Skip to main content
Log in

Right Ventricular Pacing, Mechanical Dyssynchrony, and Heart Failure

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiac pacing is a common treatment option for patients with sick sinus syndrome or atrioventricular block, with the ventricular pacing lead often secured in the convenient right ventricular (RV) apical location. While RV pacing reduces symptoms and limitations associated with heart block, it may have detrimental effects on cardiac structure and function, leading to heart failure (HF) in some patients. RV pacing creates electrical dyssynchrony similar to a left-bundle branch block, with conduction occurring cell-by-cell rather than through the His–Purkinje network. Studies have shown that impairment of myocardial metabolism, structure, and function related to RV pacing occurs regionally (most prominently near the pacing site) and globally, within the left ventricle. Strategies being studied to prevent or treat pacing-induced intraventricular mechanical dyssynchrony and HF include: initial biventricular rather than RV pacing in selected patients, programming to avoid or minimize RV pacing, use of alternate (non-apical) RV pacing sites, echocardiographic screening for development of pacing-induced dyssynchrony and HF, and upgrade to biventricular pacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lamas, G. A., Lee, K. L., Sweeney, M. O., Silverman, R., et al. (2002). Ventricular pacing or dual-chamber pacing for sinus-node dysfunction. The New England Journal of Medicine, 346, 1854–1862.

    Article  PubMed  Google Scholar 

  2. Birnie, D., Williams, K., Guo, A., Mielniczuk, L., Davis, D., Lemery, R., et al. (2006). Reasons for escalating pacemaker implants. The American Journal of Cardiology, 98, 93–97.

    Article  PubMed  Google Scholar 

  3. Gammage, M., Schofield, S., Rankin, I., Bennett, M., Coles, P., & Pentecost, B. (1991). Benefit of single setting rate responsive ventricular pacing compared with fixed rate demand pacing in elderly patients. Pacing and Clinical Electrophysiology, 14, 147–180.

    Article  Google Scholar 

  4. Lamas, G. A., Pashos, C. L., Normand, S. L. T., & McNeil, B. (1995). Permanent pacemaker selection and subsequent survival in elderly Medicare pacemaker recipients. Circulation, 91, 1063–1069.

    PubMed  CAS  Google Scholar 

  5. Sweeney, M. O., Bank, A. J., Nsah, E., Koullick, M., Zeng, Q. C., Hettrick, D., et al. (2007). Minimizing ventricular pacing to reduce atrial fibrillation in sinus node disease. The New England Journal of Medicine, 357, 1000–1008.

    Article  PubMed  CAS  Google Scholar 

  6. Wilkoff, B. L., Cook, J. R., Epstein, A. E., Greene, L., Hallstrom, A. P., Hsia, H., et al. (2002). Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator. The dual chamber and VVI implantable defibrillator (DAVID) trial. Journal of the American Medical Association, 288, 3115–3123.

    Article  PubMed  Google Scholar 

  7. Sharma, A. D., Rizo-Patron, C., Hallstrom, A. P., O’Neill, G. P., et al. (2005). Percent right ventricular pacing predicts outcomes in the DAVID trial. Heart Rhythm, 2, 830–834.

    Article  PubMed  Google Scholar 

  8. Moss, A. J., Zareba, W., Hall, W. J., Klein, H., et al. (2002). Prophylactic implantation of a defibrillator in patients with myocardial infarction and reduced ejection fraction. The New England Journal of Medicine, 346, 877–883.

    Article  PubMed  Google Scholar 

  9. Steinberg, J. S., Fischer, A., Wang, P., Schuger, C., Daubert, J., et al. (2005). The clinical implications of cumulative right ventricular pacing in the Multicenter Automatic Defribrillator Trial II. Journal of Cardiovascular Electrophysiology, 16, 359–365.

    Article  PubMed  Google Scholar 

  10. Sweeney, M. O., Hellkamp, A. S., Ellenbogen, K. A., Greenspon, A. J., Freedman, R. A., Lee, K. L., et al. (2003). Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation, 107, 2932–2937.

