Skip to main content

Advertisement

Log in

Targeting Mitochondria as a Strategy to Inhibit Cellular Senescence

  • Molecular Biology of Cell Death and Aging (N Razdan and N Muhammad, Section Editors)
  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cellular senescence is implicated in aging and age-related diseases. Because mitochondrial stress is one of the triggers of cellular senescence, and senescence leads to the accumulation of abnormal mitochondria with impaired dynamics and hampered homeostasis, this review focuses on the therapeutic potential of targeting mitochondria to quell senescence.

Recent Findings

Decreasing mitochondrial reactive oxygen species (ROS) production, balancing mitochondrial fusion and fission, increasing mitophagy, elevating mitochondrial NAD+ levels, and ensuring proper mitochondrial biogenesis prevent cells from becoming senescent. Regulating bioenergetics and mitochondrial calcium homeostasis also cause cell death in senescent cells.

Summary

Several interventions which modulate mitochondrial activities have now been developed to prevent the establishment of cellular senescence. However, recent studies also suggest that modulating mitochondrial homeostasis may kill senescent cells. Hence, more studies should also explore the possibility of targeting mitochondria as a strategy to eliminate senescent cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Tan IL, Velarde MC. Mitochondrial stress and cellular senescence. In: Ahmad SI, editor. Handb Mitochondrial Dysfunct. Boca Raton: Taylor & Francis Group, LLC CRC; 2019. p. 361–70.

    Chapter  Google Scholar 

  2. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018;28:436–53.

    Article  CAS  PubMed  Google Scholar 

  3. Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, et al. Programmed cell senescence during mammalian embryonic development. Cell. 2013;155:1104–18.

    Article  PubMed  Google Scholar 

  4. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88:593–602.

    Article  CAS  PubMed  Google Scholar 

  5. Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 2013;155:1119–30.

    Article  CAS  PubMed  Google Scholar 

  6. Alimirah F, Pulido T, Valdovinos A, Alptekin S, Chang E, Jones E, et al. Cellular senescence promotes skin carcinogenesis through p38MAPK and p44/p42MAPK signaling. Cancer Res. 2020;80:canres.0108.2020 This paper highlights the role of senescent cells as tumor promoters in a mouse model of skin cancer.

    Article  Google Scholar 

  7. Thompson PJ, Shah A, Ntranos V, Van Gool F, Atkinson M, Bhushan A. Targeted elimination of senescent beta cells prevents type 1 diabetes. Cell Metab. 2019;29:1045–1060.e10 This manuscript describes how the removal of senescent pancreatic beta cells contributes to the development of type 1 diabetes in a non-obese diabetic mouse model.

    Article  CAS  PubMed  Google Scholar 

  8. Aguayo-Mazzucato C, Andle J, Lee TB, Midha A, Talemal L, Chipashvili V, et al. Acceleration of β cell aging determines diabetes and senolysis improves disease outcomes. Cell Metab. 2019;30:129–142.e4 This work shows that selectively removing senescent cells in three mouse models improves glucose metabolism and pancreatic β-cell function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Meyer K, Hodwin B, Ramanujam D, Engelhardt S, Sarikas A. Essential role for premature senescence of myofibroblasts in myocardial fibrosis. J Am Coll Cardiol. 2016;67:2018–28.

    Article  CAS  PubMed  Google Scholar 

  10. Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 2016;7:11190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Neurohr GE, Terry RL, Lengefeld J, Bonney M, Brittingham GP, Moretto F, et al. Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell. 2019;176:1083–1097.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wiley CD, Campisi J. From ancient pathways to aging cells - connecting metabolism and cellular senescence. Cell Metab. 2016;23:1013–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cai Y, Zhou H, Zhu Y, Sun Q, Ji Y, Xue A, et al. Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res. 2020;30:574–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Correia-Melo C, Marques FD, Anderson R, Hewitt G, Hewitt R, Cole J, et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016;35:724–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wiley CD, Velarde MC, Lecot P, Liu S, Sarnoski EA, Freund A, et al. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metab. 2016;23:303–14.

    Article  CAS  PubMed  Google Scholar 

  16. Chapman J, Fielder E, Passos JF. Mitochondrial dysfunction and cell senescence: deciphering a complex relationship. FEBS Lett. 2019;593:1566–79.

    Article  CAS  PubMed  Google Scholar 

  17. Passos JF, Saretzki G, Ahmed S, Nelson G, Richter T, Peters H, et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007;5:1140–51.

