Skip to main content
Log in

The reaction between HO and (H2O) n (n = 1, 3) clusters: reaction mechanisms and tunneling effects

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The reaction between the HO radical and (H2O)n (n = 1, 3) clusters has been investigated employing high-level quantum mechanical calculations using DFT-BH&HLYP, QCISD, and CCSD(T) theoretical approaches in connection with the 6-311 + G(2df,2p), aug-cc-pVTZ, and aug-cc-pVQZ basis sets. The rate constants have also been calculated and the tunneling effects have been studied by means of time–dependent wavepacket calculations, performed using the Quantum–Reaction Path Hamiltonian method. According to the findings of previously reported theoretical works, the reaction between HO and H2O begins with the formation of a pre-reactive complex that is formed before the transition state, the formation of a post-reactive complex, and the release of the products. The reaction between HO and (H2O)2 also begins with the formation of a pre-reactive complex, which dissociates into H2O…HO + H2O. The reaction between HO and (H2O)3 is much more complex. The hydroxyl radical adds to the water trimer, and then it occurs a geometrical rearrangement in the pre-reactive hydrogen-bonded complex region, before the transition state. The reaction between hydroxyl radical and water trimer is computed to be much faster than the reaction between hydroxyl radical and a single water molecule, and, in both cases, the tunneling effects are very important mainly at low temperatures. A prediction of the atmospheric concentration of the hydrogen-bonded complexes studied in this work is also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The CR3 → CR4 path is very flat and we have failed to find TS5 at BH&HLYP level of theory We have optimized it, and CR3 too, using the B3LYP functional and their corresponding ZPE, entropy and enthalpy corrections have been employed in this case.

References

  1. Wayne RP (2000) Chemistry of atmospheres, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  2. Wennberg PO, Hanisco TF, Jaeglé L, Jacob DJ, Hintsa EJ, Lanzendorf EJ, Anderson JG, Gao RS, Keim ER, Donnelly SG, Negro LAD, Fahey DW, McKeen SA, Salawitch RJ, Webster CR, May RD, Herman RL, Proffitt MH, Margitan JJ, Atlas EL, Schauffler SM, Flocke F, McElroy CT, Bui TP (1998) Science 279:49–53

    Article  CAS  Google Scholar 

  3. Monks PS (2005) Gas-phase radical chemistry in the troposphere. Chem Soc Rev 34:376–395

    Article  CAS  Google Scholar 

  4. Jaeglé L, Jacob DJ, Brune WH, Wennberg PO (2001) Atmos Environ 35:469–489

    Article  Google Scholar 

  5. Hofzumahaus A, Rohrer F, Lu KD, Bohn B, Brauers T, Chang CC, Fuchs H, Holland F, Kita K, Kondo Y, Li X, Lou SR, Shao M, Zeng LM, Wahner A, Zhang YH (2009) Science 324(5935):1702–1704. doi:10.1126/science.1164566

    Google Scholar 

  6. Mansergas A, Anglada JM (2007) ChemPhysChem 8:1534–1539

    Article  CAS  Google Scholar 

  7. Jacob DJ (2000) Atmos Environ 34(12–14):2131–2159

    Article  CAS  Google Scholar 

  8. Chameides WL, Davis DD (1982) J Geophys Res Oceans Atmospheres 87(NC7):4863–4877

    Article  CAS  Google Scholar 

  9. Hanson DR, Burkholder JB, Howard CJ, Ravishankara AR (1992) J Phys Chem 96(12):4979–4985

    Article  CAS  Google Scholar 

  10. Kregel KC, Zhang HJ (2007) Am J Physiol Regul Integr Comp Physiol 292(1):R18–R36

    Article  CAS  Google Scholar 

  11. Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ, Squadrito GL, Davies KJ (2006) Am J Physiol Regul Integr Comp Physiol 291(3):R491–R511

    Article  CAS  Google Scholar 

  12. Fridovich I (1998) J Exp Biol 201(Pt 8):1203–1209

    CAS  Google Scholar 

  13. Kehrer JP (2000) Toxicology 149(1):43–50

    Article  CAS  Google Scholar 

  14. Cooper WJ, Cramer CJ, Martin NH, Mezyk SP, O’Shea KE, von Sonntag C (2009) Chem Rev 109(3):1302–1345. doi:10.1021/cr078024c

