ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Quantitative Assessments of the Distinct Contributions of Polypeptide Backbone Amides versus Side Chain Groups to Chain Expansion via Chemical Denaturation

View Author Information
Department of Biomedical Engineering and Center for Biological Systems Engineering, Washington University in St. Louis, One Brookings Drive, Campus Box 1097, St. Louis, Missouri 63130, United States
TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad, 500075, India
§ Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-5807, Zurich, Switzerland
Cite this: J. Am. Chem. Soc. 2015, 137, 8, 2984–2995
Publication Date (Web):February 9, 2015
https://doi.org/10.1021/ja512062h
Copyright © 2015 American Chemical Society

    Article Views

    1873

    Altmetric

    -

    Citations

    88
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    In aqueous solutions with high concentrations of chemical denaturants such as urea and guanidinium chloride (GdmCl) proteins expand to populate heterogeneous conformational ensembles. These denaturing environments are thought to be good solvents for generic protein sequences because properties of conformational distributions align with those of canonical random coils. Previous studies showed that water is a poor solvent for polypeptide backbones, and therefore, backbones form collapsed globular structures in aqueous solvents. Here, we ask if polypeptide backbones can intrinsically undergo the requisite chain expansion in aqueous solutions with high concentrations of urea and GdmCl. We answer this question using a combination of molecular dynamics simulations and fluorescence correlation spectroscopy. We find that the degree of backbone expansion is minimal in aqueous solutions with high concentrations of denaturants. Instead, polypeptide backbones sample conformations that are denaturant-specific mixtures of coils and globules, with a persistent preference for globules. Therefore, typical denaturing environments cannot be classified as good solvents for polypeptide backbones. How then do generic protein sequences expand in denaturing environments? To answer this question, we investigated the effects of side chains using simulations of two archetypal sequences with amino acid compositions that are mixtures of charged, hydrophobic, and polar groups. We find that side chains lower the effective concentration of backbone amides in water leading to an intrinsic expansion of polypeptide backbones in the absence of denaturants. Additional dilution of the effective concentration of backbone amides is achieved through preferential interactions with denaturants. These effects lead to conformational statistics in denaturing environments that are congruent with those of canonical random coils. Our results highlight the role of side chain-mediated interactions as determinants of the conformational properties of unfolded states in water and in influencing chain expansion upon denaturation.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Includes versions of Figures 1 and 4 with error bars, analysis of the relative occupancies for peptides in 8 m GdmCl, and a discussion of the analysis of the amino acid compositional biases in generic foldable proteins. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 88 publications.

    1. Jelena Dinic, Matthew V. Tirrell. Effects of Charge Sequence Pattern and Lysine-to-Arginine Substitution on the Structural Stability of Bioinspired Polyampholytes. Biomacromolecules 2024, Article ASAP.
