Skip to main content

Advertisement

Log in

Effects of Cerium Oxide Nanoparticles on PC12 Neuronal-Like Cells: Proliferation, Differentiation, and Dopamine Secretion

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Oxidative stress has been found to play a key role in several diseases, that range from cancer to neurodegenerative disorders. Besides traditional anti-oxidant agents, in recent years much attention has been focused on nanotechnological solutions, including cerium oxide nanoparticles (nanoceria).

Methods

Thanks to its extraordinary catalytic properties, nanoceria mimics the activity of superoxide dismutase and of catalase, therefore acting as a reactive oxygen species (ROS) scavenger in many biological contexts. In this paper, we report on nanoceria interactions with PC12 cell line, that represents a valuable model for many features of central dopaminergic neurons.

Results

Nanoceria confirmed a strong anti-ROS action but, most interestingly, also showed beneficial effects on both cell differentiation and dopamine production.

Conclusions

Even if deeper examinations will be necessary in order to better clarify the mechanisms at the base of the documented effects, nanoceria demonstrated a significant potential as pharmacological agent in the treatment of neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EDS:

energy-dispersive X-ray spectroscopy

ELISA:

enzyme-linked immunosorbent Assay

NC:

nanoceria

NGF:

nerve growth factor

ROS:

reactive oxygen species

XPS:

X-ray photoelectron spectroscopy

References

  1. Asati A, Lehmkuhl D, Diaz D, Perez JM. Nanoceria facilitates the synthesis of poly(o-phenylenediamine) with pH-tunable morphology, conductivity, and photoluminescent properties. Langmuir. 2012;28:13066–71.

    Article  PubMed  CAS  Google Scholar 

  2. Esposito V, Traversa E. Design of electroceramics for solid oxide fuel cell applications: playing with ceria. J Am Ceram Soc. 2008;91:1037–51.

    Article  CAS  Google Scholar 

  3. Pirmohamed T, Dowding JM, Singh S, Wasserman B, Heckert E, Karakoti AS, et al. Nanoceria exhibit redox state-dependent catalase mimetic activity. Chem Commun. 2010;46:2736–8.

    Article  CAS  Google Scholar 

  4. Heckert EG, Karakoti AS, Seal S, Self WT. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008;29:2705–9.

    Article  PubMed  CAS  Google Scholar 

  5. Celardo I, Traversa E, Ghibelli L. Cerium oxide nanoparticles: a promise for applications in therapy. J Exp Ther Oncol. 2011;9:47–51.

    PubMed  CAS  Google Scholar 

  6. Niu J, Wang K, Kolattukudy P. Cerium oxide nanoparticles inhibits oxidative stress and nuclear factor-κb activation in H9c2 cardiomyocytes exposed to cigarette smoke extract. J Pharmacol Exp Ther. 2011;338:53–61.

    Article  PubMed  CAS  Google Scholar 

  7. Schubert D, Dargusch R, Raitano J, Chan SW. Cerium and yttrium oxide nanoparticles are neuroprotective. Biochem Biophys Res Commun. 2006;342:86–91.

    Article  PubMed  CAS  Google Scholar 

  8. Pagliari F, Mandoli C, Forte G, Magnani E, Pagliari S, Nardone G, et al. Cerium oxide nanoparticles protect cardiac progenitor cells from oxidative stress. ACS Nano. 2012;6:3767–75.

    Article  PubMed  CAS  Google Scholar 

  9. Hirst SM, Karakoti A, Singh S, Self W, Tyler R, Seal S, et al. Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ Toxicol. 2011. doi:10.1002/tox.20704.

    PubMed  Google Scholar 

  10. Chen J, Patil S, Seal S, McGinnis JF. Rare earth nanoparticles prevent retinal degeneration induced by intracellular peroxides. Nat Nanotechnol. 2006;1:142–50.

    Article  PubMed  CAS  Google Scholar 

  11. Kong L, Cai X, Zhou X, Wong LL, Karakoti AS, Seal S, et al. Nanoceria extend photoreceptor cell lifespan in tubby mice by modulation of apoptosis/survival signaling pathways. Neurobiol Dis. 2011;42:514–23.

    Article  PubMed  CAS  Google Scholar 

  12. Zhou X, Wong LL, Karakoti AS, Seal S, McGinnis JF. Nanoceria inhibit the development and promote the regression of pathologic retinal neovascularization in the Vldlr knockout mouse. PLoS One. 2011;6:e16733.

    Article  PubMed  CAS  Google Scholar 

  13. Davan R, Prasad RGSV, Jakka VS, Aparna RSL, Phani AR, Jacob B, et al. Cerium oxide nanoparticles promotes wound healing activity in in-vivo animal model. J Bionanosci. 2012;6:78–83.

    Article  CAS  Google Scholar 

  14. Celardo I, Pedersen JZ, Traversa E, Ghibelli L. Pharmacological potential of cerium oxide nanoparticles. Nanoscale. 2011;3:1411–20.

    Article  PubMed  CAS  Google Scholar 

  15. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49:1603–16.

    Article  PubMed  CAS  Google Scholar 

  16. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7:65–74.

    Article  PubMed  CAS  Google Scholar 

  17. Bartsch H, Nair J. Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg. 2006;391:499–510.

    Article  PubMed  Google Scholar 

  18. Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol. 2007;292:18–36.

    Article  Google Scholar 

  19. Janssen YM, Van Houten B, Borm PJ, Mossman BT. Cell and tissue responses to oxidative damage. Lab Invest. 1993;69:261–74.

    PubMed  CAS  Google Scholar 

  20. Estevez AY, Erlichman JS. Cerium oxide nanoparticles for the treatment of neurological oxidative stress diseases. In: Oxidative stress: diagnostics, prevention, and therapy, ACS Symposium Series, 2011;1083:255–88.

  21. Cimini A, D’Angelo B, Das S, Gentile R, Benedetti E, Singh V, et al. Antibody-conjugated PEGylated cerium oxide nanoparticles for specific targeting of Aβ aggregates modulate neuronal survival pathways. Acta Biomater. 2012;8:2056–67.

    Article  PubMed  CAS  Google Scholar 

  22. Estevez AY, Pritchard S, Harper K, Aston JW, Lynch A, Lucky JJ, et al. Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia. Free Radical Bio Med. 2011;51:1155–63.

    Article  CAS  Google Scholar 

  23. Greene LA, Tischler AS. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA. 1976;73:2424–8.

    Article  PubMed  CAS  Google Scholar 

  24. Le Bail A. Whole powder pattern decomposition methods and applications—A retrospection. Powder Diffr. 2005;20:316–26.

    Article  Google Scholar 

  25. Romeo M, Bak K, El Fallah J, Lenormand F, Hilaire L. XPS study of the reduction of cerium dioxide. Surf Interface Anal. 1993;20:508–12.

    Article  CAS  Google Scholar 

  26. Celardo I, De Nicola M, Mandoli C, Pedersen JZ, Traversa E, Ghibelli L. Ce3+ ions determine redox-dependent anti-apoptotic effect of cerium oxide nanoparticles. ACS Nano. 2011;5:4537–49.

    Article  PubMed  CAS  Google Scholar 

  27. Rzigalinski BA, Meehan K, Davis RM, Xu Y, Miles WC, Cohen CA. Radical nanomedicine. Nanomedicine UK. 2006;1:399–412.

    Article  CAS  Google Scholar 

  28. Hussain S, Al-Nsour F, Rice AB, Marshburn J, Yingling B, Ji Z, et al. Cerium dioxide nanoparticles induce apoptosis and autophagy in human peripheral blood monocytes. ACS Nano. 2012;6:5820–9.

    Article  PubMed  CAS  Google Scholar 

  29. Tseng MT, Lu X, Duan X, Hardas SS, Sultana R, Wu P, et al. Alteration of hepatic structure and oxidative stress induced by intravenous nanoceria. Toxicol Appl Pharmacol. 2012;260:173–821.

    Article  PubMed  CAS  Google Scholar 

  30. Sohaebuddin SK, Thevenot PT, Baker D, Eaton JW, Tang L. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol. 2010;7–22.

  31. Asati A, Santra S, Kaittanis C, Perez JM. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS Nano. 2010;4:5321–31.

    Article  PubMed  CAS  Google Scholar 

  32. Cooke MJ, Zahir T, Phillips SR, Shah DSH, Athey D, Lakey JH, et al. Neural differentiation regulated by biomimetic surfaces presenting motifs of extracellular matrix proteins. J Biomed Mater Res A. 2010;93:824–32.

    PubMed  CAS  Google Scholar 

  33. Chien CL, Liu TC, Ho CL, Lu KS. Overexpression of neuronal intermediate filament protein α-internexin in PC12 cells. J Neurosci Res. 2005;80:693–706.

    Article  PubMed  CAS  Google Scholar 

  34. Wang J, Rahman MF, Duhart HM, Newport GD, Patterson TA, Murdock RC, et al. Expression changes of dopaminergic system-related genes in PC12 cells induced by manganese, silver, or copper nanoparticles. Neurotoxicology. 2009;30:926–33.

    Article  PubMed  Google Scholar 

  35. Patenaude A, Murthy MR, Mirault ME. Emerging roles of thioredoxin cycle enzymes in the central nervous system. Cell Mol Life Sci. 2005;62:1063–80.

    Article  PubMed  CAS  Google Scholar 

  36. Maher P. Redox control of neural function: background, mechanisms, and significance. Antioxid Redox Signal. 2006;8:1941–70.

    Article  PubMed  CAS  Google Scholar 

  37. Yoo MS, Chun HS, Son JJ, DeGiorgio LA, Kim DJ, Peng C, et al. Oxidative stress regulated genes in nigral dopaminergic neuronal cells: correlation with the known pathology in Parkinson’s disease. Brain Res Mol Brain Res. 2003;110:76–84.

    Article  PubMed  CAS  Google Scholar 

  38. Barbieri E, Sestili P. Reactive oxygen species in skeletal muscle signaling. J Signal Transduct. 2012;982794.

  39. Fornai F, Lenzi P, Lazzeri G, Ferrucci M, Fulceri F, Giorgi FS, et al. Fine ultrastructure and biochemistry of PC12 cells: a comparative approach to understand neurotoxicity. Brain Res. 2007;1129:174–90.

    Article  PubMed  CAS  Google Scholar 

  40. Ulbrich K, Hekmatara T, Herbert E, Kreuter J. Transferrin- and transferrin-receptor-antibody-modified nanoparticles enable drug delivery across the blood–brain barrier (BBB). Eur J Pharm Biopharm. 2009;71:251–6.

    Article  PubMed  CAS  Google Scholar 

  41. Yoshida H, Date I, Shingo T, Fujiwara K, Kobayashi K, Miyoshi Y, et al. Stereotactic transplantation of a dopamine-producing capsule into the striatum for the treatment of Parkinson disease: a preclinical primate study. J Neurosurg. 2003;98:874–81.

    Article  PubMed  Google Scholar 

  42. Genchi GG, Ciofani G, Polini A, Liakos I, Iandolo D, Athanassiou A, et al. PC12 neuron-like cell response to electrospun poly(3-hydroxybutyrate) substrates. J Tissue Eng Regen M. 2012. doi:10.1002/term.1623.

  43. Das S, Singh S, Dowding JM, Oommen S, Kumar A, Sayle TX, et al. The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials. 2012;33:7746–55.

    Article  PubMed  CAS  Google Scholar 

  44. Lord MS, Jung MS, Teoh WY, Gunawan C, Vassie JA, Amal R, et al. Cellular uptake and reactive oxygen species modulation of cerium oxide nanoparticles in human monocyte cell line U937. Biomaterials. 2012;33:7915–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianni Ciofani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciofani, G., Genchi, G.G., Liakos, I. et al. Effects of Cerium Oxide Nanoparticles on PC12 Neuronal-Like Cells: Proliferation, Differentiation, and Dopamine Secretion. Pharm Res 30, 2133–2145 (2013). https://doi.org/10.1007/s11095-013-1071-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1071-y

KEY WORDS

Navigation