Skip to main content

Advertisement

Log in

Neuronal injury from cardiac arrest: aging years in minutes

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Cardiac arrest is a leading cause of death and permanent disability. Most victims succumb to the oxidative and inflammatory damage sustained during cardiac arrest/resuscitation, but even survivors typically battle long-term neurocognitive impairment. Although extensive research has delineated the complex mechanisms that culminate in neuronal damage and death, no effective treatments have been developed to interrupt these mechanisms. Of importance, many of these injury cascades are also active in the aging brain, where neurons and other cells are under persistent oxidative and inflammatory stress which eventually damages or kills the cells. In light of these similarities, it is reasonable to propose that the brain essentially ages the equivalent of several years within the few minutes taken to resuscitate a patient from cardiac arrest. Accordingly, cardiac arrest-resuscitation models may afford an opportunity to study the deleterious mechanisms underlying the aging process, on an accelerated time course. The aging and resuscitation fields both stand to gain pivotal insights from one another regarding the mechanisms of injury sustained during resuscitation from cardiac arrest and during aging. This synergism between the two fields could be harnessed to foster development of treatments to not only save lives but also to enhance the quality of life for the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

Bak:

Bcl-2 homologous antagonist killer

Bax:

Bcl-2-associated X protein

BBB:

Blood–brain barrier

Bcl-2:

B-cell lymphoma 2 family of proteins

BH4 :

Tetrahydrobiopterin

Casp-3:

Caspase-3

Casp-9:

Caspase-9

CoQ:

Coenzyme-Q

CPR:

Cardiopulmonary resuscitation

Cyt C:

Cytochrome C

eNOS:

Endothelial isoform of nitric oxide synthase

GSH:

Reduced form of glutathione

GSH/GSSG:

Concentration ratio of reduced to oxidized glutathione

iNOS:

Inducible isoform of nitric oxide synthase

mPTP:

Mitochondrial permeability transition pore

mtDNA:

Mitochondrial DNA

NFκB:

Nuclear factor-kappa B

NO:

Nitric oxide

O2 :

Superoxide

ONOO :

Peroxynitrite

OxS:

Oxidative stress

ROS/RNS:

Reactive oxygen and nitrogen species

SMAC:

Second mitochondria-derived activator of caspases

TNF-α:

Tumor necrosis factor alpha

References

  • Abe K, Kawagoe J, Itoyama Y, Kogure K (1996) Isolation of an ischemia-induced gene and early disturbance of mitochondrial DNA expression after transient forebrain ischemia. Adv Neurol 71:485–503

    CAS  PubMed  Google Scholar 

  • Adrie C, Laurent I, Monchi M, Cariou A, Dhainaou JF, Spaulding C (2004) Postresuscitation disease after cardiac arrest: a sepsis-like syndrome? Curr Opin Crit Care 10:208–212

    PubMed  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 90:7915–7922

  • Arzi A, Hemmati AA, Razian AA (2004) Effect of Vitamins C and E on cognitive function in mouse. Pharm Res 49:249–252. doi:10.1016/j.phrs.2003.10.004

    CAS  Google Scholar 

  • Backstrom T, Goiny M, Lockowandt U, Liska J, Franco-Cereceda A (2003) Cardiac outflow of amino acids and purines during myocardial ischemia and reperfusion. J Appl Physiol 94:1122–1128. doi:10.1152/japplphysiol.00138.2002

    CAS  PubMed  Google Scholar 

  • Baines CP (2010) The cardiac mitochondrion: nexus of stress. Annu Rev Physiol 72:61–80. doi:10.1146/annurev-physiol-021909-135929

    CAS  PubMed  Google Scholar 

  • Bano D, Nicotera P (2007) Ca2+ signals and neuronal death in brain ischemia. Stroke 38:674–676. doi:10.1161/01.STR.0000256294.46009.29