    2. Jared M. Lalmansingh, Alex T. Keeley, Kiersten M. Ruff, Rohit V. Pappu, Alex S. Holehouse. SOURSOP: A Python Package for the Analysis of Simulations of Intrinsically Disordered Proteins. Journal of Chemical Theory and Computation 2023, 19 (16) , 5609-5620. https://doi.org/10.1021/acs.jctc.3c00190
    3. Rohit V. Pappu, Samuel R. Cohen, Furqan Dar, Mina Farag, Mrityunjoy Kar. Phase Transitions of Associative Biomacromolecules. Chemical Reviews 2023, 123 (14) , 8945-8987. https://doi.org/10.1021/acs.chemrev.2c00814
    4. Jhullian J. Alston, Garrett M. Ginell, Andrea Soranno, Alex S. Holehouse. The Analytical Flory Random Coil Is a Simple-to-Use Reference Model for Unfolded and Disordered Proteins. The Journal of Physical Chemistry B 2023, 127 (21) , 4746-4760. https://doi.org/10.1021/acs.jpcb.3c01619
    5. Mrityunjoy Kar, Ammon E. Posey, Furqan Dar, Anthony A. Hyman, Rohit V. Pappu. Glycine-Rich Peptides from FUS Have an Intrinsic Ability to Self-Assemble into Fibers and Networked Fibrils. Biochemistry 2021, 60 (43) , 3213-3222. https://doi.org/10.1021/acs.biochem.1c00501
    6. Piotr Batys, Dmitrii Fedorov, Pezhman Mohammadi, Laura Lemetti, Markus B. Linder, Maria Sammalkorpi. Self-Assembly of Silk-like Protein into Nanoscale Bicontinuous Networks under Phase-Separation Conditions. Biomacromolecules 2021, 22 (2) , 690-700. https://doi.org/10.1021/acs.biomac.0c01506
    7. Jeong-Mo Choi, Rohit V. Pappu. Improvements to the ABSINTH Force Field for Proteins Based on Experimentally Derived Amino Acid Specific Backbone Conformational Statistics. Journal of Chemical Theory and Computation 2019, 15 (2) , 1367-1382. https://doi.org/10.1021/acs.jctc.8b00573
    8. Biswajit Biswas, Aswathy N. Muttathukattil, Govardhan Reddy, Prashant Chandra Singh. Contrasting Effects of Guanidinium Chloride and Urea on the Activity and Unfolding of Lysozyme. ACS Omega 2018, 3 (10) , 14119-14126. https://doi.org/10.1021/acsomega.8b01911
    9. Zhaoqian Su, Gopal Ravindhran, Cristiano L. Dias. Effects of Trimethylamine-N-oxide (TMAO) on Hydrophobic and Charged Interactions. The Journal of Physical Chemistry B 2018, 122 (21) , 5557-5566. https://doi.org/10.1021/acs.jpcb.7b11847
    10. Erik W. Martin, Tanja Mittag. Relationship of Sequence and Phase Separation in Protein Low-Complexity Regions. Biochemistry 2018, 57 (17) , 2478-2487. https://doi.org/10.1021/acs.biochem.8b00008
    11. Xian Cheng, Irina A. Shkel, Cristen Molzahn, David Lambert, Rezwana Karim, M. Thomas Record, Jr.. Quantifying Interactions of Nucleobase Atoms with Model Compounds for the Peptide Backbone and Glutamine and Asparagine Side Chains in Water. Biochemistry 2018, 57 (15) , 2227-2237. https://doi.org/10.1021/acs.biochem.8b00087
    12. Martijn van Rosmalen, Mike Krom, and Maarten Merkx . Tuning the Flexibility of Glycine-Serine Linkers To Allow Rational Design of Multidomain Proteins. Biochemistry 2017, 56 (50) , 6565-6574. https://doi.org/10.1021/acs.biochem.7b00902
    13. Jeffrey J. Schwinefus, Nadia L. Baka, Kalpit Modi, Kaylyn N. Billmeyer, Shutian Lu, Lucas R. Haase, and Ryan J. Menssen . l-Proline and RNA Duplex m-Value Temperature Dependence. The Journal of Physical Chemistry B 2017, 121 (30) , 7247-7255. https://doi.org/10.1021/acs.jpcb.7b03608
