We have performed a comparative assessment of several programs for flexible molecular docking: DOCK 4.0, FlexX 1.8, AutoDock 3.0, GOLD 1.2 and ICM 2.8. This was accomplished using two different studies: docking experiments on a data set of 37 protein–ligand complexes and screening a library containing 10,037 entries against 11 different proteins. The docking accuracy of the methods was judged based on the corresponding rank-one solutions. We have found that the fraction of molecules docked with acceptable accuracy is 0.47, 0.31, 0.35, 0.52 and 0.93 for, respectively, AutoDock, DOCK, FlexX, GOLD and ICM. Thus ICM provided the highest accuracy in ligand docking against these receptors. The results from the other programs are found to be less accurate and of approximately the same quality. A speed comparison demonstrated that FlexX was the fastest and AutoDock was the slowest among the tested docking programs. The database screening was performed using DOCK, FlexX and ICM. ICM was able to identify the original ligands within the top 1% of the total library in 17 cases. The corresponding number for DOCK and FlexX was 7 and 8, respectively. We have estimated that in virtual database screening, 50% of the potentially active compounds will be found among ≈1.5% of the top scoring solutions found with ICM and among ≈9% of the top scoring solutions produced by DOCK and FlexX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R. and Ferrin, T.E., J. Mol. Biol., 161 (1982) 269.

    PubMed  Google Scholar 

  2. Roche, O., Kiyama, R. and Brooks, C.L., 3rd, J. Med. Chem., 44 (2001) 3592.

    Google Scholar 

  3. Kearsley, S.K., Underwood, D.J., Sheridan, R.P., and Miller, M.D., J. Comput.-Aided. Mol. Des., 8 (1994) 565.

    PubMed  Google Scholar 

  4. Leach, A.R., J. Mol. Biol., 235 (1994) 345.

    PubMed  Google Scholar 

  5. Welch, W., Ruppert, J. and Jain, A.N., Chem. Biol., 3 (1996)

  6. Ewing, T.J.A. and Kuntz, I.D., J. Comput. Chem., 18 (1997) 1176.

    Google Scholar 

  7. Rarey, M., Kramer, B., Lengauer, T. and Klebe, G., J. Mol. Biol., 261 (1996) 470.

    PubMed  Google Scholar 

  8. Goodford, P.J., J. Med. Chem., 28 (1985) 849.

    PubMed  Google Scholar 

  9. Miller, M.D., Kearsley, S.K., Underwood, D.J. and Sheridan, R.P., J. Comput.-Aided. Mol. Des., 8 (1994) 153.

    PubMed  Google Scholar 

  10. Momany, F.A., McGuire, R.F., Burgess, A.W. and Scheraga, H.A., J. Phys. Chem., 79 (1975) 2361–2381.

    Google Scholar 

  11. Goodsell, D.S. and Olson, A.J., Proteins, 8 (1990) 195.

    PubMed  Google Scholar 

  12. Mazur, A.K. and Abagyan, R.A., J. Biomol. Struct. Dyn., 6 (1989) 815.

    PubMed  Google Scholar 

  13. Abagyan, R. and Argos, P., J. Mol. Biol., 225 (1992) 519.

    PubMed  Google Scholar 

  14. Abagyan, R., Totrov, M. and Kuznetsov, D., J. Comput. Chem., 15 (1994) 488–506.

    Google Scholar 

  15. Vieth, M., Hirst, J.D., Dominy, B.N., Daigler, H. and Brooks, C.L., III, J. Comput. Chem., 19 (1998) 1623–1631.

    Google Scholar 

  16. Morris, G.M., Goodsell, D.S., Halliday, R.S., Huey, R., Hart, W.E., Belew, R.K. and Olson, A.J., J. Comput. Chem., 19 (1998) 1639–1662.

    Google Scholar 

  17. Liu, M. and Wang, S., J. Comput.-Aided. Mol. Des., 13 (1999) 435.

    PubMed  Google Scholar 

  18. Totrov, M. and Abagyan, R., Proteins, Suppl 1 (1997) 215.

    PubMed  Google Scholar 

  19. Totrov, M. and Abagyan, R., eds. Protein–ligand Docking as an Energy Optimization Problem. The Thermodynamics of Receptor–Inhibitor Interactions, ed. R.B. Raffa. 2000, Wiley and Sons: New York.

  20. McMartin, C. and Bohacek, R.S., J. Comput.-Aided. Mol. Des., 11 (1997) 333.

    PubMed  Google Scholar 

  21. Jones, G., Willett, P. and Glen, R.C., J. Mol. Biol., 245 (1995) 43.

    PubMed  Google Scholar 

  22. Jones, G., Willett, P., Glen, R.C., Leach, A.R. and Taylor, R., J. Mol. Biol., 267 (1997) 727.

    PubMed  Google Scholar 

  23. Wu, G., Robertson, D.H., Brooks, C.L., III, and Vieth, M., J. Comput. Chem., 24 (2003) 1549.

    PubMed  Google Scholar 

  24. Vieth, M., Hirst, J.D., Kolinski, A. and Brooks, C.L., III, J. Comput. Chem., 19 (1998) 1612–1622.

    Google Scholar 

  25. Ha, S., Andreani, R., Robbins, A. and Muegge, I., J. Comput.-Aided. Mol. Des., 14 (2000) 435.

    PubMed  Google Scholar 

  26. Charifson, P.S., Corkery, J.J., Murcko, M.A. and Walters, W.P., J. Med. Chem., 42 (1999) 5100.

    PubMed  Google Scholar 

  27. Diller, D.J. and Verlinde, L.M.J., J. Comput. Chem., 20 (1999) 1740–1751.

    Google Scholar 

  28. Knegtel, R.M., Bayada, D.M., Engh, R.A., von der Saal, W., van Geerestein, V.J. and Grootenhuis, P.D., J. Comput.-Aided. Mol. Des., 13 (1999) 167.

    PubMed  Google Scholar 

  29. Bissantz, C., Folkers, G. and Rognan, D., J. Med. Chem., 43 (2000) 4759.

    PubMed  Google Scholar 

  30. Kramer, B., Rarey, M. and Lengauer, T., Proteins, 37 (1999)228.

    PubMed  Google Scholar 

  31. Halgren, T.A., J. Comput. Chem., 17 (1995) 490–641.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bursulaya, B.D., Totrov, M., Abagyan, R. et al. Comparative study of several algorithms for flexible ligand docking. J Comput Aided Mol Des 17, 755–763 (2003). https://doi.org/10.1023/B:JCAM.0000017496.76572.6f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCAM.0000017496.76572.6f

Navigation