Skip to main content

Advertisement

Log in

V79 Fibroblasts Are Protected Against Reactive Oxygen Species by Flax Fabric

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Chinese hamster pulmonary fibroblasts (V79 cells) pre-treated with flax fabrics derived from non-modified or genetically engineered flax fibres and treated with H2O2 revealed a markedly lower level of intracellular reactive oxygen species (ROS) than control, non-pre-treated cells. The fabrics were prepared from fibres derived from two kinds of transgenic plants: W92 plants, which overproduce flavonoids, and M type plants, which produce hydroxybutyrate polymer in their vascular bundles and thus in fibres. Incubating the V79 cells with the flax fabrics prior to H2O2 treatment also reduced the amount of DNA damage, as established using the comet assay (also known as alkaline single-cell gel electrophoresis) and pulsed-field electrophoresis of intact cellular DNA. Selected gene expression analysis revealed the activator impact of fabrics on the apoptotic (BCL2 family, caspases) gene expression. This promoting activity was also detected for histone acetyltransferase (HAT; MYST2) gene expression. The flax fabric derived from both GM flax plants exhibited a protective effect against oxidative stress and ROS-mediated genotoxic damage, but the W92 fabric was the strongest. It is thus suggested that these fabrics might be useful as a basis for new biomedical products (e.g. wound dressings) that actively protect cells against inflammation and degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Martin, K. R., & Barrett, J. C. (2002). Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Human & experimental toxicology., 21(2), 71–75.

    CAS  Google Scholar 

  2. Colavitti, R., & Finkel, T. (2005). Reactive oxygen species as mediators of cellular senescence. IUBMB Life, 57(4–5), 277–281.

    CAS  PubMed  Google Scholar 

  3. Kim, M. R., Lee, H. S., Choi, H. S., Kim, S. Y., Park, Y., & Suh, H. J. (2014). Protective effects of ginseng leaf extract using enzymatic extraction against oxidative damage of UVA-irradiated human keratinocytes. Applied Biochemistry and Biotechnology, 173(4), 933–945.

    CAS  PubMed  Google Scholar 

  4. Kregel, K. C., & Zhang, H. J. (2007). An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. American journal of physiology Regulatory, integrative and comparative physiology., 292(1), R18–R36.

    CAS  PubMed  Google Scholar 

  5. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology., 39(1), 44–84.

    CAS  Google Scholar 

  6. Chen, J.-H., Hales, C. N., & Ozanne, S. E. (2007). DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic acids research., 35(22), 7417–7428.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Beckman, K. B., & Ames, B. N. (1998). The free radical theory of aging matures. Physiological Reviews, 78(2), 547–581.

    CAS  PubMed  Google Scholar 

  8. Park, M. H., Heo, S. J., Park, P. J., Moon, S. H., Sung, S. H., Jeon, B. T., & Lee, S. H. (2014). 6,6′-bieckol isolated from Ecklonia cava protects oxidative stress through inhibiting expression of ROS and proinflammatory enzymes in high-glucose-induced human umbilical vein endothelial cells. Applied Biochemistry and Biotechnology, 174(2), 632–643.

    CAS  PubMed  Google Scholar 

  9. Halliwell, B. (2007). Oxidative stress and cancer: have we moved forward? The Biochemical journal., 401(1), 1–11.

    CAS  PubMed  Google Scholar 

  10. Ames, B. N., Shigenaga, M. K., & Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences of the United States of America., 90(17), 7915–7922.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Grimes, A., & Chandra, S. B. C. (2009). Significance of cellular senescence in aging and cancer. Cancer research and treatment : official journal of Korean Cancer Association., 41(4), 187–195.

    Google Scholar 

  12. Massaro, M., Scoditti, E., Carluccio, M. A., & De Caterina, R. (2010). Nutraceuticals and prevention of atherosclerosis: focus on omega-3 polyunsaturated fatty acids and Mediterranean diet polyphenols. Cardiovascular therapeutics., 28(4), e13–e19.

    CAS  PubMed  Google Scholar 

  13. Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International journal of antimicrobial agents., 26(5), 343–356.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ryan, K. G., Swinny, E. E., Markham, K. R., & Winefield, C. (2002). Flavonoid gene expression and UV photoprotection in transgenic and mutant petunia leaves. Phytochemistry, 59(1), 23–32.

    CAS  PubMed  Google Scholar 

  15. Hernandez, N. E., Tereschuk, M. L., & Abdala, L. R. (2000). Antimicrobial activity of flavonoids in medicinal plants from Tafi del Valle (Tucuman, Argentina). Journal of Ethnopharmacology, 73(1–2), 317–322.

    CAS  PubMed  Google Scholar 

  16. Harborne, J. B., & Williams, C. A. (2000). Advances in flavonoid research since 1992. Phytochemistry, 55(6), 481–504.

    CAS  PubMed  Google Scholar 

  17. Olchowik-Grabarek, E., Mavlyanov, S., Abdullajanova, N., Gieniusz, R., & Zamaraeva, M. (2017). Specificity of hydrolysable tannins from Rhus typhina L. to oxidants in cell and cell-free models. Applied Biochemistry and Biotechnology, 181(2), 495–510.