    Article  Google Scholar 

  18. Passos JF, Nelson G, Wang C, Richter T, Simillion C, Proctor CJ, et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol Syst Biol. 2010;6:347.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell. 2010;141:280–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu NN, Zhang Y, Ren J. Mitophagy, mitochondrial dynamics, and homeostasis in cardiovascular aging. Oxidative Med Cell Longev. 2019;2019:10–2.

    Article  Google Scholar 

  21. Leites EP, Morais VA. Mitochondrial quality control pathways: PINK1 acts as a gatekeeper. Biochem Biophys Res Commun. 2018;500:45–50.

    Article  CAS  PubMed  Google Scholar 

  22. Nolfi-Donegan D, Braganza A, Shiva S. Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 2020;37:101674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nelson G, Kucheryavenko O, Wordsworth J, von Zglinicki T. The senescent bystander effect is caused by ROS-activated NF-κB signalling. Mech Ageing Dev. 2018;170:30–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ziegler DV, Wiley CD, Velarde MC. Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging. Aging Cell. 2015;14:1–7.

    Article  CAS  PubMed  Google Scholar 

  25. Victorelli S, Lagnado A, Halim J, Moore W, Talbot D, Barrett K, et al. Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO J. 2019;e101982:1–18 This paper reports how mitochondria-targeted antioxidant MitoQ rescues melanocytes from senescence by reducing mitochondrial ROS production.

    Google Scholar 

  26. Liao N, Shi Y, Zhang C, Zheng Y, Wang Y, Zhao B, et al. Antioxidants inhibit cell senescence and preserve stemness of adipose tissue-derived stem cells by reducing ROS generation during long-term in vitro expansion. Stem Cell Res Ther. 2019;10:1–11.

    Article  Google Scholar 

  27. Gammella E, Recalcati S, Cairo G. Dual role of ROS as signal and stress agents: iron tips the balance in favor of toxic effects. Oxidative Med Cell Longev. 2016;2016:1–9.

    Article  Google Scholar 

  28. Issitt T, Bosseboeuf E, De Winter N, Dufton N, Gestri G, Senatore V, et al. Neuropilin-1 controls endothelial homeostasis by regulating mitochondrial function and iron-dependent oxidative stress. iScience. 2019;11:205–23 This work highlights how the mitochondria-targeted antioxidant mitoTEMPO inhibits cellular senescence following iron-induced mitochondrial oxidative stress.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang B, Cui S, Bai X, Zhuo L, Sun X, Hong Q, et al. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3–FOXO1 signaling pathway. Age (Dordr). 2013;35:2237–53.

    Article  CAS  Google Scholar 

  30. Vomund S, Schäfer A, Parnham MJ, Brüne B, Von Knethen A. Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci. 2017;2772:18.

    Google Scholar 

  31. Ohta S. Molecular hydrogen is a novel antioxidant to efficiently reduce oxidative stress with potential for the improvement of mitochondrial diseases. Biochim Biophys Acta, Gen Subj. 1820;2012:586–94.

    Google Scholar 

  32. Li R, Liu Y, Xie J, Huang X, Zhang L, Liu H, et al. Sirt3 mediates the protective effect of hydrogen in inhibiting ROS-induced retinal senescence. Free Radic Biol Med. 2019;135:116–24 This paper shows how hydrogen reduces oxidative stress–induced retinal senescence through Sirt3.

    Article  CAS  PubMed  Google Scholar 

  33. Iketani M, Sekimoto K, Igarashi T, Takahashi M, Komatsu M, Sakane I, et al. Administration of hydrogen-rich water prevents vascular aging of the aorta in LDL receptor-deficient mice. Sci Rep. 2018;8:16822.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hara F, Tatebe J, Watanabe I, Yamazaki J, Ikeda T, Morita T. Molecular hydrogen alleviates cellular senescence in endothelial cells. Circ J. 2016;80:2037–46.

    Article  CAS  PubMed  Google Scholar 

  35. LeBaron TW, Kura B, Kalocayova B, Tribulova N, Slezak J. A new approach for the prevention and treatment of cardiovascular disorders. Molecular hydrogen significantly reduces the effects of oxidative stress. Molecules. 2019;24:2076.

    Article  CAS  PubMed Central  Google Scholar 

  36. Forrester SJ, Kikuchi DS, Hernandes MS, Xu Q, Griendling KK. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018;122:877–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Y, Hekimi S. Understanding ubiquinone. Trends Cell Biol. 2016;26:367–78.