    Article  PubMed  Google Scholar 

  11. Myerburg, R. J., Nilsson, K., & Gelband, H. (1972). Physiology of canine intraventricular conduction and endocardial excitation. Circulation Research, 30, 217–243.

    PubMed  CAS  Google Scholar 

  12. Scher, A. M., Young, A. C., Malmghen, A. L., & Paton, R. R. (1953). Spread of electrical activity through the wall of the ventricle. Circulation Research, 1, 539–547.

    PubMed  CAS  Google Scholar 

  13. Scher, A. M., Young, A. C., Malmgren, A. L., & Erickson, R. V. (1955). Activation of the interventricular septum. Circulation Research, 3, 56–64.

    PubMed  CAS  Google Scholar 

  14. Vassollo, J. A., Cassidy, D. M., Marchlinski, F. E., Buxton, A. E., Waxman, H. L., Doherty, J. U., et al. (1984). Endocardial activation of left bundle branch block. Circulation, 69, 914–923.

    Article  Google Scholar 

  15. Rosenbush, S. W., Ruggie, N., Turner, D. A., Von Behren, P. L., Denes, P., Fordham, E. W., et al. (1982). Sequence and timing of ventricular wall motion in patients with bundle branch block. Assessment by radionuclide cineangiography. Circulation, 66, 1113–1119.

    Article  PubMed  CAS  Google Scholar 

  16. Bank, A. J., & Kelly, A. S. (2006). Tissue Doppler imaging and left ventricular dyssynchrony in heart failure. Journal of Cardiac Failure 12;2:154–162.

    Google Scholar 

  17. Bank, A. J., Burns, K. V., & Gage, R. M. (2010). Heart failure and cardiac resynchronization therapy. US Cardiology 7;1:24–32.

    Google Scholar 

  18. Yu, C. M., Bax, J. J., & Gorcsan, J., III. (2008). Critical appraisal of methods to assess mechanical dyssynchrony. Current Opinion in Cardiology, 24, 18–28.

    Article  Google Scholar 

  19. Ishikawa, T. (2011). Limitaions and problems of assessment of mechanical dyssynchrony in determining cardiac resynchronization therapy indication: Is assessment of mechanical dyssynchrony necessary in determining CRT indication? (Con). Circulation Journal, 75, 465–471.

    Article  PubMed  Google Scholar 

  20. Prinzen, F. W., Hunter, W. C., Wyman, B. T., & McVeigh, E. R. (1999). Mapping of regional myocardial strain and work during ventricular pacing: Experimental study using magnetic resonance imaging tagging. Journal of the American College of Cardiology, 33, 1735–1742.

    Article  PubMed  CAS  Google Scholar 

  21. Prinzen, F. W., & Peschar, M. (2002). Relation between the pacing induced sequence of activation and left ventricular pump function in animals. Pacing and Clinical Electrophysiology, 25(Pt 1), 484–498.

    Article  PubMed  Google Scholar 

  22. Prinzen, F. W., Augustijn, C. H., Arts, T., Allessie, M. A., & Reneman, R. S. (1990). Redistribution of myocardial fiber strain and blood flow by asynchronous activation. American Journal of Physiology, 259, H300–H308.

    PubMed  CAS  Google Scholar 

  23. Delhaas, T., Arts, T., Prinzen, F. W., & Reneman, R. S. (1994). Regional fibre stress-fibre strain area an estimate of regional blood flow and oxygen demand in the canine heart. The Journal of Physiology, 477, 481–496.

    PubMed  Google Scholar 

  24. Delgado, V., Tops, L. F., Trines, S. A., Zeppenfeld, K., et al. (2009). Acute effects of right ventricular and apical pacing on left ventricular synchrony and mechanics. Circulation: Arrhythmia and Electrophysiology, 2, 135–145.

    Article  Google Scholar 

  25. Liu, W. H., Chen, M. C., Chen, Y. L., Guo, B. F., et al. (2008). Right ventricular apical pacing acutely impairs left ventricular function and induces mechanical dyssynchrony in patients with sick sinus syndrome: A real-time three-dimensional echocardiographic study. Journal of the American Society of Echocardiography, 21(3), 224–229.