    CAS  PubMed  Google Scholar 

  • Barrientos RM, Higgins EA, Biedenkapp JC, Sprunger DB, Wright-Hardesty KJ, Watkins LR, Rudy JW, Maier SF (2006) Peripheral infection and aging interact to impair hippocampal memory consolidation. Neurobiol Aging 27:723–732

  • Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14:312–318

    CAS  PubMed  Google Scholar 

  • Becker LB (2004) New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res 61:461–470. doi:10.1016/j.cardiores.2003.10.025

    CAS  PubMed  Google Scholar 

  • Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581

    CAS  PubMed  Google Scholar 

  • Blumberg J (2004) Use of biomarkers of oxidative stress in research studies. J Nutr 134:3188S–3189S

    CAS  PubMed  Google Scholar 

  • Bokov A, Chaudhuri A, Richardson A (2004) The role of oxidative damage and stress in aging. Mech Ageing Dev 125:811–826. doi:10.1016/j.mad.2004.07.009

    CAS  PubMed  Google Scholar 

  • Broughton BR, Reutens DC, Sobey CG (2009) Apoptotic mechanisms after cerebral ischemia. Stroke 40:e331–e339. doi:10.1161/STROKEAHA.108.531632

    PubMed  Google Scholar 

  • Brown GC, Borutaite V (1999) Nitric oxide, cytochrome c and mitochondria. Biochem Soc Symp 66:17–25

    CAS  PubMed  Google Scholar 

  • Calapai G, Marciano MC, Corica F, Allegra A, Parisi A, Frisina N, Caputi AP, Buemi M (2000) Erythropoietin protects against brain ischemic injury by inhibition of nitric oxide formation. Eur J Pharm 401:349–356

    CAS  Google Scholar 

  • Cerchiari EL, Hoel TM, Safar P, Sclabassi RJ (1987) Protective effects of combined superoxide dismutase and deferoxamine on recovery of cerebral blood flow and function after cardiac arrest in dogs. Stroke 18:869–878

    CAS  PubMed  Google Scholar 

  • Chen H, Hu CJ, He YY, Yang DI, Xu J, Hsu CY (2001) Reduction and restoration of mitochondrial dna content after focal cerebral ischemia/reperfusion. Stroke 32:2382–2387

    CAS  PubMed  Google Scholar 

  • Conroy BP, Black D, Lin CY, Jenkins LW, Crumrine RC, DeWitt DS, Johnston WE (1999) Lamotrigine attenuates cortical glutamate release during global cerebral ischemia in pigs on cardiopulmonary bypass. Anesthesiology 90:844–854

    CAS  PubMed  Google Scholar 

  • Cortese GP, Barrientos RM, Maier SF, Patterson SL (2011) Aging and a peripheral immune challenge interact to reduce mature brain-derived neurotrophic factor and activation of TrkB, PLCgamma1, and ERK in hippocampal synaptoneurosomes. J Neurosci 31:4274–4279. doi:10.1523/JNEUROSCI.5818-10.2011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Croteau DL, Stierum RH, Bohr VA (1999) Mitochondrial DNA repair pathways. Mutat Res 434:137–148

    CAS  PubMed  Google Scholar 

  • Dexter DT, Holley AE, Flitter WD, Slater TF, Wells FR, Daniel SE, Lees AJ, Jenner P, Marsden CD (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 9:92–97. doi:10.1002/mds.870090115

    CAS  PubMed  Google Scholar 

  • Dezfulian C, Shiva S, Alekseyenko A, Pendyal A, Beiser DG, Munasinghe JP, Anderson SA, Chesley CF, Vanden Hoek TL, Gladwin MT (2009) Nitrite therapy after cardiac arrest reduces reactive oxygen species generation, improves cardiac and neurological function, and enhances survival via reversible inhibition of mitochondrial complex I. Circulation 120:897–905. doi:10.1161/CIRCULATIONAHA.109.853267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Diniz BS, Teixeira AL, Talib L, Gattaz WF, Forlenza OV (2010) Interleukin-1β serum levels is increased in antidepressant-free elderly depressed patients. Am J Geriatr Psychiatr 18:172–176. doi:10.1097/JGP.0b013e3181c2947f

    Google Scholar 

  • Dohi K, Ohtaki H, Inn R, Ikeda Y, Shioda HS, Aruga T (2003) Peroxynitrite and caspase-3 expression after ischemia/reperfusion in mouse cardiac arrest model. Acta Neurochir Suppl 86:87–91

    CAS  PubMed  Google Scholar 

  • Dohi K, Miyamoto K, Fukuda K, Nakamura S, Hayashi M, Ohtaki H, Shioda S, Aruga T (2013) Status of systemic oxidative stress during therapeutic hypothermia in patients with post-cardiac arrest syndrome. Oxidative Med Cell Longev 2013:562429. doi:10.1155/2013/562429

    Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95. doi:10.1152/physrev.00018.2001

    CAS  PubMed  Google Scholar 

  • Drysdale EE, Grubb NR, Fox KA, O’Carroll RE (2000) Chronicity of memory impairment in long-term out-of-hospital cardiac arrest survivors. Resuscitation 47:27–32. doi:10.1016/S0300-9572(00)00194-5

    CAS  PubMed  Google Scholar 

  • Dysken MW, Sano M, Asthana S, Sano M, Asthana S, Vertrees JE, Pallaki M, Llorente M, Love S, Schellenberg GD, McCarten JR, Malphurs J, Preto S, Chen P, Loreck DJ, Trapp G, Bakshi RS, Mintzer JE, Heidebrink JL, Vidal-Cardona A, Arroyo LM, Cruz AR, Zachariah S, Kowall NW, Chopra MP, Craft S, Thielke S, Turvey CL, Woodman C, Monnell KA, Gordon K, Tomaska J, Segal Y, Peduzzi PN, Guarino PD (2014) Effect of vitamin E and memantine on functional decline in Alzheimer disease: the TEAM-AD VAcooperative randomized trial. JAMA 311:33–44. doi:10.1001/jama.2013.282834

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fiskum G, Danilov CA, Mehrabian Z, Bambrick LL, Kristian T, McKenna MC, Hopkins I, Richards EM, Rosenthal RE (2008) Postischemic oxidative stress promotes mitochondrial metabolic failure in neurons and astrocytes. Postischemic oxidative stress promotes mitochondrial metabolic failure in neurons and astrocytes. Ann N Y Acad Sci 1147:129–138. doi:10.1196/annals.1427.026

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foster TC, Norris CM (1997) Age-associated changes in Ca(2+)-dependent processes: relation to hippocampal synaptic plasticity. Hippocampus 7:602–612. doi:10.1002/(SICI)1098-1063(1997)7:6<602::AID-HIPO3>3.0.CO;2-G

    CAS  PubMed  Google Scholar 

  • Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53:31–47

    CAS  PubMed  Google Scholar 

  • Franklin JL (2011) Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxid Redox Signal 14:1437–1448. doi:10.1089/ars.2010.3596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galasko DR, Peskind E, Clark CM, Quinn JF, Ringman JM, Jicha GA, Cotman C, Cottrell B, Montine TJ, Thomas RG, Aisen P (2012) Antioxidants for alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarkers. Arch Neurol 60:836–841. doi:10.1001/archneurol.2012.85

    Google Scholar 

  • Ghosh D, LeVault KR, Brewer GJ (2014a) Dual-energy precurser and nuclear erythroid-related factor 2 activator treatment additively improve redox glutathione levels and neuron survival in aging and Alzheimer mouse neurons upstream of reactive oxygen species. Neurobiol Aging 35:179–190. doi:10.1016/j.neurobiolaging.2013.06.023

    CAS  PubMed  Google Scholar 

  • Ghosh D, LeVault KR, Brewer GJ (2014b) Relative importance of redox buffers GSH and NAD(P)H in age-related neurodegeneration and Alzheimer disease-like mouse neurons. Aging Cell 1–10. doi: 10.1111/acel.12216

  • Giulivi C (1998) Functional implications of nitric oxide produced by mitochondria in mitochondrial metabolism. Biochem J 332:673–679

    CAS  PubMed Central  PubMed  Google Scholar 

  • Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS 3rd, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2014) Heart disease and stroke statistics–2014 update: a report from the american heart association. Circulation 129:e28–e292. doi:10.1161/01.cir.0000441139.02102.80

    PubMed  Google Scholar 

  • Gong P, Li CS, Hua R, Zhao H, Tang ZR, Mei X, Zhang MY, Cui J (2012) Mild hypothermia attenuates mitochondrial oxidative stress by protecting respiratory enzymes and upregulating MnSOD in a pig model of cardiac arrest. PLoS One 7:e35313. doi:10.1371/journal.pone.0035313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grubb NR, O’Carroll R, Cobbe SM, Sirel J, Fox KA (1996) Chronic memory impairment after cardiac arrest outside hospital. Br Med J 313:143–146. doi:10.1136/bmj.313.7050.143

    CAS  Google Scholar 

  • Grubb NR, Fox KA, Smith K et al (2000) Memory impairment in out-of-hospital cardiac arrest survivors is associated with global reduction in brain volume, not focal hippocampal injury. Stroke 31:1509–1514. doi:10.1161/01.STR.31.7.1509

    CAS  PubMed  Google Scholar 

  • Hagen TM (2003) Oxidative stress, redox imbalance, and the aging process. Antioxid Redox Signal 5:503–506. doi:10.1089/152308603770310149

    CAS  PubMed  Google Scholar 

  • Halestrap AP (2010) A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 38:841–860. doi:10.1042/BST0380841

    CAS  PubMed  Google Scholar 

  • Hasnain SZ, Lourie R, Das I, Chen CH, McGuckin MA (2012) The interplay between endoplasmic reticulum stress and inflammation. Immunol Cell Biol 90:260–270. doi:10.1038/icb.2011.112

    CAS  PubMed  Google Scholar 

  • Heron M (2012) Deaths: leading causes for 2008. Natl Vital Stat Rep 60:1–94

    PubMed  Google Scholar 

  • Hill JH, Ward PA (1971) The phlogistic role of C3 leukotactic fragments in myocardial infarcts of rats. J Exp Med 133:885–900

    CAS  PubMed Central  PubMed  Google Scholar 

  • Idris AH, Roberts LJ 2nd, Caruso L, Showstark M, Layon AJ, Becker LB, Vanden Hoek T, Gabrielli A (2005) Oxidant injury occurs rapidly after cardiac arrest, cardiopulmonary resuscitation, and reperfusion. Crit Care Med 33:2043–2048

    PubMed  Google Scholar 

  • Ioannou A, Dalle Lucca J, Tsokos GC (2011) Immunopathogenesis of ischemia/reperfusion-associated tissue damage. Clin Immunol 141:3–14. doi:10.1016/j.clim.2011.07.001

    CAS  PubMed  Google Scholar 

  • Jerome SN, Akimitsu T, Gute DC, Korthuis RJ (1995) Ischemic preconditioning attenuates capillary no-reflow induced by prolonged ischemia and reperfusion. Am J Physiol 268:H2063–H2067

    CAS  PubMed  Google Scholar 

  • Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317. doi:10.1016/B978-0-12-394309-5.00006-7

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kalyanaraman B (2013) Teaching the basics of redox biology to medical and graduate students: oxidants, antioxidants and disease mechanisms. Redox Biol 1:244–257. doi:10.1016/j.redox.2013.01.014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Keynes RG, Garthwaite J (2004) Nitric oxide and its role in ischaemic brain injury. Curr Mol Med 4:179–191

    CAS  PubMed  Google Scholar 

  • Kim BJ, Oh S (2013) Age-related changes in cognition and speech perception. Korean J Audiol 17:54–58. doi:10.7874/kja.2013.17.2.54

    PubMed Central  PubMed  Google Scholar 

  • Kirkland RA, Franklin JL (2003) Bax, reactive oxygen, and cytochrome c release in neuronal apoptosis. Antioxid Redox Signal 5:589–596. doi:10.1089/152308603770310257

    CAS  PubMed  Google Scholar 

  • Krabbe KS, Pedersen M, Bruunsgaard H (2004) Inflammatory mediators in the elderly. Exp Gerontol 39:687–699

    CAS  PubMed  Google Scholar 

  • Kregel KC, Zhang HJ (2007) An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292:R18–R36. doi:10.1152/ajpregu.00327.2006

    CAS  PubMed  Google Scholar 

  • Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163. doi:10.1152/physrev.00013.2006

    CAS  PubMed  Google Scholar 

  • Kvietys PR, Granger DN (2012) Role of reactive oxygen and nitrogen species in the vascular responses to inflammation. Free Radic Biol Med 52:556–592. doi:10.1016/j.freeradbiomed.2011.11.002

    CAS  PubMed Central  PubMed  Google Scholar 

  • Landfield PW (1988) Hippocampal neurobiological mechanisms of age-related memory dysfunction. Neurobiol Aging 9:571–579

    CAS  PubMed  Google Scholar 

  • Lee HC, Wei YH (2007) Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging. Exp Biol Med (Maywood) 232:592–606

    CAS  Google Scholar 

  • Li XM, Yang JM, Hu DH, Hou FQ, Zhao M, Zhu XH, Wang Y, Li JG, Hu P, Chen L, Qin LN, Gao TM (2007) Contribution of downregulation of L-type calcium currents to delayed neuronal death in rat hippocampus after global cerebral ischemia and reperfusion. J Neurosci 27:5249–5259. doi:10.1523/JNEUROSCI.0802-07.2007

    CAS  PubMed  Google Scholar 

  • Linnane AW, Marzuki S, Ozawa T, Tanaka M (1989) Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1(8639):642–645

    CAS  PubMed  Google Scholar 

  • Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568

    CAS  PubMed  Google Scholar 

  • Liu T, Rosenthal RE, Haywood Y, Miljkovic-Lolic M, Vanderhoek JY, Fiskum G (1998) Normoxic ventilation after cardiac arrest reduces oxidation of brain lipids and improves neurological outcome. Stroke 29:1679–1686. doi:10.1161/01.STR.29.8.1679

    CAS  PubMed  Google Scholar 

  • Lloret A, Badía MC, Mora NJ, Pallardó FV, Alonso MD, Viña J (2009) Vitamin E paradox in Alzheimer’s desease: it does not prevent loss of cognittion and may even be detrimental. J Alzheimers Dis 17:143–149. doi:10.3233/JAD-2009-1033

    CAS  PubMed  Google Scholar 

  • Love S (1999) Oxidative stress in brain ischemia. Brain Pathol 9:119–131

    CAS  PubMed  Google Scholar 

  • Mahncke HW, Bronstone A, Merzenich MM (2006) Brain plasticity and functional losses in the aged: scientific bases for a novel intervention. Prog Brain Res 157:81–109

    PubMed  Google Scholar 

  • Manukhina EB, Downey HF, Mallet RT (2006) Role of nitric oxide in cardiovascular adaptation to intermittent hypoxia. Exp Biol Med (Maywood) 231:343–365

    CAS  Google Scholar 

  • Martin LJ, Adams NA, Pan Y, Price A, Wong M (2011) The mitochondrial permeability transition pore regulates nitric oxide-mediated apoptosis of neurons induced by target deprivation. J Neurosci 31:359–370. doi:10.1523/JNEUROSCI.2225-10.2011

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuzawa A, Ichijo H (2005) Stress-responsive protein kinases in redox-regulated apoptosis signaling. Antioxid Redox Signal 7:472–481. doi:10.1089/ars.2005.7.472

    CAS  PubMed  Google Scholar 

  • Maxwell CJ, Hicks MS, Hogan DB, Basran J, Ebly EM (2005) Supplemental use of antioxidant vitamins and subsequent risk of cognitive decline and dementia. Dement Geriatr Cogn Disord 20:45–51. doi:10.1159/000085074

    CAS  PubMed  Google Scholar 

  • Mcdonald SR, Sohal RS, Forster MJ (2005) Concurrent administration of coenzyme Q10 and α-tocopherol improves learning in aged mice. Free Radic Biol Med 38:729–736. doi:10.1016/j.freeradbiomed.2004.11.014

    CAS  PubMed  Google Scholar 

  • McPherson RJ, Juul SE (2008) Recent trends in erythropoietin-mediated neuroprotection. Int J Dev Neurosci 26:103–111. doi:10.1016/j.ijdevneu.2007.08.012

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mecocci P, MacGarvey U, Kaufman AE, Koontz D, Shoffner JM, Wallace DC, Beal MF (1993) Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann Neurol 34:609–616. doi:10.1002/ana.410340416

    CAS  PubMed  Google Scholar 

  • Motl J, Radhakrishnan J, Ayoub IM, Grmec S, Gazmuri RJ (2012) Vitamin C Compromises Cardiac Resuscitability in a Rat Model of Ventricular Fibrillation. Am J Ther. doi:10.1097/MJT.0b013e31824e2b9f. http://www.ncbi.nlm.nih.gov/pubmed/?term=Motl+J%2C+Radhakrishnan+J%2C+Ayoub+IM%2C+Grmec+S%2C+Gazmuri+RJ+(2012)+Vitamin+C+Compromises+Cardiac+Resuscitability%C2%A0%C2%A0in+a+Rat+Model+of+Ventricular+Fibrillation.+Am+J+Ther+(in+press)

  • Moulaert VRMP, Verbunt JA, van Heugten CM, Wade DT (2009) Cognitive impairments in survivors of out-of-hospital cardiac arrest: a systematic review. Resuscitation 80:297–305. doi:10.1016/j.resuscitation.2008.10.034

    PubMed  Google Scholar 

  • Murakami K, Kondo T, Kawase M, Li Y, Sato S, Chen SF, Chan PH (1998) Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci 18:205–213

    CAS  PubMed  Google Scholar 

  • Nguyen AQ, Cherry BH, Scott GF, Ryou M, Mallet RT (2014) Erythropoietin: powerful protection of ischemic and post-ischemic brain. Exp Biol Med. doi: 10.1177/1535370214523703

  • Nolan JP, Lyon RM, Sasson C, Rossetti AO, Lansky AJ, Fox KA, Meier P (2012) Advances in the hospital management of patients following an out of hospital cardiac arrest. Heart 98:1201–1206. doi:10.1136/heartjnl-2011-301293

    PubMed  Google Scholar 

  • Nunes B, Pais J, Garcia R, Magalhães Z, Granja C, Silva MC (2003) Cardiac arrest: long-term cognitive and imaging analysis. Resuscitation 57:287–297. doi:10.1016/s0300-9572(03)00033-9

    PubMed  Google Scholar 

  • Opie LH (1991) Reperfusion injury—fad, fashion, or fact? Cardiovasc Drugs Ther 5(Suppl 2):223–224

    PubMed  Google Scholar 

  • O’Reilly SM, Grubb NR, O’Carroll RE (2003) In-hospital cardiac arrest leads to chronic memory impairment. Resuscitation 58:73–79

  • Ostadal P, Mlcek M, Kruger A, Horakova S, Skabradova M, Holy F, Svoboda T, Belohlavek J, Hrachovina V, Taborsky L, Dudkova V, Psotova H, Kittnar O, Neuzil P (2013) Mild therapeutic hypothermia is superior to controlled normothermia for the maintenance of blood pressure and cerebral oxygenation, prevention of organ damage and suppression of oxidative stress after cardiac arrest in a porcine model. J Transl Med 11:124. doi:10.1186/1479-5876-11-124

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ozawa T (1995) Mitochondrial DNA mutations associated with aging and degenerative diseases. Exp Gerontol 30:269–290

    CAS  PubMed  Google Scholar 

  • Parnia S, Spearpoint K, Fenwick PB (2007) Near death experiences, cognitive function and psychological outcomes of surviving cardiac arrest. Resuscitation 74:215–221. doi:10.1016/j.resuscitation.2007.01.020

  • Pérez VI, Remmen HV, Bokov A, Epstein CJ, Vijg J, Richardson A (2009) The overexpression of major antioxidant enzymes does not extend the lifespand of mice. Aging Cell 8:73–75. doi:10.1111/j.1474-9726.2008.00449.x

    PubMed Central  PubMed  Google Scholar 

  • Poon HF, Calabrese V, Scapagnini G, Butterfield DA (2004) Free radicals and brain aging. Clin Geriatr Med 20:329–359. doi:10.1016/j.cger.2004.02.005

    PubMed  Google Scholar 

  • Richter C (1995) Oxidative damage to mitochondrial DNA and its relationship to ageing. Int J Biochem Cell Biol 27:647–653

    CAS  PubMed  Google Scholar 

  • Rodrigues Siqueira I, Fochesatto C, da Silva Torres IL, Dalmaz C, Alexandre Netto C (2005) Aging affects oxidative state in hippocampus, hypothalamus and adrenal glands of Wistar rats. Life Sci 78:271–278. doi:10.1016/j.lfs.2005.04.044

    CAS  PubMed  Google Scholar 

  • Rossen RD, Michael LH, Hawkins HK, Youker K, Dreyer WJ, Baughn RE, Entman ML (1994) Cardiolipin-protein complexes and initiation of complement activation after coronary artery occlusion. Circ Res 75:546–555

    CAS  PubMed  Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30:1191–1212

    CAS  PubMed  Google Scholar 

  • Shetty RA, Forster MJ (2013) Coenzyme Q10 supplementation reverses age-related impairments in spatial learning and lowers protein oxidation. AGE 35:1821–1834. doi:10.1007/s11357-012-9484-9

    CAS  PubMed  Google Scholar 

  • Sierra A, Beccari S, Diaz-Aparicio I, Encinas JM, Comeau S, Trembley MЀ (2014) Surveillance, phagocytosis, and inflammation: how never-resting microglia influence adult hippocampal neurogenesis. Neural Plast 2014:610343. doi:10.1155/2014/610343

    PubMed Central  PubMed  Google Scholar 

  • Sohal RS, Agarwal S, Sohal BH (1995) Oxidative stress and aging in the Mongolian gerbil (Meriones unguiculatus). Mech Ageing Dev 81:15–25

    CAS  PubMed  Google Scholar 

  • Stadtman ER (2004) Role of oxidant species in aging. Curr Med Chem 11:1105–1112

    CAS  PubMed  Google Scholar 

  • Sumien N, Forster MJ, Sohal RS (2003) Supplementation with vitamin E fails to attenuate oxidative damage in aged mice. Exp Gerontol 38:699–704. doi:10.1016/S0531-5565(03)00068-8

    CAS  PubMed  Google Scholar 

  • Sumien N, Heinrich KR, Sohal RS, Forster MJ (2004) Short-term vitamin E intake fails to improve cognitive or psychomotor performance of aged mice. Free Radic Biol Med 36:1424–1433. doi:10.1016/j.freeradbiomed.2004.02.081

    CAS  PubMed  Google Scholar 

  • Thiyagarajan M, Kaul CL, Sharma SS (2004) Neuroprotective efficacy and therapeutic time window of peroxynitrite decomposition catalysts in focal cerebral ischemia in rats. Br J Pharmacol 142:899–911. doi:10.1038/sj.bjp.0705811

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toescu EC, Verkhratsky A, Landfield PW (2004) Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci 27:614–620. doi:10.1016/j.tins.2004.07.010

    CAS  PubMed  Google Scholar 

  • Tsai MS, Huang CH, Tsai CY, Chen HW, Lee HC, Cheng HJ, Hsu CY, Wang TD, Chang WT, Chen WJ (2011) Ascorbic acid mitigates the myocardial injury after cardiac arrest and electrical shock. Intensive Care Med 37:2033–2040. doi:10.1007/s00134-011-2362-6

    CAS  PubMed  Google Scholar 

  • Undén J, Sjölund C, Länsberg JK, Wieloch T, Ruscher K, Romner B (2013) Post-ischemic continuous infusion of erythropoeitin enhances recovery of lost memory function after global cerebral ischemia in the rat. BMC Neurosci 12:14–27. doi:10.1186/1471-2202-14-27

    Google Scholar 

  • Ungvari Z, Kaley G, de Cabo R, Sonntag WE, Csiszar A (2010) Mechanisms of vascular aging: new perspectives. J Gerontol A 65:1028–1041. doi:10.1093/gerona/glq113

    Google Scholar 

  • Vereczki V, Martin E, Rosenthal RE, Hof PR, Hoffman GE, Fiskum G (2006) Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death. J Cereb Blood Flow Metab 26:821–835. doi:10.1038/sj.jcbfm.9600234

  • Volicer L, Crino PB (1990) Involvement of free radicals in dementia of the Alzheimer type: a hypothesis. Neurobiol Aging 11:567–571

    CAS  PubMed  Google Scholar 

  • von Arnim CA, Herbolsheimer F, Nikolaus T, Peter R, Biesalski HK, Ludolph AC, Riepe M, Nagel G (2012) Dietary antioxidants and dementia in a population-based case–control study among older people in South Germany. J Alzheimers Dis 31:717–724. doi:10.3233/JAD-2012-120634

    Google Scholar 

  • Wachelder EM, Moulaert VRMP, van Heugten C, Verbunt JA, Bekkers SCAM, Wade DT (2009) Life after survival: long-term daily functioning and quality of life after an out-of-hospital cardiac arrest. Resuscitation 80:517–522. doi:10.1016/j.resuscitation.2009.01.020

    CAS  PubMed  Google Scholar 

  • Wang X, Perez E, Liu R, Yan LJ, Mallet RT, Yang SH (2007) Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res 1132:1–9. doi:10.1016/j.brainres.2006.11.032

    CAS  PubMed Central  PubMed  Google Scholar 

  • White BC, Sullivan JM, DeGracia DJ, O'Neil BJ, Neumar RW, Grossman LI, Rafols JA, Krause GS (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 179:1–33

    CAS  PubMed  Google Scholar 

  • Young GB (2009) Clinical practice. Neurologic prognosis after cardiac arrest. N Engl J Med 361:605–611. doi:10.1056/NEJMcp0903466

    CAS  PubMed  Google Scholar 

  • Zhang J, Zhu Y, Zhou D, Want Z, Chen G (2010) Recombinant human erythropoietin (rhEPO) alleviates early brain injury following sub-arachnoid hemorrhage in rats: possible involvement of Nrf2-ARE pathway. Cytokine 52:252–257. doi:10.1016/j.cyto.2010.08.011

    CAS  PubMed  Google Scholar 

  • Zhu C, Wang X, Qiu L, Peeters-Scholte C, Hagberg H, Blomgren K (2004) Nitrosylation precedes caspase-3 activation and translocation of apoptosis-inducing factor in neonatal rat cerebral hypoxia-ischaemia. J Neurochem 90:462–471. doi:10.1111/j.1471-4159.2004.02500.x

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by research grant R01 NS076975 from the U.S. National Institute of Neurological Disorders and Stroke and by research grant P01 AG22550 from the National Institute on Aging. BHC was supported by a pre-doctoral fellowship from the National Institute of Aging, Training in the Neurobiology of Aging, grant T31 AG020494. This work was conducted in partial fulfillment of the requirements for the Ph.D. degree for BHC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brandon H. Cherry.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cherry, B.H., Sumien, N. & Mallet, R.T. Neuronal injury from cardiac arrest: aging years in minutes. AGE 36, 9680 (2014). https://doi.org/10.1007/s11357-014-9680-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11357-014-9680-x

Keywords

Navigation