    Article  CAS  PubMed  Google Scholar 

  38. Velichkovska M, Surnar B, Nair M, Dhar S, Toborek M. Targeted mitochondrial COQ 10 delivery attenuates antiretroviral-drug-induced senescence of neural progenitor cells. Mol Pharm. 2019;16:724–36 This paper shows that mitochondrial-targeted CoQ10 prevents antiretroviral-induced senescence.

    Article  CAS  PubMed  Google Scholar 

  39. Stab BR, Martinez L, Grismaldo A, Lerma A, Gutiérrez ML, Barrera LA, et al. Mitochondrial functional changes characterization in young and senescent human adipose derived MSCs. Front Aging Neurosci. 2016;8:1–10.

    Article  Google Scholar 

  40. Martínez J, Tarallo D, Martínez-Palma L, Victoria S, Bresque M, Rodríguez-Bottero S, et al. Mitofusins modulate the increase in mitochondrial length, bioenergetics and secretory phenotype in therapy-induced senescent melanoma cells. Biochem J. 2019;476:2463–86.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cipolat S, de Brito OM, Dal Zilio B, Scorrano L. OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci. 2004;101:15927–32.

    Article  CAS  PubMed  Google Scholar 

  42. Taguchi N, Ishihara N, Jofuku A, Oka T, Mihara K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J Biol Chem. 2007;282:11521–9.

    Article  CAS  PubMed  Google Scholar 

  43. Chang C-R, Blackstone C. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J Biol Chem. 2007;282:21583–7.

    Article  CAS  PubMed  Google Scholar 

  44. Song M, Franco A, Fleischer JA, Zhang L, Dorn GW. Abrogating mitochondrial dynamics in mouse hearts accelerates mitochondrial senescence. Cell Metab. 2017;26:872–883.e5 This paper links the importance of mitochondrial dynamics to the development of cellular senescence in mouse hearts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim YY, Um J, Yoon J, Lee D, Lee YJ, Kim DH, et al. p53 regulates mitochondrial dynamics by inhibiting Drp1 translocation into mitochondria during cellular senescence. FASEB J. 2020;34:2451–64.

    Article  CAS  PubMed  Google Scholar 

  46. Yu B, Ma J, Li J, Wang D, Wang Z, Wang S. Mitochondrial phosphatase PGAM5 modulates cellular senescence by regulating mitochondrial dynamics. Nat Commun. 2020;11:1–17 This manuscript describes how inhibiting mitochondrial fission cause cellular senescence.

    CAS  Google Scholar 

  47. Li X, Hong Y, He H, Jiang G, You W, Liang X, et al. FGF21 mediates mesenchymal stem cell senescence via regulation of mitochondrial dynamics. Oxidative Med Cell Longev. 2019;2019:1–13.

    Google Scholar 

  48. Khorraminejad-Shirazi M, Sani M, Talaei-Khozani T, Dorvash M, Mirzaei M, Faghihi MA, et al. AICAR and nicotinamide treatment synergistically augment the proliferation and attenuate senescence-associated changes in mesenchymal stromal cells. Stem Cell Res Ther. 2020;11:45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ulgherait M, Rana A, Rera M, Graniel J, Walker DW. AMPK modulates tissue and organismal aging in a non-cell-autonomous manner. Cell Rep. 2014;8:1767–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kobilo T, Guerrieri D, Zhang Y, Collica SC, Becker KG, van Praag H. AMPK agonist AICAR improves cognition and motor coordination in young and aged mice. Learn Mem. 2014;21:119–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, et al. Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4:2192.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Araya J, Tsubouchi K, Sato N, Ito S, Minagawa S, Hara H, et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy. 2019;15:510–26 This work highlights how Parkin-mediated mitophagy plays an important role in attenuating senescence after CSE exposure.

    Article  CAS  PubMed  Google Scholar 

  53. Lee JH, Yoon YM, Song K-H, Noh H, Lee SH. Melatonin suppresses senescence-derived mitochondrial dysfunction in mesenchymal stem cells via the HSPA1L-mitophagy pathway. Aging Cell. 2020;19:e13111 This study demonstrates that melatonin prevents replicative senescence by enhancing mitophagy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hasson SA, Kane LA, Yamano K, Huang C-H, Sliter DA, Buehler E, et al. High-content genome-wide RNAi screens identify regulators of Parkin upstream of mitophagy. Nature. 2013;504:291–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Han Y-S, Kim SM, Lee JH, Jung SK, Noh H, Lee SH. Melatonin protects chronic kidney disease mesenchymal stem cells against senescence via PrP C -dependent enhancement of the mitochondrial function. J Pineal Res. 2019;66:e12535.