    CAS  PubMed  Google Scholar 

  18. Lorenc-Kukula, K., Amarowicz, R., Oszmianski, J., Doermann, P., Starzycki, M., Skala, J., Zuk, M., Kulma, A., & Szopa, J. (2005). Pleiotropic effect of phenolic compounds content increases in transgenic flax plant. Journal of agricultural and food chemistry., 53(9), 3685–3692.

    CAS  PubMed  Google Scholar 

  19. Wrobel, M., Zebrowski, J., & Szopa, J. (2004). Polyhydroxybutyrate synthesis in transgenic flax. Journal of Biotechnology, 107(1), 41–54.

    CAS  PubMed  Google Scholar 

  20. Szopa, J., Wrobel-Kwiatkowska, M., Kulma, A., Zuk, M., Skorkowska-Telichowska, K., Dyminska, L., Maczka, M., Hanuza, J., Zebrowski, J., & Preisner, M. (2009). Chemical composition and molecular structure of fibers from transgenic flax producing polyhydroxybutyrate, and mechanical properties and platelet aggregation of composite materials containing these fibers. Composites Science and Technology, 69(14), 2438–2446.

    CAS  Google Scholar 

  21. Cheng, S., Chen, G. Q., Leski, M., Zou, B., Wang, Y., & Wu, Q. (2006). The effect of D,L-beta-hydroxybutyric acid on cell death and proliferation in L929 cells. Biomaterials, 27(20), 3758–3765.

    CAS  PubMed  Google Scholar 

  22. Wrobel-Kwiatkowska, M., Zebrowski, J., Starzycki, M., Oszmianski, J., & Szopa, J. (2007). Engineering of PHB synthesis causes improved elastic properties of flax fibers. Biotechnology Progress, 23(1), 269–277.

    CAS  PubMed  Google Scholar 

  23. Subba Rao, M. V. S. S. T., & Muralikrishna, G. (2002). Evaluation of the antioxidant properties of free and bound phenolic acids from native and malted finger millet (ragi, Eleusine coracana Indaf-15). Journal of agricultural and food chemistry., 50(4), 889–892.

    CAS  PubMed  Google Scholar 

  24. Vichai, V., & Kirtikara, K. (2006). Sulforhodamine B colorimetric assay for cytotoxicity screening. Nature Protocols, 1(3), 1112–1116.

    CAS  PubMed  Google Scholar 

  25. Rhee, S. G., Chang, T. S., Jeong, W., & Kang, D. (2010). Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Molecules and Cells, 29(6), 539–549.

    CAS  PubMed  Google Scholar 

  26. Kalyanaraman, B., Darley-Usmar, V., Davies, K. J., Dennery, P. A., Forman, H. J., Grisham, M. B., Mann, G. E., Moore, K., Roberts II, L. J., & Ischiropoulos, H. (2012). Measuring reactive oxygen and nitrogen species with fluorescent probes: challenges and limitations. Free Radical Biology & Medicine, 52(1), 1–6.

    CAS  Google Scholar 

  27. Darzynkiewicz, Z., Juan, G., Li, X., Gorczyca, W., Murakami, T., & Traganos, F. (1997). Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). Cytometry, 27(1), 1–20.

    CAS  PubMed  Google Scholar 

  28. van Engeland, M., Nieland, L. J., Ramaekers, F. C., Schutte, B., & Reutelingsperger, C. P. (1998). Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry, 31(1), 1–9.

    PubMed  Google Scholar 

  29. Collins, A. R. (2004). The comet assay for DNA damage and repair: principles, applications, and limitations. Molecular Biotechnology, 26(3), 249–261.

    CAS  PubMed  Google Scholar 

  30. Speit, G., & Hartmann, A. (2005). The comet assay: a sensitive genotoxicity test for the detection of DNA damage. Methods in Molecular Biology, 291, 85–95.

    CAS  PubMed  Google Scholar 

  31. Gasiorowski, K., & Brokos, B. (2001). DNA repair of hydrogen peroxide-induced damage in human lymphocytes in the presence of four antimutagens. A study with alkaline single cell gel electrophoresis (comet assay). Cellular & molecular biology letters., 6(4), 897–911.

    CAS  Google Scholar 

  32. Olive, P. L., Wlodek, D., Durand, R. E., & Banath, J. P. (1992). Factors influencing DNA migration from individual cells subjected to gel electrophoresis. Experimental cell research., 198(2), 259–267.

    CAS  PubMed  Google Scholar 

  33. Gasiorowski, K., Brokos, B., Kulma, A., Ogorzalek, A., & Skorkowska, K. (2001). Impact of four antimutagens on apoptosis in genotoxically damaged lymphocytes in vitro. Cellular & molecular biology letters., 6(3), 649–675.

    CAS  Google Scholar 

  34. Gorshkova, T. A., Salnikov, V. V., Pogodina, N. M., Chemikosova, S. B., Yablokova, E. V., Ulanov, A. V., Ageeva, M. V., Van Dam, J. E. G., & Lozovaya, V. V. (2000). Composition and distribution of cell wall phenolic compounds in flax (Linum usitatissimum L.) stem tissues. Annals of Botany., 85(4), 477–486.

    CAS  Google Scholar 

  35. Skorkowska-Telichowska, K., Zuk, M., Kulma, A., Bugajska-Prusak, A., Ratajczak, K., Gasiorowski, K., Kostyn, K., & Szopa, J. (2010). New dressing materials derived from transgenic flax products to treat long-standing venous ulcers—a pilot study. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair Society., 18(2), 168–179.

    Google Scholar 

  36. Natella, F., Nardini, M., Di Felice, M., & Scaccini, C. (1999). Benzoic and cinnamic acid derivatives as antioxidants: structure-activity relation. Journal of agricultural and food chemistry., 47(4), 1453–1459.

    CAS  PubMed  Google Scholar 

  37. Sapountzi, V., & Cote, J. (2011). MYST-family histone acetyltransferases: beyond chromatin. Cellular and Molecular Life Sciences, 68(7), 1147–1156.

    CAS  PubMed  Google Scholar 

  38. Hamaishi, K., Kojima, R., & Ito, M. (2006). Anti-ulcer effect of tea catechin in rats. Biological & pharmaceutical bulletin., 29(11), 2206–2213.

    CAS  Google Scholar 

  39. Czemplik, A., Boba, A., Kostyn, A., Kulma, A., Agnieszka, M., Sztajnert, M., Wróbel-Kwiatkowska, M., Żuk, M., Szopa, J., & Skórkowska-Telichowska, K. (2011). Flax engineering for biomedical application. In M. A. Komorowska, S. Olsztynska-Janus (Eds.), Biomedical engineering, trends, research and technologies (pp. 407–434). INTECH, http://www.intechopen.com/books/biomedical-engineering-trends-research-and-technologies/flax-engineering-for-biomedical-application.

  40. Skorkowska-Telichowska, K., Kulma, A., Zuk, M., Czuj, T., & Szopa, J. (2012). The effects of newly developed linen dressings on decubitus ulcers. Journal of palliative medicine., 15(2), 146–148.

    PubMed  PubMed Central  Google Scholar 

  41. Skorkowska-Telichowska, K., Czemplik, M., Kulma, A., & Szopa, J. (2011). The local treatment and available dressings designed for chronic wounds. Journal of the American Academy of Dermatology, 68(4), 117–126.

    Google Scholar 

  42. Ivanovas, B., Zerweck, A., & Bauer, G. (2002). Selective and non-selective apoptosis induction in transformed and non-transformed fibroblasts by exogenous reactive oxygen and nitrogen species. Anticancer Research, 22(2A), 841–856.

    CAS  PubMed  Google Scholar 

  43. Solovyan, V. T. (2007). Characterization of apoptotic pathway associated with caspase-independent excision of DNA loop domains. Experimental cell research., 313(7), 1347–1360.

    CAS  PubMed  Google Scholar 

  44. Solov'yan, V. T., Andreev, I. O., Kolotova, T. Y., Pogribniy, P. V., Tarnavsky, D. T., & Kunakh, V. A. (1997). The cleavage of nuclear DNA into high molecular weight DNA fragments occurs not only during apoptosis but also accompanies changes in functional activity of the nonapoptotic cells. Experimental cell research., 235(1), 130–137.

    CAS  PubMed  Google Scholar 

  45. Solovyan, V. T., Bezvenyuk, Z. A., Salminen, A., Austin, C. A., & Courtney, M. J. (2002). The role of topoisomerase II in the excision of DNA loop domains during apoptosis. The Journal of biological chemistry., 277(24), 21458–21467.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grant NCBiR 178676 from the Polish Ministry of Science and Education and by Wroclaw Centre of Biotechnology, MAESTRO, from National Science Centre grant no. 2012/06/A/NZ1/00006, the Leading National Research Centre (KNOW) programme for the years 2014–2018.

Author information

Authors and Affiliations

Authors

Contributions

KST–coordinated the experiments within this manuscript and performed the data analysis, AKu–wrote the manuscript, TGe–did cell cultures and comet assays, WWo–did the gene expression analysis, KKo–participated in writing of the manuscript and prepared the manuscript for submission, HMo–performed the flow cytometry analysis, ASz–cell viability tests, ABo–did the metabolite analysis, MPr–did antioxidative assay, JMr–participated in the gene expression analysis, MAr–did pulse field electrophoresis, AKo–did the statistical analysis, MSz–participated in the metabolite analysis, JSz–general supervision, KGa–general idea of the publication.

All authors have approved the final article.

Corresponding author

Correspondence to Kamil Kostyn.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skórkowska-Telichowska, K., Kulma, A., Gębarowski, T. et al. V79 Fibroblasts Are Protected Against Reactive Oxygen Species by Flax Fabric. Appl Biochem Biotechnol 184, 366–385 (2018). https://doi.org/10.1007/s12010-017-2552-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2552-y

Keywords

Navigation