    14. Xian Cheng, Irina A. Shkel, Kevin O’Connor, John Henrich, Cristen Molzahn, David Lambert, and M. Thomas Record, Jr. . Experimental Atom-by-Atom Dissection of Amide–Amide and Amide–Hydrocarbon Interactions in H2O. Journal of the American Chemical Society 2017, 139 (29) , 9885-9894. https://doi.org/10.1021/jacs.7b03261
    15. Erik W. Martin, Alex S. Holehouse, Christy R. Grace, Alex Hughes, Rohit V. Pappu, and Tanja Mittag . Sequence Determinants of the Conformational Properties of an Intrinsically Disordered Protein Prior to and upon Multisite Phosphorylation. Journal of the American Chemical Society 2016, 138 (47) , 15323-15335. https://doi.org/10.1021/jacs.6b10272
    16. Wenwei Zheng, Alessandro Borgia, Karin Buholzer, Alexander Grishaev, Benjamin Schuler, and Robert B. Best . Probing the Action of Chemical Denaturant on an Intrinsically Disordered Protein by Simulation and Experiment. Journal of the American Chemical Society 2016, 138 (36) , 11702-11713. https://doi.org/10.1021/jacs.6b05443
    17. Alessandro Borgia, Wenwei Zheng, Karin Buholzer, Madeleine B. Borgia, Anja Schüler, Hagen Hofmann, Andrea Soranno, Daniel Nettels, Klaus Gast, Alexander Grishaev, Robert B. Best, and Benjamin Schuler . Consistent View of Polypeptide Chain Expansion in Chemical Denaturants from Multiple Experimental Methods. Journal of the American Chemical Society 2016, 138 (36) , 11714-11726. https://doi.org/10.1021/jacs.6b05917
    18. Michael C. Byington, Mohammad S. Safari, Jacinta C. Conrad, and Peter G. Vekilov . Protein Conformational Flexibility Enables the Formation of Dense Liquid Clusters: Tests Using Solution Shear. The Journal of Physical Chemistry Letters 2016, 7 (13) , 2339-2345. https://doi.org/10.1021/acs.jpclett.6b00822
    19. Rama Reddy Goluguri and Jayant B. Udgaonkar . Rise of the Helix from a Collapsed Globule during the Folding of Monellin. Biochemistry 2015, 54 (34) , 5356-5365. https://doi.org/10.1021/acs.biochem.5b00730
    20. D. B. Knowles, Irina A. Shkel, Noel M. Phan, Matt Sternke, Emily Lingeman, Xian Cheng, Lixue Cheng, Kevin O’Connor, and M. Thomas Record . Chemical Interactions of Polyethylene Glycols (PEGs) and Glycerol with Protein Functional Groups: Applications to Effects of PEG and Glycerol on Protein Processes. Biochemistry 2015, 54 (22) , 3528-3542. https://doi.org/10.1021/acs.biochem.5b00246
    21. Meaghan S. Jankowski, Daniel Griffith, Divya G. Shastry, Jacqueline F. Pelham, Garrett M. Ginell, Joshua Thomas, Pankaj Karande, Alex S. Holehouse, Jennifer M. Hurley. Disordered clock protein interactions and charge blocks turn an hourglass into a persistent circadian oscillator. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-47761-z
    22. Michael C. Baxa, Xiaoxuan Lin, Cedrick D. Mukinay, Srinivas Chakravarthy, Joseph R. Sachleben, Sarah Antilla, Nina Hartrampf, Joshua A. Riback, Isabelle A. Gagnon, Bradley L. Pentelute, Patricia L. Clark, Tobin R. Sosnick. How hydrophobicity, side chains, and salt affect the dimensions of disordered proteins. Protein Science 2024, 33 (5) https://doi.org/10.1002/pro.4986
    23. S. Sanchez‐Martinez, K. Nguyen, S. Biswas, V. Nicholson, A. V. Romanyuk, J. Ramirez, S. Kc, A. Akter, C. Childs, E. K. Meese, E. T. Usher, G. M. Ginell, F. Yu, E. Gollub, M. Malferrari, F. Francia, G. Venturoli, E. W. Martin, F. Caporaletti, G. Giubertoni, S. Woutersen, S. Sukenik, D. N. Woolfson, A. S. Holehouse, T. C. Boothby. Labile assembly of a tardigrade protein induces biostasis. Protein Science 2024, 33 (4) https://doi.org/10.1002/pro.4941