    Article  PubMed  Google Scholar 

  26. Nahlawi, M., Waligora, M., Spies, S., Bonow, R., et al. (2004). Left ventricular function during and after right ventricular pacing. Journal of the American College of Cardiology, 44, 1883–1888.

    Article  PubMed  Google Scholar 

  27. Bank, A. J., Schwartzman, D. S., Burns, K. V., Kaufman, C. L., Adler, S. W., Kelly, A. S., et al. (2010). Intramural dyssynchrony from acute right ventricular apical pacing in human subjects with normal left ventricular function. Journal of Cardiovascular Transaction Research, 3, 321–329.

    Article  Google Scholar 

  28. Fang, F., Chan, J. Y. S., Yip, G. W. K., Xie, J. M., Zhang, Q., Fung, J. W. H., et al. (2010). Prevalence and determinants of left ventricular systolic dyssynchrony in patients with normal ejection fraction received right ventricular apical pacing: A real-time three-dimensional echocardiographic study. European Journal of Echocardiography, 11, 109–118.

    Article  PubMed  Google Scholar 

  29. Zhang, X. H., Chen, H., Siu, C. W., Yiu, K. H., et al. (2008). New-onset heart failure after permanent right ventricular apical pacing in patients with acquired high-grade atrioventricular block and normal left ventricular function. Journal of Cardiovascular Electrophysiology, 19, 136–141.

    Article  PubMed  Google Scholar 

  30. Tse, H. F., & Lau, C. P. (1997). Long-term effect of right ventricular pacing on myocardial perfusion and function. Journal of the American College of Cardiology, 29, 744–749.

    Article  PubMed  CAS  Google Scholar 

  31. Tops, L. F., Suffoletto, M. S., Bleeker, G. B., Boersma, E., van der Wall, E. E., Gorcsan, J., et al. (2007). Speckle-tracking radial strain reveals left ventricular dyssynchrony in patients with permanent right ventricular pacing. Journal of the American College of Cardiology, 50, 1180–1188.

    Article  PubMed  Google Scholar 

  32. Bank, A. J., Kaufman, C. L., Burns, K. V., Parah, J. S., Johnson, L., Kelly, A. S., et al. (2010). Intramural dyssynchrony and response to cardiac resynchronization therapy in patients with and without previous right ventricular pacing. European Journal of Heart Failure, 12, 1317–1324.

    Article  PubMed  Google Scholar 

  33. Ng, A. C. T., Allman, C., Vidaic, J., Tie, H., Hopkins, A. P., & Leung, D. Y. (2009). Long-term impact of right ventricular septal versus apical pacing on left ventricular synchrony and function in patients with second- or third-degree heart block. The American Journal of Cardiology, 103, 1096–1101.

    Article  PubMed  Google Scholar 

  34. Burns, K. V., Kaufman, C. L., Kelly, A. S., Parah, J. S., Dengel, D. R., & Bank, A. J. (2011). Torsion and dyssynchrony differences between chronically paced and non-paced heart failure patients. Journal of Cardiac Failure, 17, 495–502.

    Article  PubMed  Google Scholar 

  35. Grines, C. L., Bashore, T. M., Boudoulas, H., Olson, S., Shafer, P., & Wooley, C. F. (1989). Functional abnormalities in isolated left bundle branch block. The effect of interventricular asynchrony. Circulation, 79, 845–853.

    Article  PubMed  CAS  Google Scholar 

  36. Kindermann, M., Hennen, B., Jung, J., Geisel, J., Bohm, M., & Frohlig, G. (2006). Biventricular versus conventional right ventricular stimulation for patients with standard pacing indication and left ventricular dysfunction. The Homburg biventricular pacing evaluation (HOBIPACE). Journal of the American College of Cardiology, 47, 1927–1937.

    Article  PubMed  Google Scholar 

  37. Doshi, R. N., Daoud, E. G., Fellows, C., Turk, K., Duran, A., Hamdan, M. H., et al. (2005). Left ventricular-based cardiac stimulation post AV nodal ablation evaluation (The PAVE Study). Journal of Cardiovascular Electrophysiology, 16, 1160–1165.

