Skip to main content

Oxidative Modifications as Triggers of AMD Pathology

  • Chapter
  • First Online:
Studies on Retinal and Choroidal Disorders
  • 1112 Accesses

Abstract

Age-related macular degeneration (AMD), a leading cause of blindness in the elderly, is thought to be in part an inflammatory disease involving dysregulation of the complement system. The photooxidative environment in the retina facilitates the formation of oxidative modifications that contribute to the accumulation of cellular debris such as lipofuscin within the retinal pigment epithelium (RPE) and drusen on Bruch’s membrane. A host of oxidative modifications have been found in AMD tissues, including carboxymethyllysine (CML), pentosidine, carboxyethylpyrrole (CEP), nitrotyrosine, 8-hydroxydeoxyguanosine, levuglandin/isolevuglandin-phosphatidyl ethanolamine hydroxylactams, and other adducts involving iso[4]levuglandin E2, hydroxynonenal, and acrolein. Oxidative modifications also generate oxidation-associated molecular patterns recognized by pattern-recognition receptors such as the complement system, the receptor for advanced glycation end products (RAGE), and the toll-like receptors. CML is a strong activator of RAGE, colocalizes with RAGE in AMD ocular tissues, is elevated in AMD plasma, and stimulates expression of vascular endothelial growth factor (VEGF) and angiogenesis. CEP adducts activate toll-like receptor 2, are elevated in AMD Bruch’s membrane/RPE/choroid and AMD plasma, and stimulate neovascularization independent of VEGF. Mice immunized with CEP develop an AMD-like phenotype. Photoxidation of RPE lipofuscin can result in activation of complement and generation of advanced glycation end products. Mounting evidence implicates oxidative modifications as triggers and catalysts of inflammatory and immune responses in AMD pathology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jager R, Mieler W, Miller J (2008) Age-related macular degeneration. N Engl J Med 358(24):2606–2617

    Article  PubMed  CAS  Google Scholar 

  2. Ding X, Patel M, Chan CC (2009) Molecular pathology of age-related macular degeneration. Prog Retin Eye Res 28(1):1–18

    Article  PubMed  CAS  Google Scholar 

  3. Ferris FL III, Fine SL, Hyman L (1984) Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol 102(11):1640–1642

    Article  PubMed  Google Scholar 

  4. Zarbin MA (2004) Current concepts in the pathogenesis of age-related macular degeneration. Arch Ophthalmol 122(4):598–614

    Article  PubMed  Google Scholar 

  5. Friedman D, O’Colmain B, Muñoz B, Tomany S, McCarty C, de Jong P, Nemesure B, Mitchell P, Kempen J, Group EDPR (2004) Prevalence of age-related macular degeneration in the United States. Arch Ophthalmol 122(4):564–572

    Article  PubMed  Google Scholar 

  6. Anderson DH, Radeke MJ, Gallo NB, Chapin EA, Johnson PT, Curletti CR, Hancox LS, Hu J, Ebright JN, Malek G, Hauser MA, Bowes Rickman C, Bok D, Hageman GS, Johnson LV (2010) The pivotal role of the complement system in aging and age-related macular degeneration: hypothesis re-visited. Prog Retin Eye Res 29:95–112

    Article  PubMed  CAS  Google Scholar 

  7. Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG, Hollyfield JG (2002) Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci USA 99(23): 14682–14687

    Article  PubMed  CAS  Google Scholar 

  8. Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullins RF (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20(6):705–732

    Article  PubMed  CAS  Google Scholar 

  9. Johnson LV, Ozaki S, Staples MK, Erickson PA, Anderson DH (2000) A potential role for immune complex pathogenesis in drusen formation. Exp Eye Res 70(4):441–449

    Article  PubMed  CAS  Google Scholar 

  10. Edwards A, Ritter R, Abel K, Manning A, Panhuysen C, Farrer L (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308(5720):421–424

    Article  PubMed  CAS  Google Scholar 

  11. Hageman GS, Anderson DH, Johnson LV, Hancox LS, Taiber AJ, Hardisty LI, Hageman JL, Stockman HA, Borchardt JD, Gehrs KM, Smith RJ, Silvestri G, Russell SR, Klaver CC, Barbazetto I, Chang S, Yannuzzi LA, Barile GR, Merriam JC, Smith RT, Olsh AK, Bergeron J, Zernant J, Merriam JE, Gold B, Dean M, Allikmets R (2005) A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc Natl Acad Sci USA 102(20):7227–7232

    Article  PubMed  CAS  Google Scholar 

  12. Haines J, Hauser M, Schmidt S, Scott W, Olson L, Gallins P, Spencer K, Kwan S, Noureddine M, Gilbert J, Schnetz-Boutaud N, Agarwal A, Postel E, Pericak-Vance M (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308(5720):419–421

    Article  PubMed  CAS  Google Scholar 

  13. Klein R, Zeiss C, Chew E, Tsai J, Sackler R, Haynes C, Henning A, SanGiovanni J, Mane S, Mayne S, Bracken M, Ferris F, Ott J, Barnstable C, Hoh J (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308(5720):385–389

    Article  PubMed  CAS  Google Scholar 

  14. Gold B, Merriam JE, Zernant J, Hancox LS, Taiber AJ, Gehrs K, Cramer K, Neel J, Bergeron J, Barile GR, Smith RT, Hageman GS, Dean M, Allikmets R, Group AGCS (2006) Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat Genet 38(4):458–462

    Article  PubMed  CAS  Google Scholar 

  15. Yates J, Sepp T, Matharu B, Khan J, Thurlby D, Shahid H, Clayton D, Hayward C, Morgan J, Wright A, Armbrecht A, Dhillon B, Deary I, Redmond E, Bird A, Moore A, Group GFiAS (2007) Complement C3 variant and the risk of age-related macular degeneration. N Engl J Med 357(6):553–561

    Article  PubMed  CAS  Google Scholar 

  16. Maller JB, Fagerness JA, Reynolds RC, Neale BM, Daly MJ, Seddon JM (2007) Variation in complement factor 3 is associated with risk of age-related macular degeneration. Nat Genet 39(10):1200–1201

    Article  PubMed  CAS  Google Scholar 

  17. Yuan X, Gu X, Crabb JS, Yue X, Shadrach K, Hollyfield JG, Crabb JW (2010) Quantitative proteomics: comparison of the macular Bruch membrane/choroid complex from age-related macular degeneration and normal eyes. Mol Cell Proteomics 9(6):1031–1046

    Article  PubMed  CAS  Google Scholar 

  18. Kaneko H, Dridi S, Tarallo V, Gelfand BD, Fowler BJ, Cho WG, Kleinman ME, Ponicsan SL, Hauswirth WW, Chiodo VA, Kariko K, Yoo JW, Lee DK, Hadziahmetovic M, Song Y, Misra S, Chaudhuri G, Buaas FW, Braun RE, Hinton DR, Zhang Q, Grossniklaus HE, Provis JM, Madigan MC, Milam AH, Justice NL, Albuquerque RJ, Blandford AD, Bogdanovich S, Hirano Y, Witta J, Fuchs E, Littman DR, Ambati BK, Rudin CM, Chong MM, Provost P, Kugel JF, Goodrich JA, Dunaief JL, Baffi JZ, Ambati J (2011) DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature 471(7338):325–330

    Article  PubMed  CAS  Google Scholar 

  19. Beatty S, Koh H, Phil M, Henson D, Boulton M (2000) The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 45(2):115–134

    Article  PubMed  CAS  Google Scholar 

  20. Seddon JM, Willett WC, Speizer FE, Hankinson SE (1996) A prospective study of cigarette smoking and age-related macular degeneration in women. JAMA 276(14):1141–1146

    Article  PubMed  CAS  Google Scholar 

  21. AREDS (2001) A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch Ophthalmol 119(10):1417–1436

    Google Scholar 

  22. Verhasselt V, Goldman M, Willems F (1998) Oxidative stress up-regulates IL-8 and TNF-alpha synthesis by human dendritic cells. Eur J Immunol 28(11):3886–3890

    Article  PubMed  CAS  Google Scholar 

  23. Matsue H, Edelbaum D, Shalhevet D, Mizumoto N, Yang C, Mummert ME, Oeda J, Masayasu H, Takashima A (2003) Generation and function of reactive oxygen species in dendritic cells during antigen presentation. J Immunol 171(6):3010–3018

    PubMed  CAS  Google Scholar 

  24. Hagenow K, Gelderman KA, Hultqvist M, Merky P, Backlund J, Frey O, Kamradt T, Holmdahl R (2009) Ncf1-associated reduced oxidative burst promotes IL-33R+T cell-mediated adjuvant-free arthritis in mice. J Immunol 183(2):874–881

    Article  PubMed  CAS  Google Scholar 

  25. Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292(1):R18–R36

    Article  PubMed  CAS  Google Scholar 

  26. Mendoza-Nunez VM, Ruiz-Ramos M, Sanchez-Rodriguez MA, Retana-Ugalde R, Munoz-Sanchez JL (2007) Aging-related oxidative stress in healthy humans. Tohoku J Exp Med 213(3):261–268

    Article  PubMed  CAS  Google Scholar 

  27. Gu X, Meer SG, Miyagi M, Rayborn ME, Hollyfield JG, Crabb JW, Salomon RG (2003) Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration. J Biol Chem 278(43):42027–42035

    Article  PubMed  CAS  Google Scholar 

  28. Crabb JW, O’Neil J, Miyagi M, West K, Hoff HF (2002) Hydroxynonenal inactivates cathepsin B by forming Michael adducts with active site residues. Protein Sci 11(4):831–840