    24. Alex S. Holehouse, Birthe B. Kragelund. The molecular basis for cellular function of intrinsically disordered protein regions. Nature Reviews Molecular Cell Biology 2024, 25 (3) , 187-211. https://doi.org/10.1038/s41580-023-00673-0
    25. Jeffrey M. Lotthammer, Garrett M. Ginell, Daniel Griffith, Ryan J. Emenecker, Alex S. Holehouse. Direct prediction of intrinsically disordered protein conformational properties from sequence. Nature Methods 2024, 21 (3) , 465-476. https://doi.org/10.1038/s41592-023-02159-5
    26. Shanlong Li, Yumeng Zhang, Jianhan Chen. Backbone interactions and secondary structures in phase separation of disordered proteins. Biochemical Society Transactions 2024, 52 (1) , 319-329. https://doi.org/10.1042/BST20230618
    27. Semanti Mukherjee, Manisha Poudyal, Kritika Dave, Pradeep Kadu, Samir K. Maji. Protein misfolding and amyloid nucleation through liquid–liquid phase separation. Chemical Society Reviews 2024, 15 https://doi.org/10.1039/D3CS01065A
    28. Mina Farag, Alex S. Holehouse, Xiangze Zeng, Rohit V. Pappu. FIREBALL: A tool to fit protein phase diagrams based on mean-field theories for polymer solutions. Biophysical Journal 2023, 122 (12) , 2396-2403. https://doi.org/10.1016/j.bpj.2023.05.007
    29. Reinhard Schweitzer-Stenner. The relevance of short peptides for an understanding of unfolded and intrinsically disordered proteins. Physical Chemistry Chemical Physics 2023, 25 (17) , 11908-11933. https://doi.org/10.1039/D3CP00483J
    30. Pijush Giri, Devendra Verma. Dual crosslinked injectable protein-based hydrogels with cell anti-adhesive properties. Biomedical Materials 2023, 18 (2) , 025012. https://doi.org/10.1088/1748-605X/acb74e
    31. Garrett M. Ginell, Alex S. Holehouse. An Introduction to the Stickers-and-Spacers Framework as Applied to Biomolecular Condensates. 2023, 95-116. https://doi.org/10.1007/978-1-0716-2663-4_4
    32. Eric D. Ross, Sean M. Cascarina. The roles of prion-like domains in amyloid formation, phase separation, and solubility. 2023, 397-426. https://doi.org/10.1016/B978-0-323-99533-7.00014-5
    33. Riley J. Workman, Justin A. Drake, B. Montgomery Pettitt. Thermodynamic perspective of protein disorder and phase separation: model systems. 2023, 97-126. https://doi.org/10.1016/B978-0-323-99533-7.00015-7
    34. , Jasmine Cubuk, Melissa D. Stuchell-Brereton, Andrea Soranno. The biophysics of disordered proteins from the point of view of single-molecule fluorescence spectroscopy. Essays in Biochemistry 2022, 66 (7) , 875-890. https://doi.org/10.1042/EBC20220065
    35. Toshio Ando. Functional Implications of Dynamic Structures of Intrinsically Disordered Proteins Revealed by High-Speed AFM Imaging. Biomolecules 2022, 12 (12) , 1876. https://doi.org/10.3390/biom12121876
    36. Kiersten M. Ruff, Yoon Hee Choi, Dezerae Cox, Angelique R. Ormsby, Yoochan Myung, David B. Ascher, Sheena E. Radford, Rohit V. Pappu, Danny M. Hatters. Sequence grammar underlying the unfolding and phase separation of globular proteins. Molecular Cell 2022, 82 (17) , 3193-3208.e8. https://doi.org/10.1016/j.molcel.2022.06.024
    37. Reinhard Schweitzer-Stenner. Exploring Nearest Neighbor Interactions and Their Influence on the Gibbs Energy Landscape of Unfolded Proteins and Peptides. International Journal of Molecular Sciences 2022, 23 (10) , 5643. https://doi.org/10.3390/ijms23105643