    Article  PubMed  Google Scholar 

  38. Leclercq, C., Walker, S., Linde, C., Clementy, J., et al. (2002). Comparative effects of permanent biventricular and right-univentricular pacing in heart failure patients with chronic atrial fibrillation. European Heart Journal, 23, 1780–1787.

    Article  PubMed  CAS  Google Scholar 

  39. Brignole, M., Gammage, M., Puggioni, E., Alboni, P., et al. (2005). Comparative assessment of right, left, and biventricular pacing in patients with permanent atrial fibrillation. European Heart Journal, 26, 712–722.

    Article  PubMed  CAS  Google Scholar 

  40. Yu, C. M., Chan, J. Y. S., Zhang, Q., Omar, R., et al. (2009). Biventricular pacing in patients with bradycardia and normal ejection fraction. The New England Journal of Medicine, 361, 2123–2134.

    Article  PubMed  Google Scholar 

  41. Chan, J. Y. S., Fang, F., Zhang, Q., Fung, J. W. H., Razali, O., et al. (2011). Biventricular pacing is superior to right ventricular pacing in bradycardia patients with preserved systolic function: 2-year results of the PACE trial. European Heart Journal, 32, 2533–2540.

    Article  PubMed  Google Scholar 

  42. Brignole, M., Botto, G., Mont, L., Iacopino, S., et al. (2011). Cardiac resynchronization therapy in patients undergoing atrioventricular junction ablation for permanent atrial fibrillation: A randomized trial. European Heart Journal Advance Access May 23, 2011.

  43. Stockburger, M., Gomez-Doblas, J. J., Lamas, G., Alzueta, J., et al. (2011). Preventing ventricular dysfunction in pacemaker patients without advanced heart failure: Results from a multicentre international randomized trial (PREVENT-HF). European Journal of Heart Failure, 13, 633–641.

    Article  PubMed  Google Scholar 

  44. Bradley, D. J., & Shen, W. K. (2007). Atrioventricular junction ablation combined with either right ventricular pacing or cardiac resynchronization therapy for atrial fibrillation: The need for large-scale randomized trials. Heart Rhythm, 4, 224–232.

    Article  PubMed  Google Scholar 

  45. Pastore, G., Noventa, F., Piovesana, P., Cazzin, R., et al. (2008). Left ventricular dyssynchrony resulting from right ventricular apical pacing: Relevance of baseline assessment. Pacing and Clinical Electrophysiology, 31, 1456–1462.

    Article  PubMed  Google Scholar 

  46. Olshansky, B., Day, J. D., Moore, S., Gering, L., Rosenbaum, M., McGuire, M., et al. (2007). Is dual-chamber programming inferior to single-chamber programming in an implantable cardioverter-defibrillator? Results of the INTRINSIC RV (Inhibition of unnecessary RV pacing with AVSH in ICDs) study. Circulation, 115, 9–16.

    Article  PubMed  Google Scholar 

  47. Olshansky, B., Day, J. D., Lerew, D. R., Brown, S., & Stolen, K. Q. (2007). Eliminating right ventricular pacing may not be the best for patients requiring implantable cardioverter–defribrillators. Heart Rhythm, 4, 886–891.

    Article  PubMed  Google Scholar 

  48. Yamano, T., Kubo, T., Takarada, S., Ishibashi, K., et al. (2010). Advantage of right ventricular outflow tract pacing on cardiac function and coronary circulation in comparison with right ventricular apex pacing. Journal of the American Society of Echocardiography, 23, 1177–1182.

    Article  PubMed  Google Scholar 

  49. Leong, D. P., Mitchell, A. M., Salna, I., Brooks, A. G., et al. (2010). Long-term mechanical consequences of permanent right ventricular pacing: Effect of pacing site. Journal of Cardiovascular Electrophysiology, 21, 1120–1126.

    Article  PubMed  Google Scholar 

  50. Tse, H. F., Yu, C., Wong, K. K., Tsang, V., Leung, Y. L., Ho, W. Y., et al. (2002). Functional abnormalities in patients with permanent right ventricular pacing. Journal of the American College of Cardiology, 40, 1451–1458.

    Article  PubMed  Google Scholar 

  51. Victor, F., Leclercq, C., Mabo, P., Pavin, D., et al. (1999). Optimal right ventricular pacing site in chronically implanted patients. Journal of the American College of Cardiology, 33, 311–316.

    Article  PubMed  CAS  Google Scholar 

  52. Stambler, B. S., Ellenbogen, K. A., Zhang, X., Porter, T. R., et al. (2003). Right ventricular outflow versus apical pacing in pacemaker patients with congestive heart failure and atrial fibrillation. Journal of Cardiovascular Electrophysiology, 14, 1180–1186.

    Article  PubMed  Google Scholar 

  53. Dabrowska-Kugacka, A., Lewicka-Nowak, E., Tybura, S., Wilczek, R., et al. (2009). Survival analysis in patients with preserved left ventricular function and standard indications for permanent cardiac pacing randomized to right ventricular apical or septal outflow tract pacing. Circulation Journal, 73, 1812–1819.

    Article  PubMed  Google Scholar 

  54. Gong, X., Su, Y., Pan, W., Cui, J., Liu, S., & Shu, X. (2009). Is right ventricular outflow tract pacing superior to right ventricular apex pacing in patients with normal cardiac function? Clinical Cardiology, 32, 695–699.

    Article  PubMed  Google Scholar 

  55. Schwaab, B., Frohlig, G., Alexander, C., Kindermann, M., Hellwig, N., Schwerdt, H., et al. (1999). Influence of right ventricular stimulation site on left ventricular function in atrial synchronous ventricular pacing. Journal of the American College of Cardiology, 33, 317–323.

    Article  PubMed  CAS  Google Scholar 

  56. Inoue, K., Okayama, H., Nishimura, K., Ogimoto, A., et al. (2010). Right ventricular pacing from the septum avoids the acute exacerbation in left ventricular dyssynchrony and torsional behavior seen with pacing from the apex. Journal of the American Society of Echocardiography, 23, 195–200.

    Article  PubMed  Google Scholar 

  57. Inoue, K., Okayama, H., Nishimura, K., Saito, M., et al. (2011). Right ventricular septal pacing preserves global left ventricular longitudinal function in comparison with apical pacing. Circulation Journal, 75(7), 1609–1615.

    Article  PubMed  Google Scholar 

  58. Cano, O., Osca, J., Sancho-Tello, M. J., Sanchez, J. M., et al. (2010). Comparison of effectiveness of right ventricular septal pacing versus right ventricular apical pacing. The American Journal of Cardiology, 105, 1426–1432.

    Article  PubMed  Google Scholar 

  59. Cho, G. Y., Kim, M. J., Park, J. H., Kim, H. S., Youn, H. J., Kim, K. H., et al. (2011). Comparison of ventricular dyssynchrony according to the position of right ventricular pacing electrode: A multi-center prospective echocardiographic study. Journal of Cardiovascular Ultrasound, 19, 15–20.

    Article  PubMed  Google Scholar 

  60. Peschar, M., de Swart, H., Michels, K. J., Reneman, R. S., & Prinzen, F. W. (2003). Left ventricular septal and apex pacing for optimal pump function in canine hearts. Journal of the American College of Cardiology, 41, 1218–1226.

    Article  PubMed  Google Scholar 

  61. Kronborg, M. B., Mortensen, P. T., Gerdes, J. C., Jensen, H. K., & Nielsen, J. C. (2011). His and para-His pacing in AV block: Feasibility and electrocardiographic findings. Journal of Interventional Cardiac Electrophysiology, 31(3), 255–262.

    Article  PubMed  Google Scholar 

  62. Catanzariti, D., Maines, M., Cemin, C., Broso, G., Marotta, T., & Vergara, G. (2006). Permanent direct his bundle pacing does not induce ventricular dyssynchrony unlike conventional right ventricular apical pacing. An intrapatient acute comparison study. Journal of Interventional Cardiac Electrophysiology, 16, 81–92.

    Article  PubMed  Google Scholar 

  63. Zanon, F., Bacchiega, E., Rampin, L., Aggio, S., et al. (2008). Direct his bundle pacing preserves coronary perfusion compared with right ventricular apical pacing: A prospective, cross-over mid-term study. Europace, 10, 580–587.

    Article  PubMed  Google Scholar 

  64. Webb, M. G. (2011). Evaluation of a system to screen for heart failure associated with pacemaker-induced dyssynchrony. Abstract, Heart & Lung, 40, 372.

    Article  Google Scholar 

  65. Foley, P. W. X., Muhyaldeen, S. A., Chalil, S., Smith, R. E. A., Sanderson, J. E., & Leyva, F. (2009). Long-term effects of upgrading from right ventricular pacing to cardiac resynchronization therapy in patients with heart failure. Europace, 11, 495–501.

    Article  PubMed  Google Scholar 

  66. Witte, K. K. A., Pipes, R. R., Nanthakumar, K., & Parker, J. D. (2006). Biventricular pacemaker upgrade in previously paced heart failure patients—Improvements in ventricular dyssynchrony. Journal of Cardiac Failure, 12, 199–204.

    Article  PubMed  Google Scholar 

  67. Tanaka, H., Hara, H., Adelstein, E. C., Schwartzman, D., Saba, S., & Gorcsan, J. (2010). Comparative mechanical activation mapping of RV pacing to LBBB by 2D and 3D speckle tracking and association with response to resynchronization therapy. Journal of the American College of Cardiology: Cardiovascular Imaging, 3, 461–471.

    Google Scholar 

  68. Eldadah, Z. A., Rosen, B., Hay, I., Edvardsen, T., et al. (2006). The benefit of upgrading chronically right ventricle-paced heart failure patients to resynchronization therapy demonstrated by strain rate imaging. Heart Rhythm, 3, 435–442.

    Article  PubMed  Google Scholar 

  69. Vatankulu, M. A., Goktekin, O., Kaya, M. G., Ayhan, S., Kucukdurmaz, Z., Sutton, R., et al. (2009). Effect of long-term resynchronization therapy on left ventricular remodeling in pacemaker patients upgraded to biventricular devices. The American Journal of Cardiology, 103, 1280–1284.

    Article  PubMed  Google Scholar 

  70. Leclerq, C., Cazeau, S., Lellouche, D., Fossati, F., et al. (2007). Upgrading from single chamber right ventricular to biventricular pacing in permanently paced patients with worsening heart failure. Pacing and Clinical Electrophysiology, 30, S23–S30.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan J. Bank.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Apical four-chamber echocardiograms of a patient with pacing-induced dyssynchrony and HF. The left panel shows a markedly hypokinetic septum, especially in the mid and apical regions. The right panel shows greatly improved septal function, and improved LV size and systolic function after upgrade to CRT. Global EF normalized to 60% following CRT upgrade (WMV 860 kb)

Parasternal short-axis echocardiograms of the same patient (ESM 1) with pacing induced dyssynchrony and HF. The regional wall motion abnormality in the septum improves along with global LV systolic function after upgrade to CRT (WMV 1,031 kb)

Apical four-chamber echocardiograms of a patient with pacing induced dyssynchrony and HF. Reprogramming of the patient’s pacemaker to a lower rate with extended AV delay reduced ventricular paced beats from 87% to 17%. Global EF significantly improved following reprogramming (right panel) (WMV 1,163 kb)

Parasternal short-axis echocardiograms of the same patient (ESM 3) with pacing-induced dyssynchrony and HF. Reprogramming of pacemaker settings to reduce RV pacing frequency markedly improved LV size and systolic function (WMV 1,480 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bank, A.J., Gage, R.M. & Burns, K.V. Right Ventricular Pacing, Mechanical Dyssynchrony, and Heart Failure. J. of Cardiovasc. Trans. Res. 5, 219–231 (2012). https://doi.org/10.1007/s12265-011-9341-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-011-9341-8

Keywords

Navigation