    Article  CAS  Google Scholar 

  15. Sein MM, Golloch A, Schmidt TC, von Sonntag C (2007) ChemPhysChem 8(14):2065–2067

    Article  CAS  Google Scholar 

  16. Lesko TM, Colussi AJ, Hoffmann MR (2004) J Am Chem Soc 126:4432–4436

    Article  CAS  Google Scholar 

  17. Sehested K, Corfitzen H, Holcman J, Hart EJ (1998) J Phys Chem A 102:2667–2672

    Article  CAS  Google Scholar 

  18. Dubey MK, Mohrschladt R, Donahue NM, Anderson JG (1997) J Phys Chem A 101(8):1494–1500

    Article  CAS  Google Scholar 

  19. Masgrau L, Gonzalez-Lafont A, Lluch JM (1999) J Phys Chem A 103(8):1044–1053

    Article  CAS  Google Scholar 

  20. Masgrau L, Gonzalez-Lafont A, Lluch JM (1999) J Comput Chem 20(16):1685–1692

    Article  CAS  Google Scholar 

  21. Uchimaru T, Chandra AK, Tsuzuki S, Sugie M, Sekiya A (2003) J Comput Chem 24:1538–1548

    Article  CAS  Google Scholar 

  22. Hand MR, Rodriquez CF, Williams IH, Balint-Kurti GG (1998) J Phys Chem A 102(29):5958–5966

    Article  CAS  Google Scholar 

  23. Basch H, Hoz S (1997) J Phys Chem A 101(24):4416–4431

    Article  CAS  Google Scholar 

  24. Deyerl HJ, Luong AK, Clements TG, Continetti RE (2000) Faraday Discuss 115:147–160

    Article  CAS  Google Scholar 

  25. Olivella S, Anglada JM, Sole A, Bofill JM (2004) Chem Eur J 10:3404–3410. doi:10.1002/chem.200305714

    Article  CAS  Google Scholar 

  26. Vohringer-Martinez E, Hansmann B, Hernandez H, Francisco JS, Troe J, Abel B (2007) Science 315(5811):497–501

    Article  CAS  Google Scholar 

  27. Anglada JM, Gonzalez J (2009) ChemPhysChem 10(17):3034–3045. doi:10.1002/cphc.200900387

  28. Luo Y, Maeda S, Ohno K (2009) Chem Phys Lett 469:57–61

    Article  CAS  Google Scholar 

  29. Aloisio S, Francisco JS, Friedl RR (2000) J Phys Chem A 104:6597–6601

    Article  CAS  Google Scholar 

  30. Zhu RS, Lin MC (2002) Chem Phys Lett 354(3–4):217–226

    Article  CAS  Google Scholar 

  31. Anglada JM, Aplincourt P, Bofill JM, Cremer D (2002) ChemPhysChem 2:215–221

    Article  Google Scholar 

  32. Crehuet R, Anglada JM, Bofill JM (2001) Chem Eur J 7(10):2227–2235

    Article  CAS  Google Scholar 

  33. Neeb P, Sauer F, Horie O, Moortgat GK (1997) Atmos Environ 31(10):1417–1423

    Article  Google Scholar 

  34. Gonzalez J, Torrent-Sucarrat M, Anglada JM (2010) PhysChemChemPhys 12(9):2116–2125. doi:10.1039/b916659a

  35. Bahnson BJ, Colby TD, Chin JK, Goldstein BM, Klinman JP (1997) Proc Natl Acad Sci USA 94(24):12797–12802

    Article  CAS  Google Scholar 

  36. Giese K, Petkovic M, Naundorf H, Kuhn O (2006) Phys Rep Rev Sect Phys Lett 430(4):211–276. doi:10.1016/j.physrep.2006.04.005

    Google Scholar 

  37. Guallar V, Gherman BF, Miller WH, Lippard SJ, Friesner RA (2002) J Am Chem Soc 124(13):3377–3384. doi:10.1021/ja0167248

    Google Scholar 

  38. Makri N (1999) Annual Rev Phys Chem 50:167–191

    Article  CAS  Google Scholar 

  39. Pfeilsticker K, Lotter A, Peters C, Bosch H (2003) Science 300(5628):2078–2080

    Article  CAS  Google Scholar 

  40. Dunn ME, Pokon EK, Shields GC (2004) J Am Chem Soc 126:2647–2653

    Article  CAS  Google Scholar 

  41. Goldman N, Fellers RS, Leforestier C, Saykally RJ (2001) J Phys Chem A 105(3):515–519

    Article  CAS  Google Scholar 

  42. Becke AD (1993) J Chem Phys 98:1372

    Article  CAS  Google Scholar 

  43. Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269

    Article  CAS  Google Scholar 

  44. Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York, pp 86–87

    Google Scholar 

  45. Ishida K, Morokuma K, Kormornicki A (1977) J Chem Phys 66:2153

    Article  CAS  Google Scholar 

  46. Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154

    Article  CAS  Google Scholar 

  47. Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523

    Article  CAS  Google Scholar 

  48. Fukui K (1970) J Phys Chem 74(23):4161

    Article  CAS  Google Scholar 

  49. Cizek J (1969) Adv Chem Phys 14:35

    Article  CAS  Google Scholar 

  50. Barlett RJ (1989) J Phys Chem 93:1963

    Article  Google Scholar 

  51. Pople JA, Krishnan R, Schlegel HB, Binkley JS (1978) Int J Quant Chem XIV:545–560

    Article  Google Scholar 

  52. Pople JA, Head-Gordon M, Raghavachari K (1989) J Chem Phys 90(8):4635–4636

    Article  CAS  Google Scholar 

  53. Dunning THJ (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  54. Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96(9):6796–6806

    Article  CAS  Google Scholar 

  55. Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968

    Article  CAS  Google Scholar 

  56. Roos BO (1987) Adv Chem Phys 69:399

    Article  CAS  Google Scholar 

  57. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JA Jr, Montgomery J, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ocherski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.01 edn. Gaussian, Inc., Wallingford, CT

    Google Scholar 

  58. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) Gamess 2004. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  59. Gonzalez J, Gimenez X, Bofill JM (2009) J Chem Phys 131(5):054108. doi:10.1063/1.3194135

    Google Scholar 

  60. Gonzalez J, Gimenez X, Bofill JM (2001) J Phys Chem A 105(20):5022–5029. doi:10.1021/jp003793k

    Google Scholar 

  61. Gonzalez J, Gimenez X, Bofill JM (2007) J Comput Chem 28 (13):2111–2121. doi:10.1002/jcc.20729

    Google Scholar 

  62. Gonzalez J, Gimenez X, Bofill JM (2007) J Comput Chem 28(13):2102–2110. doi:10.1002/jcc.20728

    Google Scholar 

  63. Gonzalez J, Gimenez X, Bofill JM (2004) Theor Chem Acc 112(2):75–83. doi:10.1007/s00214-004-0571-6

    Google Scholar 

  64. Askar A, Cakmak AS (1978) J Chem Phys 68(6):2794–2798

    Google Scholar 

  65. Klopper W, de Rijdt J, van Duijneveldt FB (2000) PhysChemChemPhys 2(10):2227–2234

    CAS  Google Scholar 

  66. Zhou Z, Qu Y, Fu A, Du B, He F, Gao H (2002) Int J Quant Chem 89:550–558

    Article  CAS  Google Scholar 

  67. Cooper PD, Kjaergaard HG, Langford VS, McKinley AJ, Quickenden TI, Schofield DP (2003) J Am Chem Soc 125(20):6048–6049

    Article  CAS  Google Scholar 

  68. Engdahl A, Karlstrom G, Nelander B (2003) J Chem Phys 118(17):7797–7802

    Article  CAS  Google Scholar 

  69. Ohshima Y, Sato K, Sumiyoshi Y, Endo Y (2005) J Am Chem Soc 127(4):1108–1109

    Article  CAS  Google Scholar 

  70. Allodi MA, Dunn ME, Livada J, Kirschner KN, Shields GC (2006) J Phys Chem A 110(49):13283–13289

    Article  CAS  Google Scholar 

  71. Soloveichik P, O’Donnell BA, Lester MI, Francisco JS, McCoy AB (2010) J Phys Chem A 114(3):1529–1538. doi:10.1021/jp907885d

    Google Scholar 

  72. Quapp W, Hirsch M, Heidrich D (1998) Theor Chem Acc 100(5–6):285–299

    CAS  Google Scholar 

  73. Ess DH, Wheeler SE, Iafe RG, Xu L, Celebi-Olcum N, Houk KN (2008) Angew Chem Int Ed Engl 47(40):7592–7601. doi:10.1002/anie.200800918

    Google Scholar 

  74. Valtazanos P, Ruedenberg K (1986) Theor Chim Acta 69(4):281–307

    Article  CAS  Google Scholar 

  75. Tsuji K, Shibuya K (2009) J Phys Chem A 113(37):9945–9951. doi:10.1021/jp903648z

    Google Scholar 

  76. Anglada JM (2004) J Am Chem Soc 126(31):9809–9820

    Article  CAS  Google Scholar 

  77. Miller WH (1976) J Chem Phys 65:2216–2223

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Generalitat de Catalunya (Grant 2009SGR01472) and the Spanish Dirección General de Investigación Científica y Técnica (DGYCIT, grants CTQ2008-06536/BQU and CTQ2008-02856/BQU). The calculations described in this work were carried out at the Centre de Supercomputació de Catalunya (CESCA), at the Computational Center of CTI–CSIC, and at the cluster of workstations of our group. Antoni Aguilar-Mogas and Marc Caballero gratefully thank to Ministerio de Ciencia e Innovación for a predoctoral fellowship. Javier González and Miquel Torrent-Sucarrat acknowledge CSIC for a JAE-DOC contract.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Josep M. Bofill or Josep M. Anglada.

Additional information

Published as part of the special issue celebrating theoretical and computational chemistry in Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonzalez, J., Caballero, M., Aguilar-Mogas, A. et al. The reaction between HO and (H2O) n (n = 1, 3) clusters: reaction mechanisms and tunneling effects. Theor Chem Acc 128, 579–592 (2011). https://doi.org/10.1007/s00214-010-0824-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0824-5

Keywords

Navigation