    38. Anne Bremer, Mina Farag, Wade M. Borcherds, Ivan Peran, Erik W. Martin, Rohit V. Pappu, Tanja Mittag. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains. Nature Chemistry 2022, 14 (2) , 196-207. https://doi.org/10.1038/s41557-021-00840-w
    39. Jasmine Cubuk, Jhullian J. Alston, J. Jeremías Incicco, Sukrit Singh, Melissa D. Stuchell-Brereton, Michael D. Ward, Maxwell I. Zimmerman, Neha Vithani, Daniel Griffith, Jason A. Wagoner, Gregory R. Bowman, Kathleen B. Hall, Andrea Soranno, Alex S. Holehouse. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-21953-3
    40. Ryan J. Emenecker, Alex S. Holehouse, Lucia C. Strader. Sequence determinants of in cell condensate morphology, dynamics, and oligomerization as measured by number and brightness analysis. Cell Communication and Signaling 2021, 19 (1) https://doi.org/10.1186/s12964-021-00744-9
    41. Yanyan Wang, Huabin Zhou, Xiangyu Sun, Qiaojing Huang, Siyang Li, Zhirong Liu, Changsheng Zhang, Luhua Lai. Charge Segregation in the Intrinsically Disordered Region Governs VRN1 and DNA Liquid-like Phase Separation Robustness. Journal of Molecular Biology 2021, 433 (22) , 167269. https://doi.org/10.1016/j.jmb.2021.167269
    42. M. Sankaranarayanan, Ryan J. Emenecker, Elise L. Wilby, Marcus Jahnel, Irmela R.E.A. Trussina, Matt Wayland, Simon Alberti, Alex S. Holehouse, Timothy T. Weil. Adaptable P body physical states differentially regulate bicoid mRNA storage during early Drosophila development. Developmental Cell 2021, 56 (20) , 2886-2901.e6. https://doi.org/10.1016/j.devcel.2021.09.021
    43. Jhullian J. Alston, Andrea Soranno, Alex S. Holehouse. Integrating single-molecule spectroscopy and simulations for the study of intrinsically disordered proteins. Methods 2021, 193 , 116-135. https://doi.org/10.1016/j.ymeth.2021.03.018
    44. Yusuke Okuno, Janghyun Yoo, Charles D. Schwieters, Robert B. Best, Hoi Sung Chung, G. Marius Clore. Atomic view of cosolute-induced protein denaturation probed by NMR solvent paramagnetic relaxation enhancement. Proceedings of the National Academy of Sciences 2021, 118 (34) https://doi.org/10.1073/pnas.2112021118
    45. Alexander Gräwe, Viktor Stein. Linker Engineering in the Context of Synthetic Protein Switches and Sensors. Trends in Biotechnology 2021, 39 (7) , 731-744. https://doi.org/10.1016/j.tibtech.2020.11.007
    46. Ishan Taneja, Alex S. Holehouse. Folded domain charge properties influence the conformational behavior of disordered tails. Current Research in Structural Biology 2021, 3 , 216-228. https://doi.org/10.1016/j.crstbi.2021.08.002
    47. , , Erik W. Martin, Alex S. Holehouse. Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerging Topics in Life Sciences 2020, 4 (3) , 307-329. https://doi.org/10.1042/ETLS20190164
    48. Brian Andrews, Shuting Zhang, Reinhard Schweitzer-Stenner, Brigita Urbanc. Glycine in Water Favors the Polyproline II State. Biomolecules 2020, 10 (8) , 1121. https://doi.org/10.3390/biom10081121
    49. Xiangze Zeng, Alex S. Holehouse, Ashutosh Chilkoti, Tanja Mittag, Rohit V. Pappu. Connecting Coil-to-Globule Transitions to Full Phase Diagrams for Intrinsically Disordered Proteins. Biophysical Journal 2020, 119 (2) , 402-418. https://doi.org/10.1016/j.bpj.2020.06.014
    50. Andrea Soranno. Physical basis of the disorder-order transition. Archives of Biochemistry and Biophysics 2020, 685 , 108305. https://doi.org/10.1016/j.abb.2020.108305
    51. Erik W. Martin, Alex S. Holehouse, Ivan Peran, Mina Farag, J. Jeremias Incicco, Anne Bremer, Christy R. Grace, Andrea Soranno, Rohit V. Pappu, Tanja Mittag. Valence and patterning of aromatic residues determine the phase behavior of prion-like domains. Science 2020, 367 (6478) , 694-699. https://doi.org/10.1126/science.aaw8653
    52. Shampa Raghunathan, Tanashree Jaganade, U. Deva Priyakumar. Urea-aromatic interactions in biology. Biophysical Reviews 2020, 12 (1) , 65-84. https://doi.org/10.1007/s12551-020-00620-9
    53. Kiersten M. Ruff. Predicting Conformational Properties of Intrinsically Disordered Proteins from Sequence. 2020, 347-389. https://doi.org/10.1007/978-1-0716-0524-0_18
    54. Peng-Cheng Zhang, Wen-Yu Fang, Lei Bao, Wen-Bin Kang, , . Theoretical and computational methods of protein liquid-liquid phase separation. Acta Physica Sinica 2020, 69 (13) , 138701. https://doi.org/10.7498/aps.69.20200438
    55. Charlotte S. Sørensen, Magnus Kjaergaard. Effective concentrations enforced by intrinsically disordered linkers are governed by polymer physics. Proceedings of the National Academy of Sciences 2019, 116 (46) , 23124-23131. https://doi.org/10.1073/pnas.1904813116
    56. Ivan Peran, Alex S. Holehouse, Isaac S. Carrico, Rohit V. Pappu, Osman Bilsel, Daniel P. Raleigh. Unfolded states under folding conditions accommodate sequence-specific conformational preferences with random coil-like dimensions. Proceedings of the National Academy of Sciences 2019, 116 (25) , 12301-12310. https://doi.org/10.1073/pnas.1818206116
    57. Kiersten M Ruff, Rohit V Pappu, Alex S Holehouse. Conformational preferences and phase behavior of intrinsically disordered low complexity sequences: insights from multiscale simulations. Current Opinion in Structural Biology 2019, 56 , 1-10. https://doi.org/10.1016/j.sbi.2018.10.003
    58. Yanxian Lin, James McCarty, Jennifer N Rauch, Kris T Delaney, Kenneth S Kosik, Glenn H Fredrickson, Joan-Emma Shea, Songi Han. Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. eLife 2019, 8 https://doi.org/10.7554/eLife.42571
    59. Alex S. Holehouse. IDPs and IDRs in biomolecular condensates. 2019, 209-255. https://doi.org/10.1016/B978-0-12-816348-1.00007-7
    60. Carmen Esposito, Andreas Vitalis. Precise estimation of transfer free energies for ionic species between similar media. Physical Chemistry Chemical Physics 2018, 20 (42) , 27003-27010. https://doi.org/10.1039/C8CP05331F
    61. Esther Ortega, Srinivasan Rengachari, Ziad Ibrahim, Naghmeh Hoghoughi, Jonathan Gaucher, Alex S. Holehouse, Saadi Khochbin, Daniel Panne. Transcription factor dimerization activates the p300 acetyltransferase. Nature 2018, 562 (7728) , 538-544. https://doi.org/10.1038/s41586-018-0621-1
    62. Natalie E. Stenzoski, Bowu Luan, Alex S. Holehouse, Daniel P. Raleigh. The Unfolded State of the C-Terminal Domain of L9 Expands at Low but Not at Elevated Temperatures. Biophysical Journal 2018, 115 (4) , 655-663. https://doi.org/10.1016/j.bpj.2018.07.013
    63. Anuradha Mittal, Alex S. Holehouse, Megan C. Cohan, Rohit V. Pappu. Sequence-to-Conformation Relationships of Disordered Regions Tethered to Folded Domains of Proteins. Journal of Molecular Biology 2018, 430 (16) , 2403-2421. https://doi.org/10.1016/j.jmb.2018.05.012