    Article  PubMed  CAS  Google Scholar 

  29. Ishibashi T, Murata T, Hangai M, Nagai R, Horiuchi S, Lopez PF, Hinton DR, Ryan SJ (1998) Advanced glycation end products in age-related macular degeneration. Arch Ophthalmol 116(12):1629–1632

    PubMed  CAS  Google Scholar 

  30. Chio KS, Reiss U, Fletcher B, Tappel AL (1969) Peroxidation of subcellular organelles: formation of lipofuscinlike fluorescent pigments. Science 166(3912):1535–1536

    Article  PubMed  CAS  Google Scholar 

  31. Ng KP, Gugiu B, Renganathan K, Davies MW, Gu X, Crabb JS, Kim SR, Rozanowska MB, Bonilha VL, Rayborn ME, Salomon RG, Sparrow JR, Boulton ME, Hollyfield JG, Crabb JW (2008) Retinal pigment epithelium lipofuscin proteomics. Mol Cell Proteomics 7(7):1397–1405

    Article  PubMed  CAS  Google Scholar 

  32. Handa JT, Verzijl N, Matsunaga H, Aotaki-Keen A, Lutty GA, te Koppele JM, Miyata T, Hjelmeland LM (1999) Increase in the advanced glycation end product pentosidine in Bruch’s membrane with age. Invest Ophthalmol Vis Sci 40(3):775–779

    PubMed  CAS  Google Scholar 

  33. Hammes HP, Hoerauf H, Alt A, Schleicher E, Clausen JT, Bretzel RG, Laqua H (1999) N(epsilon)(carboxymethyl)lysin and the AGE receptor RAGE colocalize in age-related macular degeneration. Invest Ophthalmol Vis Sci 40(8):1855–1859

    PubMed  CAS  Google Scholar 

  34. Farboud B, Aotaki-Keen A, Miyata T, Hjelmeland LM, Handa JT (1999) Development of a polyclonal antibody with broad epitope specificity for advanced glycation endproducts and localization of these epitopes in Bruch’s membrane of the aging eye. Mol Vis 5:11

    PubMed  CAS  Google Scholar 

  35. Howes KA, Liu Y, Dunaief JL, Milam A, Frederick JM, Marks A, Baehr W (2004) Receptor for advanced glycation end products and age-related macular degeneration. Invest Ophthalmol Vis Sci 45(10):3713–3720

    Article  PubMed  Google Scholar 

  36. Glenn JV, Mahaffy H, Wu K, Smith G, Nagai R, Simpson DA, Boulton ME, Stitt AW (2009) Advanced glycation end product (AGE) accumulation on Bruch’s membrane: links to age-related RPE dysfunction. Invest Ophthalmol Vis Sci 50(1):441–451

    Article  PubMed  Google Scholar 

  37. Glenn JV, Beattie JR, Barrett L, Frizzell N, Thorpe SR, Boulton ME, McGarvey JJ, Stitt AW (2007) Confocal Raman microscopy can quantify advanced glycation end product (AGE) modifications in Bruch’s membrane leading to accurate, nondestructive prediction of ocular aging. FASEB J 21(13):3542–3552

    Article  PubMed  CAS  Google Scholar 

  38. Baynes JW (2001) The role of AGEs in aging: causation or correlation. Exp Gerontol 36(9):1527–1537

    Article  PubMed  CAS  Google Scholar 

  39. Goh SY, Cooper ME (2008) Clinical review: the role of advanced glycation end products in progression and complications of diabetes. J Clin Endocrinol Metab 93(4):1143–1152

    Article  PubMed  CAS  Google Scholar 

  40. Ahmed KA, Muniandy S, Ismail IS (2007) Role of N-(carboxymethyl)lysine in the development of ischemic heart disease in type 2 diabetes mellitus. J Clin Biochem Nutr 41(2):97–105

    Article  CAS  Google Scholar 

  41. Riviere S, Birlouez-Aragon I, Vellas B (1998) Plasma protein glycation in Alzheimer’s disease. Glycoconj J 15(10):1039–1042

    Article  PubMed  CAS  Google Scholar 

  42. Harja E, Bu DX, Hudson BI, Chang JS, Shen X, Hallam K, Kalea AZ, Lu Y, Rosario RH, Oruganti S, Nikolla Z, Belov D, Lalla E, Ramasamy R, Yan SF, Schmidt AM (2008) Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE−/− mice. J Clin Invest 118(1):183–194

    Article  PubMed  CAS  Google Scholar 

  43. Soro-Paavonen A, Watson AM, Li J, Paavonen K, Koitka A, Calkin AC, Barit D, Coughlan MT, Drew BG, Lancaster GI, Thomas M, Forbes JM, Nawroth PP, Bierhaus A, Cooper ME, Jandeleit-Dahm KA (2008) Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 57(9):2461–2469

    Article  PubMed  CAS  Google Scholar 

  44. Ni J, Yuan X, Gu J, Yue X, Gu X, Nagaraj RH, Crabb JW, The Clinical Genomic and Proteomic AMD Study Group (2009) Plasma protein pentosidine and carboxymethyllysine, biomarkers for age-related macular degeneration. Mol Cell Proteomics 8:1921–1933

    Article  PubMed  CAS  Google Scholar 

  45. Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, Devera ME, Liang X, Tor M, Billiar T (2007) The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220:60–81

    Article  PubMed  CAS  Google Scholar 

  46. Herold K, Moser B, Chen Y, Zeng S, Yan SF, Ramasamy R, Emond J, Clynes R, Schmidt AM (2007) Receptor for advanced glycation end products (RAGE) in a dash to the rescue: inflammatory signals gone awry in the primal response to stress. J Leukoc Biol 82(2):204–212

    Article  PubMed  CAS  Google Scholar 

  47. Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, Rutledge R, Lin B, Amoscato AA, Zeh HJ, Lotze MT (2009) RAGE (receptor for advanced glycation endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 7:17

    Article  PubMed  CAS  Google Scholar 

  48. Schmidt AM, Yan SD, Yan SF, Stern DM (2001) The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 108(7): 949–955

    PubMed  CAS  Google Scholar 

  49. Yan SF, Ramasamy R, Schmidt AM (2010) The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature. Circ Res 106(5):842–853

    Article  PubMed  CAS  Google Scholar 

  50. Ramasamy R, Yan SF, Schmidt AM (2009) RAGE: therapeutic target and biomarker of the inflammatory response—the evidence mounts. J Leukoc Biol 86(3):505–512

    Article  PubMed  CAS  Google Scholar 

  51. Ida H, Ishibashi K, Reiser K, Hjelmeland LM, Handa JT (2004) Ultrastructural aging of the RPE-Bruch’s membrane-choriocapillaris complex in the D-galactose-treated mouse. Invest Ophthalmol Vis Sci 45(7):2348–2354

    Article  PubMed  Google Scholar 

  52. Tian J, Ishibashi K, Reiser K, Grebe R, Biswal S, Gehlbach P, Handa JT (2005) Advanced glycation endproduct-induced aging of the retinal pigment epithelium and choroid: a comprehensive transcriptional response. Proc Natl Acad Sci USA 102(33):11846–11851

    Article  PubMed  CAS  Google Scholar 

  53. Yamada Y, Ishibashi K, Bhutto IA, Tian J, Lutty GA, Handa JT (2006) The expression of advanced glycation endproduct receptors in RPE cells associated with basal deposits in human maculas. Exp Eye Res 82(5):840–848

    Article  PubMed  CAS  Google Scholar 

  54. Jang G-F, Crabb AM, Zhang L, Crabb JW (2010) Improved methods for quantifying plasma protein advanced glycation end products as biomarkers for age-related macular degeneration. Invest Ophthalmol Vis Sci 51:E-Abstract 4113

    Google Scholar 

  55. Crabb JW (2011) Proteomic biomarkers for age-related macular degeneration. Invest Ophthalmol Vis Sci 51:E-Abstract 855

    Google Scholar 

  56. Hirata C, Nakano K, Nakamura N, Kitagawa Y, Shigeta H, Hasegawa G, Ogata M, Ikeda T, Sawa H, Nakamura K, Ienaga K, Obayashi H, Kondo M (1997) Advanced glycation end products induce expression of vascular endothelial growth factor by retinal Muller cells. Biochem Biophys Res Commun 236(3):712–715

    Article  PubMed  CAS  Google Scholar 

  57. Treins C, Giorgetti-Peraldi S, Murdaca J, Van Obberghen E (2001) Regulation of vascular endothelial growth factor expression by advanced glycation end products. J Biol Chem 276(47):43836–43841

    Article  PubMed  CAS  Google Scholar 

  58. Urata Y, Yamaguchi M, Higashiyama Y, Ihara Y, Goto S, Kuwano M, Horiuchi S, Sumikawa K, Kondo T (2002) Reactive oxygen species accelerate production of vascular endothelial growth factor by advanced glycation end products in RAW264.7 mouse macrophages. Free Radic Biol Med 32(8):688–701

    Article  PubMed  CAS  Google Scholar 

  59. Hoffmann S, Friedrichs U, Eichler W, Rosenthal A, Wiedemann P (2002) Advanced glycation end products induce choroidal endothelial cell proliferation, matrix metalloproteinase-2 and VEGF upregulation in vitro. Graefes Arch Clin Exp Ophthalmol 240(12):996–1002

    Article  PubMed  CAS  Google Scholar 

  60. Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I, Bucala R, Adamis AP (1998) Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest 101(6):1219–1224

    Article  PubMed  CAS  Google Scholar 

  61. Okamoto T, Tanaka S, Stan AC, Koike T, Kase M, Makita Z, Sawa H, Nagashima K (2002) Advanced glycation end products induce angiogenesis in vivo. Microvasc Res 63(2): 186–195

    Article  PubMed  CAS  Google Scholar 

  62. Schutt F, Bergmann M, Holz FG, Kopitz J (2003) Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium. Invest Ophthalmol Vis Sci 44(8):3663–3668

    Article  PubMed  Google Scholar 

  63. Shen JK, Dong A, Hackett SF, Bell WR, Green WR, Campochiaro PA (2007) Oxidative damage in age-related macular degeneration. Histol Histopathol 22(12):1301–1308

    PubMed  CAS  Google Scholar 

  64. Wang L, Clark M, Crossman D, Kojima K, Messinger J, Mobley J, Curcio C (2010) Abundant lipid and protein components of drusen. PLoS One 5(4):e10329

    Article  PubMed  CAS  Google Scholar 

  65. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11(1):81–128

    Article  PubMed  CAS  Google Scholar 

  66. Gu X, Sun M, Gugiu B, Hazen S, Crabb JW, Salomon RG (2003) Oxidatively truncated docosahexaenoate phospholipids: total synthesis, generation, and peptide adduction chemistry. J Org Chem 68(10):3749–3761

    Article  PubMed  CAS  Google Scholar 

  67. Fliesler SJ, Anderson RE (1983) Chemistry and metabolism of lipids in the vertebrate retina. Prog Lipid Res 22(2):79–131

    Article  PubMed  CAS  Google Scholar 

  68. Alvarez R, Aguirre G, Acland G, Anderson R (1994) Docosapentaenoic acid is converted to docosahexaenoic acid in the retinas of normal and prcd-affected miniature poodle dogs. Invest Ophthalmol Vis Sci 35:402–408

    PubMed  CAS  Google Scholar 

  69. Wang N, Anderson RE (1992) Enrichment of polyunsaturated fatty acids from rat retinal pigment epithelium to rod outer segments. Curr Eye Res 11(8):783–791

    Article  PubMed  CAS  Google Scholar 

  70. Crabb JW, Gu X, Yan L, Rohde DE, West KA, Kamei M, Rayborn ME, Hollyfield JG, Salomon RG (2000) Oxidative protein modification in AMD from docosahexaenoic acid. Invest Ophthalmol Vis Sci S399:Abstract 2109

    Google Scholar 

  71. Renganathan K, Gu J, Gugiu B, Gu X, Darrow R, Lewis H, Salomon RG, Organisciak DT, Crabb JW, Group CAS (2005) Similarities in plasma oxidative modifications from retinal light damage and AMD. Invest Ophthalmol Vis Sci 46:E-Abstract 3010

    Google Scholar 

  72. Gu J, Paeur GJ, Yue X, Narendra U, Sturgill GM, Bena J, Gu X, Peachey NS, Salomon RG, Hagstrom SA, Crabb JW, Clinical Genomic and Proteomic AMD Study Group (2009) Assessing susceptibility to age-related macular degeneration with proteomic and genomic biomarkers. Mol Cell Proteomics 8:1338–1349

    Article  PubMed  CAS  Google Scholar 

  73. Renganathan K, Sun M, Darrow R, Shan L, Gu X, Salomon RG, Hazen S, Organisciak D, Crabb JW (2003) Light induced protein modifications and lipid oxidation products in rat retina. Invest Ophthalmol Vis Sci 44:E-Abstract 5129

    Google Scholar 

  74. Sun M, Finnemann SC, Febbraio M, Shan L, Annangudi SP, Podrez EA, Hoppe G, Darrow R, Organisciak DT, Salomon RG, Silverstein RL, Hazen SL (2006) Light-induced oxidation of photoreceptor outer segment phospholipids generates ligands for CD36-mediated phagocytosis by retinal pigment epithelium: a potential mechanism for modulating outer segment phagocytosis under oxidant stress conditions. J Biol Chem 281(7):4222–4230

    Article  PubMed  CAS  Google Scholar 

  75. Renganathan K, Collier R, Gu X, Salomon RG, Kapin M, Hollyfield JG, Crabb JW (2004) Similarities in oxidative damage from AMD and retinal light damage. Invest Ophthalmol Vis Sci 45:Abstract 1795

    Google Scholar 

  76. Gu X, Renganathan K, Grimm C, Wenzel A, Salomon RG, Reme CE, Crabb JW (2004) Rapid changes in retinal oxidative protein modifications induced by blue light. Invest Ophthalmol Vis Sci 45:E-Abstract 3474

    Google Scholar 

  77. Miyagi M, Sakaguchi H, Darrow RM, Yan L, West KA, Aulak KS, Stuehr DJ, Hollyfield JG, Organisciak DT, Crabb JW (2002) Evidence that light modulates protein nitration in rat retina. Mol Cell Proteomics 1(4):293–303

    Article  PubMed  CAS  Google Scholar 

  78. Gu J, Zhan X, Crabb JS, Bala E, Renganathan K, Hagstrom SA, Lewis H, Salomon RG, Crabb JW (2007) Oxidative modifications as biomarkers for AMD. Invest Ophthalmol Vis Sci 48:E-Abstract 34

    Article  Google Scholar 

  79. Renganathan K, Gu J, Collier R, Romano C, Salomon RG, Rayborn M, Hollyfield JG, Crabb JW (2009) Drugs that prevent retinal light damage impact CEP biomarker levels. Invest Ophthalmol Vis Sci 50:E-Abstract 681

    Google Scholar 

  80. Collier RJ, Patel Y, Martin EA, Dembinska O, Hellberg M, Krueger DS, Kapin MA, Romano C (2010) Agonists at the serotonin receptor (5HT1A) protect the retina from severe photo-oxidative stress. Invest Ophthalmol Vis Sci 52:2118–2126

    Article  CAS  Google Scholar 

  81. Collier R, Wang Y, Martin E, Ornberg R, Rhoades KL, Romano C (2011) Complement deposition and microglial activation in the outer retina in light-induced retinopathy: inhibition by a 5-HT1A agonist. Invest Ophthalmol Vis Sci 52(11):8108–8116

    Article  PubMed  CAS  Google Scholar 

  82. Imamura Y, Noda S, Hashizume K, Shinoda K, Yamaguchi M, Uchiyama S, Shimizu T, Mizushima Y, Shirasawa T, Tsubota K (2006) Drusen, choroidal neovascularization, and retinal pigment epithelium dysfunction in SOD1-deficient mice: a model of age-related macular degeneration. Proc Natl Acad Sci USA 103(30):11282–11287

    Article  PubMed  CAS  Google Scholar 

  83. Justilien V, Pang J, Renganathan K, Zhan X, Crabb JW, Kim SR, Sparrow JR, Hauswirth WW, Lewin AS (2007) SOD2 knockdown mouse model of early AMD. Invest Ophthalmol Vis Sci 48:4407–4420

    Article  PubMed  Google Scholar 

  84. Hollyfield JG, Bonilha VL, Rayborn ME, Yang X, Shadrach KG, Lu L, Ufret RL, Salomon RG, Perez VL (2008) Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat Med 14:194–198

    Article  PubMed  CAS  Google Scholar 

  85. Ebrahem Q, Renganathan K, Sears J, Vasanji A, Gu X, Lu L, Salomon RG, Crabb JW, Anand-Apte B (2006) Carboxyethylpyrrole oxidative protein modifications stimulate neovascularization: implications for age-related macular degeneration. Proc Natl Acad Sci USA 103(36):13480–13484

    Article  PubMed  CAS  Google Scholar 

  86. West XZ, Malinin NL, Merkulova AA, Tischenko M, Kerr BA, Borden EC, Podrez EA, Salomon RG, Byzova TV (2010) Oxidative stress induces angiogenesis by activating TLR2 with novel endogenous ligands. Nature 467(7318):972–976

    Article  PubMed  CAS  Google Scholar 

  87. Zahringer U, Lindner B, Inamura S, Heine H, Alexander C (2008) TLR2—promiscuous or specific? A critical re-evaluation of a receptor expressing apparent broad specificity. Immunobiology 213(3–4):205–224

    Article  PubMed  CAS  Google Scholar 

  88. Sparrow JR, Boulton M (2005) RPE lipofuscin and its role in retinal pathobiology. Exp Eye Res 80(5):595–606

    Article  PubMed  CAS  Google Scholar 

  89. Bazan H, Bazan N, Feeney-Burns L, Berman E (1990) Lipids in human lipofuscin-enriched subcellular fractions of two age populations. Comparison with rod outer segments and neural retina. Invest Ophthalmol Vis Sci 31(8):1433–1443

    PubMed  CAS  Google Scholar 

  90. Eldred GE, Lasky MR (1993) Retinal age pigments generated by self-assembling lysosomotropic detergents. Nature 361(6414):724–726

    Article  PubMed  CAS  Google Scholar 

  91. Sakai N, Decatur J, Nakanishi K, Eldred GE (1996) Ocular age pigment “A2-E”: an unprecedented pyridinium bisretinoid. J Am Chem Soc 118(6):1559–1560

    Article  CAS  Google Scholar 

  92. Sparrow JR (2007) RPE lipofuscin: formation, properties, and relevance to retinal degeneration. In: Tombran-Tink J, Barnstable CJ (eds) Retinal degenerations: biology, diagnostics and therapeutics. Human Press, Totowa, pp 213–236

    Google Scholar 

  93. Kim SR, Jang YP, Jockusch S, Fishkin NE, Turro NJ, Sparrow JR (2007) The all-trans-retinal dimer series of lipofuscin pigments in retinal pigment epithelial cells in a recessive Stargardt disease model. Proc Natl Acad Sci USA 104(49):19273–19278

    Article  PubMed  CAS  Google Scholar 

  94. Wu Y, Yanase E, Feng X, Siegel MM, Sparrow JR (2010) Structural characterization of ­bisretinoid A2E photocleavage products and implications for age-related macular degeneration. Proc Natl Acad Sci USA 107(16):7275–7280

    Article  PubMed  CAS  Google Scholar 

  95. Salomon RG, Sha W, Brame C, Kaur K, Subbanagounder G, O’Neil J, Hoff HF, Roberts LJ II (1999) Protein adducts of iso[4]levuglandin E2, a product of the isoprostane pathway, in oxidized low density lipoprotein. J Biol Chem 274(29):20271–20280

    Article  PubMed  CAS  Google Scholar 

  96. Iyer RS, Ghosh S, Salomon RG (1989) Levuglandin E2 crosslinks proteins. Prostaglandins 37(4):471–480

    Article  PubMed  CAS  Google Scholar 

  97. Murthi KK, Friedman LR, Oleinick NL, Salomon RG (1993) Formation of DNA-protein cross-links in mammalian cells by levuglandin E2. Biochemistry 32(15):4090–4097

    Article  PubMed  CAS  Google Scholar 

  98. Fishkin N, Jang YP, Itagaki Y, Sparrow JR, Nakanishi K (2003) A2-rhodopsin: a new fluorophore isolated from photoreceptor outer segments. Org Biomol Chem 1(7):1101–1105

    Article  PubMed  CAS  Google Scholar 

  99. Holz F, Bellman C, Staudt S, Schütt F, Völcker H (2001) Fundus autofluorescence and development of geographic atrophy in age-related macular degeneration. Invest Ophthalmol Vis Sci 42(5):1051–1056

    PubMed  CAS  Google Scholar 

  100. Bird AC (2010) Therapeutic targets in age-related macular disease. J Clin Invest 120(9): 3033–3041

    Article  PubMed  CAS  Google Scholar 

  101. Boulton M, Dontsov A, Jarvis-Evans J, Ostrovsky M, Svistunenko D (1993) Lipofuscin is a photoinducible free radical generator. J Photochem Photobiol B 19(3):201–204

    Article  PubMed  CAS  Google Scholar 

  102. Rozanowska M, Jarvis-Evans J, Korytowski W, Boulton ME, Burke JM, Sarna T (1995) Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species. J Biol Chem 270(32):18825–18830

    Article  PubMed  CAS  Google Scholar 

  103. Gaillard ER, Atherton SJ, Eldred G, Dillon J (1995) Photophysical studies on human retinal lipofuscin. Photochem Photobiol 61(5):448–453

    Article  PubMed  CAS  Google Scholar 

  104. Sparrow JR, Zhou J, Ben-Shabat S, Vollmer H, Itagaki Y, Nakanishi K (2002) Involvement of oxidative mechanisms in blue light induced damage to A2E-laden RPE. Invest Ophthalmol Vis Sci 43:1222–1227

    PubMed  Google Scholar 

  105. Boulton M, Rozanowska M, Rozanowski B, Wess T (2004) The photoreactivity of ocular lipofuscin. Photochem Photobiol Sci 3(8):759–764

    Article  PubMed  CAS  Google Scholar 

  106. Jang YP, Matsuda H, Itagaki Y, Nakanishi K, Sparrow JR (2005) Characterization of peroxy-A2E and furan-A2E photooxidation products and detection in human and mouse retinal pigment epithelial cell lipofuscin. J Biol Chem 280(48):39732–39739

    Article  PubMed  CAS  Google Scholar 

  107. Davies S, Elliott MH, Floor E, Truscott TG, Zareba M, Sarna T, Shamsi FA, Boulton ME (2001) Photocytotoxicity of lipofuscin in human retinal pigment epithelial cells. Free Radic Biol Med 31(2):256–265

    Article  PubMed  CAS  Google Scholar 

  108. Schütt F, Davies S, Kopitz J, Holz F, Boulton M (2000) Photodamage to human RPE cells by A2-E, a retinoid component of lipofuscin. Invest Ophthalmol Vis Sci 41(8):2303–2308

    PubMed  Google Scholar 

  109. Sparrow JR, Nakanishi K, Parish CA (2000) The lipofuscin fluorophore A2E mediates blue light-induced damage to retinal pigmented epithelial cells. Invest Ophthalmol Vis Sci 41(7):1981–1989

    PubMed  CAS  Google Scholar 

  110. Sparrow JR, Cai B (2001) Blue light-induced apoptosis of A2E-containing RPE: involvement of caspase-3 and protection by Bcl-2. Invest Ophthalmol Vis Sci 42(6):1356–1362

    PubMed  CAS  Google Scholar 

  111. Zhou J, Jang YP, Kim SR, Sparrow JR (2006) Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium. Proc Natl Acad Sci 103(44):16182–16187

    Article  PubMed  CAS  Google Scholar 

  112. Zhou J, Cai B, Jang YP, Pachydaki S, Schmidt AM, Sparrow JR (2005) Mechanisms for the induction of HNE- MDA- and AGE-adducts, RAGE and VEGF in retinal pigment epithelial cells. Exp Eye Res 80(4):567–580

    Article  PubMed  CAS  Google Scholar 

  113. Shiose S, Chen Y, Okano K, Roy S, Kohno H, Tang J, Pearlman E, Maeda T, Palczewski K, Maeda A (2011) Toll-like receptor 3 is required for development of retinopathy caused by impaired all-trans-retinal clearance in mice. J Biol Chem 286:15543–15555

    Article  PubMed  CAS  Google Scholar 

  114. Zarbin MA, Rosenfeld PJ (2010) Pathway-based therapies for age-related macular degeneration: an integrated survey of emerging treatment alternatives. Retina 30(9):1350–1367

    Article  PubMed  Google Scholar 

  115. Li W, Laird JM, Lu L, Roychowdhury S, Nagy LE, Zhou R, Crabb JW, Salomon RG (2009) Isolevuglandins covalently modify phosphatidylethanolamines in vivo: detection and quantitative analysis of hydroxylactam adducts. Free Radic Biol Med 47(11):1539–1552

    Article  PubMed  CAS  Google Scholar 

  116. Guichardant M, Taibi-Tronche P, Fay LB, Lagarde M (1998) Covalent modifications of aminophospholipids by 4-hydroxynonenal. Free Radic Biol Med 25(9):1049–1056

    Article  PubMed  CAS  Google Scholar 

  117. Zemski Berry KA, Murphy RC (2007) Characterization of acrolein-glycerophosphoethanolamine lipid adducts using electrospray mass spectrometry. Chem Res Toxicol 20(9): 1342–1351

    Article  PubMed  CAS  Google Scholar 

  118. Salomon RG, Batyreva E, Kaur K, Sprecher DL, Schreiber MJ, Crabb JW, Penn MS, DiCorletoe AM, Hazen SL, Podrez EA (2000) Isolevuglandin-protein adducts in humans: products of free radical-induced lipid oxidation through the isoprostane pathway. Biochim Biophys Acta 1485(2–3):225–235

    PubMed  CAS  Google Scholar 

  119. Uchida K (1999) Current status of acrolein as a lipid peroxidation product. Trends Cardiovasc Med 9(5):109–113

    Article  PubMed  CAS  Google Scholar 

  120. Xu G, Liu Y, Sayre LM (2000) Polyclonal antibodies to a fluorescent 4-hydroxy-2-nonenal (HNE)-derived lysine-lysine cross-link: characterization and application to HNE-treated protein and in vitro oxidized low-density lipoprotein. Chem Res Toxicol 13(5):406–413

    Article  PubMed  CAS  Google Scholar 

  121. Lau LI, Liu CJ, Wei YH (2010) Increase of 8-hydroxy-2′-deoxyguanosine in aqueous humor of patients with exudative age-related macular degeneration. Invest Ophthalmol Vis Sci 51(11):5486–5490

    Article  PubMed  Google Scholar 

  122. Scholl HP, Charbel Issa P, Walier M, Janzer S, Pollok-Kopp B, Borncke F, Fritsche LG, Chong NV, Fimmers R, Wienker T, Holz FG, Weber BH, Oppermann M (2008) Systemic complement activation in age-related macular degeneration. PLoS One 3(7):e2593

    Article  PubMed  CAS  Google Scholar 

  123. Huang SJ, Costa DL, Gross NE, Yannuzzi LA (2003) Peripheral drusen in membranoproliferative glomerulonephritis type II. Retina 23(3):429–431

    Article  PubMed  Google Scholar 

  124. Grote K, Schuett H, Salguero G, Grothusen C, Jagielska J, Drexler H, Muhlradt PF, Schieffer B (2010) Toll-like receptor 2/6 stimulation promotes angiogenesis via GM-CSF as a potential strategy for immune defense and tissue regeneration. Blood 115(12):2543–2552

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John W. Crabb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Crabb, J.W. (2012). Oxidative Modifications as Triggers of AMD Pathology. In: Stratton, R., Hauswirth, W., Gardner, T. (eds) Studies on Retinal and Choroidal Disorders. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-61779-606-7_3

Download citation

Publish with us

Policies and ethics