Skip to main content

Impacts morphologiques et moléculaires de la qualité ovocytaire en assistance médicale à la procréation

  • Chapter
Physiologie, pathologie et thérapie de la reproduction chez l’humain
  • 894 Accesses

Résumé

Les techniques biologiques d’assistance médicale à la procréation (AMP) telles que la fécondation in vitro (FIV) avec et sans micromanipulation nous ont permis d’examiner les gamètes, notamment les ovocytes et d’essayer de trouver des critères permettant d’évaluer leurs qualités ; la principale étant de donner un embryon apte à un développement précoce et à une implantation permettant une grossesse évolutive. Les premiers critères utilisés pour évaluer la qualité ovocytaire ont été des critères morphologiques. Ces observations restent souvent relativement subjectives et peu de critères morphologiques semblent être très prédictifs du devenir de la tentative d’AMP. D’autres approches, plus invasives, ont été utilisées, comme par exemple pour évaluer l’aneuploïdie ovocytaire, une cause majeure des échecs de développement embryonnaire. Actuellement, de nouvelles approches se mettent en place, utilisant des méthodes de biologie moléculaires qui permettent d’avoir des évaluations plus objectives de la qualité des ovocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références

  1. Veeck LL (1990) The morphological assesment of human oocytes and early concepti. In: Keel BA. Webster BW Handbook of the laboratory diagnosis and treatment of infertility. CRC Press Boca Raton, Boston: 353–369

    Google Scholar 

  2. Veeck LL (1999). The human oocyte. In: Veeck LL, ed. An Atlas of Human Gametes and Conceptus. Parthenon Publishing. New York, London, p 19–24

    Google Scholar 

  3. Rattanachaiyanont M. Leader A. Léveillé MC (1999) Lack of correlation betwenn oocyte-cumulus complex morphology and nuclear maturity of oocytes collected in stimulated cycles for intracytoplasmic sperm injection. Fertil Steril 71:937–940

    Article  PubMed  CAS  Google Scholar 

  4. Ebner T. Moser M. Shebi S et al. (2008) Blood clots in the cumulus-oocyte complex predict poor oocyte quality and post-fertilization development. Reprod Biomed Online 16:801–807

    Article  PubMed  CAS  Google Scholar 

  5. Hammitt DG. Syrop CH. Van Voorhis BJ (1992) Prediction of nuclear maturity from cumulus coronal morphology: influence of embryologist experience. J Assist Reprod Genet 9:439–446

    Article  PubMed  CAS  Google Scholar 

  6. Rosenbusch B. Schneider M (2002) Cytogenetic analysis of giant oocytes and zygotes to assess their relevance for the development of digynic triploidy. Hum Reprod 17:2388–2393

    Article  PubMed  CAS  Google Scholar 

  7. Ebner T. Moser M. Tews G (2004) Intracytoplasmic sperm injection in zona-free oocytes. J Turkish German Gynecol Assoc 5:294–298

    Google Scholar 

  8. De Sutter P. Dozortsev D. Quian C et al. (1996) Oocyte morphology does not correlate with fertilization rate and embryo quality after intracytoplasmic sperm injection. Hum Reprod 11:595–597

    PubMed  Google Scholar 

  9. Shen Y. Stalf T. Mehnert C et al. (2005) High magnitude of light retardation by zona pellucida is associated with conception cycles. Hum Reprod 20:1596–1606

    Article  PubMed  CAS  Google Scholar 

  10. Hassan-Ali H. Hisham-Saleh A. El-Gezeiry D et al. (1998) Perivitelline space granularity: a sign of human menopausal gonadotrophin overdose in intracytoplasmic sperm injection. Hum Reprod 13:3425–3430

    Article  PubMed  CAS  Google Scholar 

  11. Basak Balaban BS. Bulent Uman. (2006) Effect of morphology on embryo development and implantation. Reprod Biomed Online 12:608–615

    Article  PubMed  Google Scholar 

  12. Ebner T. Moser M. Yaman C et al. (1999) Elective transfert of embryons selected on the basis of first polar morphology is associated with increased rates of implantation and pregnancy. Fertil Steril 72:599–603

    Article  PubMed  CAS  Google Scholar 

  13. Ebner T. Moser M. Sommergruber M et al. (2002) First polar body and blastocyst formation rate in ICSI patients. Hum Reprod 17:2415–2418

    Article  PubMed  CAS  Google Scholar 

  14. Ciotti PM. Notarangelo L. Morselli-Labate AM et al, (2004) First polar body morphology before ICSI is not related to embryo quality or pregnancy rate. Hum Reprod 19:2334–2339

    Article  PubMed  CAS  Google Scholar 

  15. De Santis L. Cino I. Rabellotti E et al. (2005) Polar body morphology and spindle imaging as predictors of oocyte quality. Reprod Biomed Online 11:36–42