    64. Dheeraj S. Tomar, Niral Ramesh, D. Asthagiri. Solvophobic and solvophilic contributions in the water-to-aqueous guanidinium chloride transfer free energy of model peptides. The Journal of Chemical Physics 2018, 148 (22) https://doi.org/10.1063/1.5022465
    65. Alex S. Holehouse, Rohit V. Pappu. Collapse Transitions of Proteins and the Interplay Among Backbone, Sidechain, and Solvent Interactions. Annual Review of Biophysics 2018, 47 (1) , 19-39. https://doi.org/10.1146/annurev-biophys-070317-032838
    66. Max V. Staller, Alex S. Holehouse, Devjanee Swain-Lenz, Rahul K. Das, Rohit V. Pappu, Barak A. Cohen. A High-Throughput Mutational Scan of an Intrinsically Disordered Acidic Transcriptional Activation Domain. Cell Systems 2018, 6 (4) , 444-455.e6. https://doi.org/10.1016/j.cels.2018.01.015
    67. Tyler S Harmon, Alex S Holehouse, Rohit V Pappu. Differential solvation of intrinsically disordered linkers drives the formation of spatially organized droplets in ternary systems of linear multivalent proteins. New Journal of Physics 2018, 20 (4) , 045002. https://doi.org/10.1088/1367-2630/aab8d9
    68. Emily J. Guinn, Susan Marqusee. Exploring the Denatured State Ensemble by Single-Molecule Chemo-Mechanical Unfolding: The Effect of Force, Temperature, and Urea. Journal of Molecular Biology 2018, 430 (4) , 450-464. https://doi.org/10.1016/j.jmb.2017.07.022
    69. Tyler S Harmon, Alex S Holehouse, Michael K Rosen, Rohit V Pappu. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. eLife 2017, 6 https://doi.org/10.7554/eLife.30294
    70. Zhaoqian Su, Farbod Mahmoudinobar, Cristiano L. Dias. Effects of Trimethylamine- N -oxide on the Conformation of Peptides and its Implications for Proteins. Physical Review Letters 2017, 119 (10) https://doi.org/10.1103/PhysRevLett.119.108102
    71. Gustavo Fuertes, Niccolò Banterle, Kiersten M. Ruff, Aritra Chowdhury, Davide Mercadante, Christine Koehler, Michael Kachala, Gemma Estrada Girona, Sigrid Milles, Ankur Mishra, Patrick R. Onck, Frauke Gräter, Santiago Esteban-Martín, Rohit V. Pappu, Dmitri I. Svergun, Edward A. Lemke. Decoupling of size and shape fluctuations in heteropolymeric sequences reconciles discrepancies in SAXS vs. FRET measurements. Proceedings of the National Academy of Sciences 2017, 114 (31) https://doi.org/10.1073/pnas.1704692114
    72. Michael C. Byington, Mohammad S. Safari, Jacinta C. Conrad, Peter G. Vekilov. Shear flow suppresses the volume of the nucleation precursor clusters in lysozyme solutions. Journal of Crystal Growth 2017, 468 , 493-501. https://doi.org/10.1016/j.jcrysgro.2016.12.080
    73. Zachary P. Gates, Michael C. Baxa, Wookyung Yu, Joshua A. Riback, Hui Li, Benoît Roux, Stephen B. H. Kent, Tobin R. Sosnick. Perplexing cooperative folding and stability of a low-sequence complexity, polyproline 2 protein lacking a hydrophobic core. Proceedings of the National Academy of Sciences 2017, 114 (9) , 2241-2246. https://doi.org/10.1073/pnas.1609579114
    74. Zhaoqian Su, Cristiano L. Dias. Molecular interactions accounting for protein denaturation by urea. Journal of Molecular Liquids 2017, 228 , 168-175. https://doi.org/10.1016/j.molliq.2016.10.022
    75. Alexander E. Yarawsky, Lance R. English, Steven T. Whitten, Andrew B. Herr. The Proline/Glycine-Rich Region of the Biofilm Adhesion Protein Aap Forms an Extended Stalk that Resists Compaction. Journal of Molecular Biology 2017, 429 (2) , 261-279. https://doi.org/10.1016/j.jmb.2016.11.017
    76. Beata Adamczak, Miłosz Wieczór, Mateusz Kogut, Janusz Stangret, Jacek Czub. Molecular basis of the osmolyte effect on protein stability: a lesson from the mechanical unfolding of lysozyme. Biochemical Journal 2016, 473 (20) , 3705-3724. https://doi.org/10.1042/BCJ20160604
    77. Mikayel Aznauryan, Leonildo Delgado, Andrea Soranno, Daniel Nettels, Jie-rong Huang, Alexander M. Labhardt, Stephan Grzesiek, Benjamin Schuler. Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS. Proceedings of the National Academy of Sciences 2016, 113 (37) https://doi.org/10.1073/pnas.1607193113
    78. Sang Beom Kim, Jeremy C. Palmer, Pablo G. Debenedetti. Computational investigation of cold denaturation in the Trp-cage miniprotein. Proceedings of the National Academy of Sciences 2016, 113 (32) , 8991-8996. https://doi.org/10.1073/pnas.1607500113
    79. Benjamin Schuler, Andrea Soranno, Hagen Hofmann, Daniel Nettels. Single-Molecule FRET Spectroscopy and the Polymer Physics of Unfolded and Intrinsically Disordered Proteins. Annual Review of Biophysics 2016, 45 (1) , 207-231. https://doi.org/10.1146/annurev-biophys-062215-010915
    80. Rama Reddy Goluguri, Jayant B. Udgaonkar. Microsecond Rearrangements of Hydrophobic Clusters in an Initially Collapsed Globule Prime Structure Formation during the Folding of a Small Protein. Journal of Molecular Biology 2016, 428 (15) , 3102-3117. https://doi.org/10.1016/j.jmb.2016.06.015
    81. Yuling Sun, Yanbin Huang. Disulfide-crosslinked albumin hydrogels. Journal of Materials Chemistry B 2016, 4 (16) , 2768-2775. https://doi.org/10.1039/C6TB00247A
    82. Kiersten M. Ruff, Tyler S. Harmon, Rohit V. Pappu. CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences. The Journal of Chemical Physics 2015, 143 (24) https://doi.org/10.1063/1.4935066
    83. Maria A. Vorontsova, Ho Yin Chan, Vassiliy Lubchenko, Peter G. Vekilov. Lack of Dependence of the Sizes of the Mesoscopic Protein Clusters on Electrostatics. Biophysical Journal 2015, 109 (9) , 1959-1968. https://doi.org/10.1016/j.bpj.2015.09.025
    84. Alex S. Holehouse, Rohit V. Pappu. Encoding phase transitions. Nature Materials 2015, 14 (11) , 1083-1084. https://doi.org/10.1038/nmat4459
    85. Clifford P. Brangwynne, Peter Tompa, Rohit V. Pappu. Polymer physics of intracellular phase transitions. Nature Physics 2015, 11 (11) , 899-904. https://doi.org/10.1038/nphys3532
    86. Sara M. Sizemore, Stephanie M. Cope, Anindya Roy, Giovanna Ghirlanda, Sara M. Vaiana. Slow Internal Dynamics and Charge Expansion in the Disordered Protein CGRP: A Comparison with Amylin. Biophysical Journal 2015, 109 (5) , 1038-1048. https://doi.org/10.1016/j.bpj.2015.07.023
    87. Rahul K Das, Kiersten M Ruff, Rohit V Pappu. Relating sequence encoded information to form and function of intrinsically disordered proteins. Current Opinion in Structural Biology 2015, 32 , 102-112. https://doi.org/10.1016/j.sbi.2015.03.008
    88. Peter Hendil-Forssell, Mats Martinelle, Per-Olof Syrén. Exploring water as building bricks in enzyme engineering. Chemical Communications 2015, 51 (97) , 17221-17224. https://doi.org/10.1039/C5CC07162C

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect