Tools

Shuai Ren, Zehan Liu, C. Yoon Kim, Kuang Fu, Qiong Wu, Liting Hou, Linlin Sun, Jian Zhang, Qing Miao, Jin Kim, Vincenzo Bonicalzi, Xiangchen Guan, Mingzhe Zhang, Weihua Zhang, Junfeng Xu, Sergio Canavero, Xiaoping Ren
  1. Hand and Microsurgery Center, The Second Affiliated Hospital of Harbin Medical University, Nangang, Harbin 150081, China
  2. Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 10100, Korea
  3. Department of MR Diagnosis, The Second Affiliated Hospital of Harbin Medical University, Nangang, Harbin 150081, China
  4. Department of Anesthesia, The Second Affiliated Hospital of Harbin Medical University, Nangang, Harbin 150081, China
  5. Department of Pharmacology, Harbin Medical University, Nangang, Harbin 150081, China
  6. Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 10100, Korea
  7. Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Nangang, Harbin 150081, China

DOI:10.25259/SNI-73-2019

Copyright: © 2019 Surgical Neurology International This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

How to cite this article: Shuai Ren, Zehan Liu, C. Yoon Kim, Kuang Fu, Qiong Wu, Liting Hou, Linlin Sun, Jian Zhang, Qing Miao, Jin Kim, Vincenzo Bonicalzi, Xiangchen Guan, Mingzhe Zhang, Weihua Zhang, Junfeng Xu, Sergio Canavero, Xiaoping Ren. Reconstruction of the spinal cord of spinal transected dogs with polyethylene glycol. 26-Mar-2019;10:50

How to cite this URL: Shuai Ren, Zehan Liu, C. Yoon Kim, Kuang Fu, Qiong Wu, Liting Hou, Linlin Sun, Jian Zhang, Qing Miao, Jin Kim, Vincenzo Bonicalzi, Xiangchen Guan, Mingzhe Zhang, Weihua Zhang, Junfeng Xu, Sergio Canavero, Xiaoping Ren. Reconstruction of the spinal cord of spinal transected dogs with polyethylene glycol. 26-Mar-2019;10:50. Available from: http://surgicalneurologyint.com/surgicalint-articles/9233/

Date of Submission
27-Dec-2018

Date of Acceptance
02-Jan-2019

Date of Web Publication
26-Mar-2019

Abstract

Background: Our study shows that a membrane sealant/fiber fusogen polyethylene glycol (PEG) applied immediately on a sharp section of the spinal cord can mend the cord and lead to exceptional levels of motor recovery, with some animals almost normal.

Materials and Methods: Before deploying such technology in man, long-term data in large mammals that exclude delayed complications (e.g., central pain), confirm the stability of motor recovery, and provide histological evidence of fiber regrowth are necessary. Here, we provide such evidence in dogs followed up over 6 months and in 2 cases up to 1 year along with imaging and histologic data.

Results: We show that dogs whose dorsal cord has been fully transected recover locomotion after immediate treatment with a fusogen (PEG). No pain syndrome ensued over the long term. Diffusion tensor imaging magnetic resonance and histological, including immunohistochemical, data confirmed the re-establishment of anatomical continuity along with interfacial axonal sprouting.

Conclusions: This study proves that a form of irreversible spinal cord injury (SCI) can effectively be treated and points out a way to treat SCI patients.

Keywords: Polyethylene glycol, spinal cord fusion, spinal cord injury