Skip to main content
Log in

Longevity of insulin receptor substrate1 null mice is not associated with increased basal antioxidant protection or reduced oxidative damage

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Insulin receptor substrate-1 null (Irs1 −/−) mice are long lived and importantly they also demonstrate increased resistance to several age-related pathologies compared to wild type (WT) controls. Currently, the molecular mechanisms that underlie lifespan extension in long-lived mice are unclear although protection against oxidative damage may be important. Here, we determined both the activities of several intracellular antioxidants and levels of oxidative damage in brain, skeletal muscle, and liver of Irs1 −/− and WT mice at 80, 450, and 700 days of age, predicting that long-lived Irs1 −/− mice would be protected against oxidative damage. We measured activities of both intracellular superoxide dismutases (SOD); cytosolic (CuZnSOD) and mitochondrial (MnSOD), glutathione peroxide (GPx), glutathione reductase (GR), catalase (CAT), and reduced glutathione (GHS). Of these, only hepatic CAT was significantly altered (increased) in Irs1 −/− mice. In addition, the levels of protein oxidation (protein carbonyl content) and lipid peroxidation (4-hydroxynonenal) were unaltered in Irs1 −/− mice, although the hepatic GSH/GSSG ratio, indicating an oxidized environment, was significantly lower in long-lived Irs1 −/− mice. Overall, our results do not support the premise that lifespan extension in Irs1 −/− mice is associated with greater tissue antioxidant protection or reduced oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alic N, Hoddinott MP, Vinti G, Partridge L (2011) Lifespan extension by increased expression of the Drosophila homologue of the IGFBP7 tumour suppressor. Aging Cell 10(1):137–147. doi:10.1111/j.1474-9726.2010.00653.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bartke A (2011) Single-gene mutations and healthy ageing in mammals. Philos Trans R Soc Lond B Biol Sci 366(1561):28–34. doi:10.1098/rstb.2010.0281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78(2):547–581

    CAS  PubMed  Google Scholar 

  • Bluher M, Kahn BB, Kahn CR (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299(5606):572–574

    Article  CAS  PubMed  Google Scholar 

  • Bokov AF, Lindsey ML, Khodr C, Sabia MR, Richardson A (2009) Long-lived Ames dwarf mice are resistant to chemical stressors. J Gerontol A Biol Sci Med Sci 64A(8):819–827

    Article  PubMed Central  CAS  Google Scholar 

  • Bonafe M, Barbieri M, Marchegiani F, Olivieri F, Ragno E, Giampieri C, Mugianesi E, Centurelli M, Franceschi C, Paolisso G (2003) Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control. J Clin Endocrinol Metab 88(7):3299–3304

    Article  CAS  PubMed  Google Scholar 

  • Brooks NL, Trent CM, Raetzsch CF, Flurkey K, Boysen G, Perfetti MT, Jeong YC, Klebanov S, Patel KB, Khodush VR, Kupper LL, Carling D, Swenberg JA, Harrison DE, Combs TP (2007) Low utilization of circulating glucose after food withdrawal in Snell dwarf mice. J Biol Chem 282(48):35069–35077. doi:10.1074/jbc.M700484200

    Article  CAS  PubMed  Google Scholar 

  • Broughton S, Partridge L (2009) Insulin/IGF-like signalling, the central nervous system and aging. Biochem J 418:1–12. doi:10.1042/Bj20082102

    Article  CAS  PubMed  Google Scholar 

  • Brown-Borg HM, Rakoczy SG (2000) Catalase expression in delayed and premature aging mouse models. Exp Gerontol 35(2):199–212

    Article  CAS  PubMed  Google Scholar 

  • Brown-Borg HM, Rakoczy SG (2003) Growth hormone administration to long-living dwarf mice alters multiple components of the antioxidative defense system. Mech Ageing Dev 124(10–12):1013–1024

    Article  CAS  PubMed  Google Scholar 

  • Brown-Borg HM, Bode AM, Bartke A (1999) Antioxidative mechanisms and plasma growth hormone levels: potential relationship in the aging process. Endocrine 11(1):41–48

    Article  CAS  PubMed  Google Scholar 

  • Brown-Borg H, Johnson WT, Rakoczy S, Romanick M (2001) Mitochondrial oxidant generation and oxidative damage in Ames dwarf and GH transgenic mice. J Am Aging Assoc 24(3):85–96

    PubMed Central  CAS  PubMed  Google Scholar 

  • Brys K, Vanfleteren JR, Braeckman BP (2007) Testing the rate-of-living/oxidative damage theory of aging in the nematode model Caenorhabditis elegans. Exp Gerontol 42(9):845–851

    Article  CAS  PubMed  Google Scholar 

  • Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292(5514):104–106

    Article  CAS  PubMed  Google Scholar 

  • Csiszar A, Labinskyy N, Perez V, Recchia FA, Podlutsky A, Mukhopadhyay P, Losonczy G, Pacher P, Austad SN, Bartke A, Ungvari Z (2008) Endothelial function and vascular oxidative stress in long-lived GH/IGF-deficient Ames dwarf mice. Am J Physiol Heart Circ Physiol 295(5):H1882–H1894. doi:10.1152/ajpheart.412.2008

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Curtis C, Landis GN, Folk D, Wehr NB, Hoe N, Waskar M, Abdueva D, Skvortsov D, Ford D, Luu A, Badrinath A, Levine RL, Bradley TJ, Tavare S, Tower J (2007) Transcriptional profiling of MnSOD-mediated lifespan extension in Drosophila reveals a species-general network of aging and metabolic genes. Genome Biol 8(12):R262. doi:10.1186/gb-2007-8-12-r262

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dorman JB, Albinder B, Shroyer T, Kenyon C (1995) The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141(4):1399–1406

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gems D, Doonan R (2009) Antioxidant defense and aging in C. elegans: is the oxidative damage theory of aging wrong? Cell Cycle 8(11):1681–1687

    Article  CAS  PubMed  Google Scholar 

  • Hauck SJ, Bartke A (2000) Effects of growth hormone on hypothalamic catalase and Cu/Zn superoxide dismutase. Free Radic Biol Med 28(6):970–978

    Article  CAS  PubMed  Google Scholar 

  • Hauck SJ, Aaron JM, Wright C, Kopchick JJ, Bartke A (2002) Antioxidant enzymes, free-radical damage, and response to paraquat in liver and kidney of long-living growth hormone receptor/binding protein gene-disrupted mice. Horm Metab Res 34(9):481–486. doi:10.1055/s-2002-34787

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, McLellan LI (1999) Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radic Res 31(4):273–300

    Article  CAS  PubMed  Google Scholar 

  • Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421(6919):182–187

    Article  CAS  PubMed  Google Scholar 

  • Homi HM, Freitas JJ, Curi R, Velasco IT, Junior BA (2002) Changes in superoxide dismutase and catalase activities of rat brain regions during early global transient ischemia/reperfusion. Neurosci Lett 333(1):37–40

    Article  CAS  PubMed  Google Scholar 

  • Honda Y, Honda S (1999) The daf-2 gene network for longevity regulates oxidative stress resistance and Mn-superoxide dismutase gene expression in Caenorhabditis elegans. FASEB J 13(11):1385–1393

    CAS  PubMed  Google Scholar 

  • Ishii N, Goto S, Hartman PS (2002) Protein oxidation during aging of the nematode Caenorhabditis elegans. Free Radic Biol Med 33(8):1021–1025

    Article  CAS  PubMed  Google Scholar 

  • Jacobson J, Lambert AJ, Portero-Otin M, Pamplona R, Magwere T, Miwa S, Driege Y, Brand MD, Partridge L (2010) Biomarkers of aging in Drosophila. Aging Cell 9(4):466–477. doi:10.1111/j.1474-9726.2010.00573.x

    Article  CAS  PubMed  Google Scholar 

  • Jang YC, Perez VI, Song W, Lustgarten MS, Salmon AB, Mele J, Qi W, Liu Y, Liang H, Chaudhuri A, Ikeno Y, Epstein CJ, Van Remmen H, Richardson A (2009) Overexpression of Mn superoxide dismutase does not increase life span in mice. J Gerontol A Biol Sci Med Sci 64(11):1114–1125. doi:10.1093/gerona/glp100

    Article  CAS  PubMed  Google Scholar 

  • Kabil H, Partridge L, Harshman LG (2007) Superoxide dismutase activities in long-lived Drosophila melanogaster females: chico1 genotypes and dietary dilution. Biogerontology 8(2):201–208. doi:10.1007/s10522-006-9065-3

    Article  CAS  PubMed  Google Scholar 

  • Kappeler L, De Magalhaes Filho CM, Dupont J, Leneuve P, Cervera P, Perin L, Loudes C, Blaise A, Klein R, Epelbaum J, Le Bouc Y, Holzenberger M (2008) Brain IGF-1 receptors control mammalian growth and lifespan through a neuroendocrine mechanism. PLoS Biol 6(10):e254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292(1):R18–R36. doi:10.1152/ajpregu.00327.2006

    Article  CAS  PubMed  Google Scholar 

  • Leiser SF, Miller RA (2010) Nrf2 signaling, a mechanism for cellular stress resistance in long-lived mice. Mol Cell Biol 30(3):871–884. doi:10.1128/MCB.01145-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lin K, Dorman JB, Rodan A, Kenyon C (1997) daf-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278(5341):1319–1322

    Article  CAS  PubMed  Google Scholar 

  • Masternak MM, Panici JA, Bonkowski MS, Hughes LF, Bartke A (2009) Insulin sensitivity as a key mediator of growth hormone actions on longevity. J Gerontol A Biol Sci Med Sci 64(5):516–521

    Article  CAS  PubMed  Google Scholar 

  • Negre-Salvayre A, Auge N, Ayala V, Basaga H, Boada J, Brenke R, Chapple S, Cohen G, Feher J, Grune T, Lengyel G, Mann GE, Pamplona R, Poli G, Portero-Otin M, Riahi Y, Salvayre R, Sasson S, Serrano J, Shamni O, Siems W, Siow RC, Wiswedel I, Zarkovic K, Zarkovic N (2010) Pathological aspects of lipid peroxidation. Free Radic Res 44(10):1125–1171. doi:10.3109/10715762.2010.498478

    Article  CAS  PubMed  Google Scholar 

  • Page MM, Peters CW, Staples JF, Stuart JA (2009a) Intracellular antioxidant enzymes are not globally upregulated during hibernation in the major oxidative tissues of the 13-lined ground squirrel Spermophilus tridecemlineatus. Comp Biochem Physiol A Mol Integr Physiol 152(1):115–122. doi:10.1016/j.cbpa.2008.09.032

    Article  CAS  PubMed  Google Scholar 

  • Page MM, Salmon AB, Leiser SF, Robb EL, Brown MF, Miller RA, Stuart JA (2009b) Mechanisms of stress resistance in Snell dwarf mouse fibroblasts: enhanced antioxidant and DNA base excision repair capacity, but no differences in mitochondrial metabolism. Free Radic Biol Med 46(8):1109–1118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Page MM, Richardson J, Wiens BE, Tiedtke E, Peters CW, Faure PA, Burness G, Stuart JA (2010) Antioxidant enzyme activities are not broadly correlated with longevity in 14 vertebrate endotherm species. Age (Dordr) 32(2):255–270. doi:10.1007/s11357-010-9131-2

    Article  CAS  Google Scholar 

  • Pawlikowska L, Hu D, Huntsman S, Sung A, Chu C, Chen J, Joyner AH, Schork NJ, Hsueh WC, Reiner AP, Psaty BM, Atzmon G, Barzilai N, Cummings SR, Browner WS, Kwok PY, Ziv E (2009) Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell 8(4):460–472. doi:10.1111/j.1474-9726.2009.00493.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perez VI, Bokov A, Van Remmen H, Mele J, Ran Q, Ikeno Y, Richardson A (2009) Is the oxidative stress theory of aging dead? Biochim Biophys Acta 1790(10):1005–1014

    Google Scholar 

  • Piper MD, Selman C, McElwee JJ, Partridge L (2008) Separating cause from effect: how does insulin/IGF signalling control lifespan in worms, flies and mice? J Intern Med 263(2):179–191

    Article  CAS  PubMed  Google Scholar 

  • Rahman I, Kode A, Biswas SK (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method. Nat Protoc 1(6):3159–3165. doi:10.1038/nprot.2006.378

    Article  CAS  PubMed  Google Scholar 

  • Ristow M, Schmeisser S (2011) Extending life span by increasing oxidative stress. Free Radic Biol Med 51(2):327–336. doi:10.1016/j.freeradbiomed.2011.05.010

    Article  CAS  PubMed  Google Scholar 

  • Ristow M, Zarse K, Oberbach A, Kloting N, Birringer M, Kiehntopf M, Stumvoll M, Kahn CR, Bluher M (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 106(21):8665–8670. doi:10.1073/pnas.0903485106

    Article  PubMed Central  PubMed  Google Scholar 

  • Romanick MA, Rakoczy SG, Brown-Borg HM (2004) Long-lived Ames dwarf mouse exhibits increased antioxidant defense in skeletal muscle. Mech Ageing Dev 125(4):269–281. doi:10.1016/j.mad.2004.02.001

    Article  CAS  PubMed  Google Scholar 

  • Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine lifespan by overexpression of catalase targeted to mitochondria. Science 308(5730):1909–11

    Article  CAS  PubMed  Google Scholar 

  • Selman C, Withers DJ (2011) Mammalian models of extended healthy lifespan. Philos Trans R Soc Lond B Biol Sci 366(1561):99–107. doi:10.1098/rstb.2010.0243

    Article  PubMed Central  PubMed  Google Scholar 

  • Selman C, Lingard S, Choudhury AI, Batterham RL, Claret M, Clements M, Ramadani F, Okkenhaug K, Schuster E, Blanc E, Piper MD, Al-Qassab H, Speakman JR, Carmignac D, Robinson IC, Thornton JM, Gems D, Partridge L, Withers DJ (2008) Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J 22(3):807–818

    Article  CAS  PubMed  Google Scholar 

  • Selman C, Partridge L, Withers DJ (2011) Replication of extended lifespan phenotype in mice with deletion of insulin receptor substrate 1. PLoS One 6(1):e16144. doi:10.1371/journal.pone.0016144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spanier B, Rubio-Aliaga I, Hu H, Daniel H (2010) Altered signalling from germline to intestine pushes daf-2;pept-1 Caenorhabditis elegans into extreme longevity. Aging Cell 9(4):636–646. doi:10.1111/j.1474-9726.2010.00591.x

    Article  CAS  PubMed  Google Scholar 

  • Speakman JR, Selman C (2011) The free-radical damage theory: accumulating evidence against a simple link of oxidative stress to ageing and lifespan. Bioessays 33(4):255–259. doi:10.1002/bies.201000132

    Article  PubMed  Google Scholar 

  • Taguchi A, White MF (2008) Insulin-like signaling, nutrient homeostasis, and life span. Annu Rev Physiol 70:191–212. doi:10.1146/annurev.physiol.70.113006.100533

    Article  CAS  PubMed  Google Scholar 

  • Taguchi A, Wartschow LM, White MF (2007) Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317(5836):369–372

    Article  CAS  PubMed  Google Scholar 

  • Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292(5514):107–110. doi:10.1126/science.1057987

    Article  CAS  PubMed  Google Scholar 

  • Van Raamsdonk JM, Hekimi S (2010) Reactive oxygen species and aging in Caenorhabditis elegans: causal or casual relationship? Antioxid Redox Signal 13(12):1911–1953. doi:10.1089/ars.2010.3215

    Article  PubMed  Google Scholar 

  • Vanfleteren JR (1993) Oxidative stress and ageing in Caenorhabditis elegans. Biochem J 292(Pt 2):605–608

    PubMed Central  CAS  PubMed  Google Scholar 

  • Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF (1998) Disruption of IRS-2 causes type 2 diabetes in mice. Nature 391(6670):900–904. doi:10.1038/36116

    Article  CAS  PubMed  Google Scholar 

  • Withers DJ, Burks DJ, Towery HH, Altamuro SL, Flint CL, White MF (1999) Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling. Nat Genet 23(1):32–40. doi:10.1038/12631

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Biological Services Unit staff (University College London and University of Aberdeen) for animal care. We are grateful to Steve Lingard for technical help. This work was supported by a Biotechnology and Biological Sciences Research Council (BBSRC) New Investigator Grant (BB/H012850/1) to CS and a Wellcome Trust Strategic Award to DJW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Selman.

About this article

Cite this article

Page, M.M., Withers, D.J. & Selman, C. Longevity of insulin receptor substrate1 null mice is not associated with increased basal antioxidant protection or reduced oxidative damage. AGE 35, 647–658 (2013). https://doi.org/10.1007/s11357-012-9395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-012-9395-9

Keywords

Navigation