    Article  PubMed  Google Scholar 

  56. Yoon YM, Kim S, Han Y-S, Yun CW, Lee JH, Noh H, et al. TUDCA-treated chronic kidney disease-derived hMSCs improve therapeutic efficacy in ischemic disease via PrPC. Redox Biol. 2019;22:101144.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Meng H, Yan W, Lei Y, Wan Z, Hou Y, Sun L. Sirt3 regulation of mitochondrial quality control in neurodegenerative diseases. Front Aging Neurosci. 2019;11:1–10.

    Article  CAS  Google Scholar 

  58. Xiang X, Huang J, Song S, Wang Y, Zeng Y, Wu S, et al. 17β-estradiol inhibits H2O2-induced senescence in HUVEC cells through upregulating SIRT3 expression and promoting autophagy. Biogerontology. 2020;21:1–9.

    Article  Google Scholar 

  59. Miller S, Muqit MMK. Therapeutic approaches to enhance PINK1/Parkin mediated mitophagy for the treatment of Parkinson’s disease. Neurosci Lett. 2019;705:7–13.

    Article  CAS  PubMed  Google Scholar 

  60. Vasanthakumar T, Rubinstein JL. Structure and Roles of V-type ATPases. Trends Biochem Sci. 2020;45:295–307.

    Article  CAS  PubMed  Google Scholar 

  61. Kang HT, Park JT, Choi K, Kim Y, Choi HJC, Jung CW, et al. Chemical screening identifies ATM as a target for alleviating senescence. Nat Chem Biol. 2017;13:616–23 This work reveals how senescence can be inhibited by modulating ATM’s role in the lysosomal–mitochondrial axis to restore mitophagy.

    Article  CAS  PubMed  Google Scholar 

  62. Kuk MU, Kim JW, Lee YS, Cho KA, Park JT, Park SC. Alleviation of senescence via ATM inhibition in accelerated aging models. Mol Cell. 2019;42:210–7.

    CAS  Google Scholar 

  63. Uehara M, Kusaba T, Ida T, Nakai K, Nakata T, Tomita A, et al. Pharmacological inhibition of ataxia-telangiectasia mutated exacerbates acute kidney injury by activating p53 signaling in mice. Sci Rep. 2020;10:4441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Moiseeva O, Bourdeau V, Roux A, Deschênes-Simard X, Ferbeyre G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol Cell Biol. 2009;29:4495–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gureev AP, Shaforostova EA, Popov VN. Regulation of mitochondrial biogenesis as a way for active longevity: interaction between the Nrf2 and PGC-1α signaling pathways. Front Genet. 2019;10:1–12.

    Article  Google Scholar 

  66. Callender LA, Carroll EC, Bober EA, Akbar AN, Solito E, Henson SM. Mitochondrial mass governs the extent of human T cell senescence. Aging Cell. 2019;00:1–13 This paper suggests that increasing mitochondrial mass through mitochondrial biogenesis alleviates cellular senescence.

    CAS  Google Scholar 

  67. Summer R, Shaghaghi H, Schriner D, Roque W, Sales D, Cuevas-Mora K, et al. Activation of mTORC1/PGC1 axis promotes mitochondrial biogenesis and induces cellular senescence in the lung epithelium. Am J Physiol Cell Mol Physiol. 2019;316:L1049–60.

    Article  CAS  Google Scholar 

  68. Tseng AHH, Shieh S-S, Wang DL. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol Med. 2013;63:222–34.

    Article  CAS  PubMed  Google Scholar 

  69. Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191–6.

    Article  CAS  PubMed  Google Scholar 

  70. Akyuva Y, Nazıroğlu M. Resveratrol attenuates hypoxia-induced neuronal cell death, inflammation and mitochondrial oxidative stress by modulation of TRPM2 channel. Sci Rep. 2020;10:6449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Sebastián D, Acín-Pérez R, Morino K. Mitochondrial health in aging and age-related metabolic disease. Oxidative Med Cell Longev. 2016;2016:1–2.

    Article  Google Scholar 

  72. Mao G, Xu X, Wang S, Li H, Zhang J, Zhang Z, et al. Salidroside delays cellular senescence by stimulating mitochondrial biogenesis partly through a miR-22 / SIRT- 1 pathway. Oxidative Med Cell. Longev 2019:1–13.

  73. Giovannelli L, Pitozzi V, Jacomelli M, Mulinacci N, Laurenzana A, Dolara P, et al. Protective effects of resveratrol against senescence-associated changes in cultured human fibroblasts. Gerontol Ser A Biol Med Sci. 2011;66A:9–18.

    Article  CAS  Google Scholar 

  74. Xing SS, Li J, Chen L, Yang YF, He PL, Li J, et al. Salidroside attenuates endothelial cellular senescence via decreasing the expression of inflammatory cytokines and increasing the expression of SIRT3. Mech Ageing Dev. 2018;175:1–6.

    Article  CAS  PubMed  Google Scholar 

  75. Yang K-E, Jang H-J, Hwang I-H, Hong EM, Lee M-G, Lee S, et al. Stereoisomer-specific ginsenoside 20(S)-Rg3 reverses replicative senescence of human diploid fibroblasts via Akt-mTOR-Sirtuin signaling. J Ginseng Res. 2020;44:341–9.

    Article  PubMed  Google Scholar 

  76. Jang I-S, Jo E, Park SJ, Baek SJ, Hwang I-H, Kang HM, et al. Proteomic analyses reveal that ginsenoside Rg3(S) partially reverses cellular senescence in human dermal fibroblasts by inducing peroxiredoxin. J Ginseng Res. 2020;44:50–7.

    Article  PubMed  Google Scholar 

  77. Scisciola L, Sarno F, Carafa V, Cosconati S, Di Maro S, Ciuffreda L, et al. Two novel SIRT1 activators, SCIC2 and SCIC2.1, enhance SIRT1-mediated effects in stress response and senescence. Epigenetics. 2020;15:664–83.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Zhou T, Yan Y, Zhao C, Xu Y, Wang Q, Xu N. Resveratrol improves osteogenic differentiation of senescent bone mesenchymal stem cells through inhibiting endogenous reactive oxygen species production via AMPK activation. Redox Rep. 2019;24:62–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Karnewar S, Neeli PK, Panuganti D, Kotagiri S, Mallappa S, Jain N, et al. Metformin regulates mitochondrial biogenesis and senescence through AMPK mediated H3K79 methylation: relevance in age-associated vascular dysfunction. Biochim Biophys Acta Mol basis Dis. 1864;2018:1115–28.

    Google Scholar 

  80. Shi C, Li Q, Zhang X. Platycodin D protects human fibroblast cells from premature senescence induced by H2O2 through improving mitochondrial biogenesis. Pharmacology. 2020;105:1–11.

    Article  Google Scholar 

  81. Yaku K, Okabe K, Gulshan M, Takatsu K, Okamoto H, Nakagawa T. Metabolism and biochemical properties of nicotinamide adenine dinucleotide (NAD) analogs, nicotinamide guanine dinucleotide (NGD) and nicotinamide hypoxanthine dinucleotide (NHD). Sci Rep. 2019;9:13102.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Zhang H, Ryu D, Wu Y, Gariani K, Wang X, Luan P, et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science (80- ). 2016;352:1436–43.

    Article  CAS  Google Scholar 

  83. Signorile A, Sgaramella G, Bellomo F, De Rasmo D. Prohibitins: a critical role in mitochondrial functions and implication in diseases. Cells. 2019;8:71.

    Article  CAS  PubMed Central  Google Scholar 

  84. Cho SG, Xiao X, Wang S, Gao H, Rafikov R, Black S, et al. Bif-1 interacts with prohibitin-2 to regulate mitochondrial inner membrane during cell stress and apoptosis. J Am Soc Nephrol. 2019;30:1174–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pi C, Yang Y, Sun Y, Wang H, Sun H, Ma M, et al. Nicotinamide phosphoribosyltransferase postpones rat bone marrow mesenchymal stem cell senescence by mediating NAD+-Sirt1 signaling. Aging (Albany NY). 2019;11:3505–22 This paper describes how supplementation with NAD+ intermediates alleviate senescence.

    Article  CAS  Google Scholar 

  86. Kim JY, Lee SH, Bae I-H, Shin DW, Min D, Ham M, et al. Pyruvate protects against cellular senescence through the control of mitochondrial and lysosomal function in dermal fibroblasts. J Invest Dermatol. 2018;138:2522–30.

    Article  CAS  PubMed  Google Scholar 

  87. Soto-Gamez A, Quax WJ, Demaria M. Regulation of survival networks in senescent cells: from mechanisms to interventions. J Mol Biol. 2019;431:2629–43.

    Article  CAS  PubMed  Google Scholar 

  88. Sabbatinelli J, Prattichizzo F, Olivieri F, Procopio AD, Rippo MR, Giuliani A. Where metabolism meets senescence: focus on endothelial cells. Front Physiol. 2019;10:1–17.

    Article  Google Scholar 

  89. Kwon SM, Hong SM, Lee YK, Min S, Yoon G. Metabolic features and regulation in cell senescence. BMB Rep. 2019;52:5–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yi HS, Kim SY, Kim JT, Lee YS, Moon JS, Kim M, et al. T cell senescence contributes to abnormal glucose homeostasis in humans and mice. Cell Death Dis. 2019;10:1–15.

    Article  Google Scholar 

  91. Nacarelli T, Sell C. Targeting metabolism in cellular senescence, a role for intervention. Mol Cell Endocrinol. 2017;455:83–92.

    Article  CAS  PubMed  Google Scholar 

  92. Ozsvari B, Nuttall JR, Sotgia F, Lisanti MP. Azithromycin and roxithromycin define a new family of “senolytic” drugs that target senescent human fibroblasts. Aging (Albany NY). 2018;10:3294–307 This work describes how repurposed drugs can be used as senolytics to eliminate senescent cells by inducing aerobic glycolysis and autophagy.

    Article  CAS  Google Scholar 

  93. Dörr JR, Yu Y, Milanovic M, Beuster G, Zasada C, Däbritz JHM, et al. Synthetic lethal metabolic targeting of cellular senescence in cancer therapy. Nature. 2013;501:421–5.

    Article  PubMed  Google Scholar 

  94. Li M, Durbin KR, Sweet SMM, Tipton JD, Zheng Y, Kelleher NL. Oncogene-induced cellular senescence elicits an anti-Warburg effect. Proteomics. 2013;13:2585–96.

    Article  CAS  PubMed  Google Scholar 

  95. Aird KM, Zhang R. Metabolic alterations accompanying oncogene-induced senescence. Mol Cell Oncol. 2014;1:e963481.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Dolivo D, Hernandez S, Dominko T. Cellular lifespan and senescence: a complex balance between multiple cellular pathways. BioEssays. 2016;38:S33–44.

    Article  CAS  PubMed  Google Scholar 

  97. Hubackova S, Davidova E, Rohlenova K, Stursa J, Werner L, Andera L, et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ. 2018;26:1–15 This is a key paper that demonstrates how a mitochondria-targeted drug can be used to selectively eliminate senescent cells which have low levels of adenine nucleotide translocase-2 (ANT2).

    Google Scholar 

  98. Rohlenova K, Sachaphibulkij K, Stursa J, Bezawork-Geleta A, Blecha J, Endaya B, et al. Selective disruption of respiratory supercomplexes as a new strategy to suppress Her2high breast cancer. Antioxid Redox Signal. 2017;26:84–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Madreiter-Sokolowski CT, Waldeck-Weiermair M, Bourguignon MP, Villeneuve N, Gottschalk B, Klec C, et al. Enhanced inter-compartmental Ca 2+ flux modulates mitochondrial metabolism and apoptotic threshold during aging. Redox Biol. 2019;20:458–66.

    Article  CAS  PubMed  Google Scholar 

  100. Seo SR, Seo JT. Calcium overload is essential for the acceleration of staurosporine-induced cell death following neuronal differentiation in PC12 cells. Exp Mol Med. 2009;41:269–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rossman MJ, Santos-Parker JR, Steward CAC, Bispham NZ, Cuevas LM, Rosenberg HL, et al. Chronic supplementation with a mitochondrial antioxidant (MitoQ) improves vascular function in healthy older adults. Hypertension. 2018;71:1056–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang P, Yang C, Guo H, Wang J, Lin S, Li H, et al. Treatment of coenzyme Q10 for 24 weeks improves lipid and glycemic profile in dyslipidemic individuals. J Clin Lipidol. 2018;12:417–427.e5.

    Article  PubMed  Google Scholar 

Download references

Funding

Part of this work was supported by the Department of Science and Technology (DOST), National Academy of Science and Technology (NAST) (MCV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Velarde.

Ethics declarations

Conflict of Interest

The authors declare no other conflict of interest.

Human and Animal Rights and Informed Consent

This article contains no studies with human and animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Molecular Biology of Cell Death and Aging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, I.L., Velarde, M.C. Targeting Mitochondria as a Strategy to Inhibit Cellular Senescence. Curr Mol Bio Rep 7, 20–29 (2021). https://doi.org/10.1007/s40610-021-00143-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-021-00143-6

Keywords

Navigation