    Article  PubMed  Google Scholar 

  16. Verlinsky Y. Lerner S. Illkevitch N et al. (2003) Is there any predictive value of first polar body morphology for embryo genotype or developmental potential? Reprod Biomed Online 7:336–341

    Article  PubMed  Google Scholar 

  17. Xia P (1997) perivitelline space and cytoplasmic inclusion with fertilization rate and embryo quality. Hum Reprod 2:1750–1755

    Article  Google Scholar 

  18. Meriano JS. Alexis J. Visram-Zaver S et al. (2001) Tracking of oocyte dismorphism for ICSI patients may prove relevant to the outcome in subsequent patient cycle. Hum Reprod 16:2118–2123

    Article  PubMed  CAS  Google Scholar 

  19. Rienzi L. Ubaldi F. Martinez F (2003) Relationship between meiotic spindle location with regard to the polar body position and oocyte developmental potential after ICSI. Hum Reprod 18:1289–1293

    Article  PubMed  CAS  Google Scholar 

  20. Rienzi L. Ubaldi F. Iacobelli M. (2004) Meiotic spindle visualization in living human oocytes. Reprod Biomed Online 10:192–198

    Article  Google Scholar 

  21. Van Blerkom J. Davis P. Alexander S (2004) Occurrence of maternal and paternal spindles in unfertilized human oocytes: possible relationship to nucleation defects after silent fertilization. Reprod Biomed Online 8:454–459

    Article  PubMed  Google Scholar 

  22. Cooke S. Tyler JP. Driscoll GL (2003) Meiotic spindle location and identification and its effect on embryonic cleavage plane and early development. Hum Reprod 11:2397–2405

    Article  Google Scholar 

  23. Serhal PF. Ranieri DM. Kinis A et al. (1997) Oocyte morphology predicts outcome of inracytoplsmic sperm injection. Hum Reprod 12:1267–1270

    Article  PubMed  CAS  Google Scholar 

  24. Kahraman S. Yakin K. Dönmez E et al. (2000) Relationship between granular cytoplasm of oocyte and pregnancy outcome following inracytoplsmic sperm injection. Hum Reprod 15:2390–2393

    Article  PubMed  CAS  Google Scholar 

  25. Ebner T. Moser M. Sommergruber M et al. (2003) Developmental competence of oocytes showing increased cytoplasmic viscosity. Hum Reprod 18:1294–1298

    Article  PubMed  CAS  Google Scholar 

  26. Van Blerkom J (1990) Occurrence and developmental consequences of aberrant cellular organisation in meiotically mature human oocytes after exogenous ovarian hyper-stimulation. J Electron Microsc Tech 16:324–346

    Article  PubMed  Google Scholar 

  27. Otsuki J. Okada A. Morimoto K et al. (2004) The relationship between pregnancy outcome and smooth endoplasmic reticulum clusters in MII human oocytes. Hum Reprod 19:1591–1597

    Article  PubMed  CAS  Google Scholar 

  28. Van Blerkom J. Henry G (1988) Cytogenetic analysis of living human oocytes: cellular basis and developmental consequences of perturbations in chromosomal organization and complement. Hum Reprod 3:777–790

    PubMed  Google Scholar 

  29. Van Blerkom J. Henry G (1992) Oocyte dysmorphism and aneuploïdy in meiotically mature human oocytes after ovarian stimulation. Hum Reprod 7:379–390

    PubMed  Google Scholar 

  30. Alikani M. Palermo G. Bertoli M (1995) Intracytoplasmic sperm injection in dysmorphic human oocytes. Zygote 3:283–288

    Article  PubMed  CAS  Google Scholar 

  31. Sathananthan AH (1997) Ultrastructure of the human egg. Hum Cell 10:21–38

    PubMed  CAS  Google Scholar 

  32. Zamboni L. Thompson RS. Smith DM (1972) Fine morphology of human oocyte maturation in vitro. Biol Reprod 7:425–457

    PubMed  CAS  Google Scholar 

  33. Plachot M. Selva J. Wolf JP et al. (2002) Consequences of oocyte dysmorphy on the fertilization rate and embryo development after intra cytoplasmic sperm injection. A prospective multicenter study. Gynecol Obstet Fertil 30:772–779

    Article  PubMed  CAS  Google Scholar 

  34. Ebner T. Yaman C. Moser M et al. (2001) A prospective study on oocyte survival rate after ICSI: influence of injection technique and morphological features. J Assisted Reprod Genet 18:601–606

    Article  Google Scholar 

  35. Ten J. Mendiola J. Vioque J et al. (2007) Donor oocyte dysmorphisms and their influence on fertilization and embryo quality. Reprod Biomed Online 14:40–48

    Article  PubMed  Google Scholar 

  36. Boué J. Boué J (1974) Chromosomal abnormalities and abortion. Basic Life Sci 4:317

    PubMed  Google Scholar 

  37. Nicolaides P. Petersen MB (1998). Origin and mechanisms of non-disjunction in human autosomal trisomies. Hum Reprod 13:313–319

    Article  Google Scholar 

  38. Martin R. (2008) Meiotic errors in human oogenesis and spermatogenesis. Reprod Biomed Online 16:523–531

    Article  PubMed  Google Scholar 

  39. Pellestor F (1991) Frequency and distribution of aneuploidy in human female gametes. Hum Genet 86:283–288

    Article  PubMed  CAS  Google Scholar 

  40. Angell RR (1991) Predivision in human oocytes at meiosis I: a mechanism for trisomy formation in man. Hum Genet 86:383–387

    Article  PubMed  CAS  Google Scholar 

  41. Vialard F. Pellestor F (2008) Benefits of human gamete cytogenetic: results and perspectives. Pathol Biol 56:388–399

    Article  PubMed  CAS  Google Scholar 

  42. Munné S. Ary J. Zouves C et al. (2006) Wide range of chromosomes abnormalities in the embryons of young egg donors. Reprod Biomed Online 12:340–346

    Article  PubMed  Google Scholar 

  43. Vialard F. Petit C. Bergere M et al. (2006) Evidence of high proportion of premature unbalanced separation of sister chromatids in the first polar bodies of women of advanced age. Hum Reprod 21:1172–1178

    Article  PubMed  CAS  Google Scholar 

  44. Vialard F. Lombroso R. Bergere M et al. (2007) Oocyte aneuploidy mechanisms are different in two situations of increased chromosoml risk: older patients and patients with recurent implantation failure after in viro fertilization. Fertil Steril 87:1333–1339

    Article  PubMed  Google Scholar 

  45. Rubio C. Pehlivan T. Rodrigo L et al. (2005) Embryo aneuploidy screening for unexplained recurrent miscarriage: a minireview. Am J Reprod Immunol 53:323–336

    Article  Google Scholar 

  46. Cohen J. Wells D. Munne S (2007) Removal of 2 cells from cleavage stage embryos is likely to reduce the efficacy of chromosomal tests that are used to enhance implantation rates. Fertil Steril 87:496–503

    Article  PubMed  Google Scholar 

  47. Rizziolo F. Bione S. Sala C et al. (2006) Chromosomal rearrangements in Xq and premature ovarian failure: mapping of 25 new cases and review of the literature. Hum Reprod 21:1477–1483

    Article  Google Scholar 

  48. Gleicher N. Weghofer A. Barad DH (2009) A pilot study of premature ovarian senescence: Correlation of triplet CGG repeats on the FMR1 gene to ovarian reserve parameters FSH and anti-Mullarian hormone. Fertil Steril 91:1707–1711

    Article  PubMed  CAS  Google Scholar 

  49. Di Pasquale E. Beck-Peccoz P. Persani L (2004) Hypergonadotrophic ovarian failure associated with an inherited mutation of human bone morphogenetic protein-15 (BMP15) gene. Am J Hum Genet 75:106–111

    Article  PubMed  Google Scholar 

  50. Harris SE. Chand AL. Winship IM et al. (2002) Identification of novel mutations in FOXL2 associated with premature ovarian failure. Mol Hum Reprod 8:729–733

    Article  PubMed  CAS  Google Scholar 

  51. Mermillod P (2001) Croisssance et maturation de l’ovocyte in vivo et in vitro. In: Thibault C. Levasseur MC. La reproduction chez les mammifères et l’homme. Paris, INRA: 348

    Google Scholar 

  52. Albertini DF. Sanfins A. Combelles C (2003) Origins and manifestations of oocyte maturation competencies. Reprod Biomed Online 6:410–415

    Article  PubMed  CAS  Google Scholar 

  53. Patrizio P. Fragouli E. Bianchi V et al. (2007) Molecular methods for selection of the ideal oocyte. Reprod Biomed Online 15:346–353

    Article  PubMed  CAS  Google Scholar 

  54. Assou S. Haouzi D. Mahmoud K et al. (2008) A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: a proof of concept study. Mol Hum Reprod 14:711–719

    Article  PubMed  CAS  Google Scholar 

  55. Gasca S. Reyftmann L. Pellestor F et al. (2008) Total fertilization failure and molecular abnormalities in metaphase II oocytes. Reprod Biomed Online 17:772–781

    Article  PubMed  CAS  Google Scholar 

  56. Wang YA. Healy D. Black D et al. (2008) Age-specific success rate for women undertaking their first assisted reproduction technology treatment using their own oocytes in Australia, 2002–2005. Hum Reprod 23:1633–1638

    Article  PubMed  CAS  Google Scholar 

  57. Cukurcam S. Betzendahl I. Michel G et al. (2007) Influence of follicular fluid meiosis-activating sterol on aneuploidy rate and precocious chromatid segregation in aged mouse oocytes. Hum Reprod 22:815–828

    Article  PubMed  CAS  Google Scholar 

  58. Tatone C. Carbone MC. Gallo R (2006) Age-associated changes in mouse oocytes during postovulatory in vitro culture: possible role for meiotic kinases and survival factor BCL2. Biol Reprod 74:395–402

    Article  PubMed  CAS  Google Scholar 

  59. Keefe DL. Liu L. Marquard K (2007) Telomeres and aging-related meiotic dysfunction in women. Cell Mol Life Sci 64:139–143

    Article  PubMed  CAS  Google Scholar 

  60. Hodges CA. Revenkova E. Jessberger R et al. (2005) SMC1beta-defiscient female mice provide evidence that cohesins are a missing link in age-related nondisjunction. Nat Genet 21:1351–1355

    Article  Google Scholar 

  61. Van Blerkom J. Antczak M. Schrader R (1997) The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood characteristics. Hum Reprod 12:1047–1055

    Article  PubMed  Google Scholar 

  62. Costello F. Shrestha SM. Sjoblom P et al. (2006) Power doppler ulrasound assesment of the relationship between age and ovarian perifollicular blood flow in women undergoing in vitro fertilization treatment. J. Assist Reprod Genet 23:359–365

    Article  PubMed  Google Scholar 

  63. Steuerwald NM. Bermudez MG. Wells G (2007) Maternelage related differential global expression profiles observed in human oocytes. Reprod Biomed Online 14:700–708

    Article  PubMed  CAS  Google Scholar 

  64. Takeuchi T. Neri QV. Katagiri Y et al. (2005) Effect of treating induced mitochondrial damage on embryonic development and epigenesis. Biol Reprod 72:700–708

    Article  Google Scholar 

  65. Dumollard R. Duchen M. Carroll J (2007) The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol 77:21–49

    Article  PubMed  CAS  Google Scholar 

  66. Van Blerkom J (2008) Mitochondria as regulatory forces in oocytes, preimplantation embryons and stem cells. Reprod Biomed Online 16:553–569

    Article  PubMed  Google Scholar 

  67. Kregel KC. Zhang HJ (2007) An integrated view of oxydative stress in aging: basic mechanisms, functional effects and pathological considerations. Am J Physiol Integr Comp Physiol 292:18–36

    Article  Google Scholar 

  68. Tatone C. Carbone MC. Falone S et al. (2006) Age-dependant changes in the expression of superoxide dismutase and catalase are associated with ultrastructural modifications in human granulosa cells. Mol Hum Reprod 12:655–660

    Article  PubMed  CAS  Google Scholar 

  69. Baart E. Martini E. Eijkemans M et al. (2007) Milder ovarian stimulation for in-vitro fertilization reduces aneuploidy in the human preimplantation embryo: a randomized controlled trial. Hum Reprod 22:80–88

    Article  Google Scholar 

  70. Rossi G. Macchiarelli G. Palmerini MG et al. 2006) Meiotic spindle configuration is differentially influenced by FSH and epidermal growth factor during in vitro maturation of mouse oocytes. Hum. Reprod 21:1765–1770

    Google Scholar 

  71. Roberts R. Iatropoulou A. Ciantar D et al. (2005) Folliclestimulating hormone affects metaphase I chromosome alignment and increases aneuploidy in mouse oocytes matured in vitro. Biol Reprod 72:107–118

    Article  PubMed  CAS  Google Scholar 

  72. Hamamah S. Matha V. Berthenet C et al. (2006) Comparative protein expression profiling in human cumulus cells in relation to oocyte fertilization and ovarian stimulation protocol. Reprod Biomed Online 13:807–814

    Article  PubMed  CAS  Google Scholar 

  73. Lucifero D. Mann ERW. Bartolomei MS et al. (2004) Gene specific timing and epigenetic memory in oocyte imprinting. Hum Mol Genet 13:839–849

    Article  PubMed  CAS  Google Scholar 

  74. Sato A. Otsu E. Negishi H. Utsunomiya T et al. (2007) Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum Reprod 22:26–35

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag France, Paris

About this chapter

Cite this chapter

Clément, P. (2011). Impacts morphologiques et moléculaires de la qualité ovocytaire en assistance médicale à la procréation. In: Physiologie, pathologie et thérapie de la reproduction chez l’humain. Springer, Paris. https://doi.org/10.1007/978-2-8178-0061-5_38

Download citation

  • DOI: https://doi.org/10.1007/978-2-8178-0061-5_38

  • Publisher Name: Springer, Paris

  • Print ISBN: 978-2-8178-0060-8

  • Online ISBN: 978-2-8178-0061-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics