<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Review Article
No access
Published Online: 8 March 2011

High-Mobility Group Box 1, Oxidative Stress, and Disease

Publication: Antioxidants & Redox Signaling
Volume 14, Issue Number 7

Abstract

Oxidative stress and associated reactive oxygen species can modify lipids, proteins, carbohydrates, and nucleic acids, and induce the mitochondrial permeability transition, providing a signal leading to the induction of autophagy, apoptosis, and necrosis. High-mobility group box 1 (HMGB1) protein, a chromatin-binding nuclear protein and damage-associated molecular pattern molecule, is integral to oxidative stress and downstream apoptosis or survival. Accumulation of HMGB1 at sites of oxidative DNA damage can lead to repair of the DNA. As a redox-sensitive protein, HMGB1 contains three cysteines (Cys23, 45, and 106). In the setting of oxidative stress, it can form a Cys23-Cys45 disulfide bond; a role for oxidative homo- or heterodimerization through the Cys106 has been suggested for some of its biologic activities. HMGB1 causes activation of nicotinamide adenine dinucleotide phosphate oxidase and increased reactive oxygen species production in neutrophils. Reduced and oxidized HMGB1 have different roles in extracellular signaling and regulation of immune responses, mediated by signaling through the receptor for advanced glycation end products and/or Toll-like receptors. Antioxidants such as ethyl pyruvate, quercetin, green tea, N-acetylcysteine, and curcumin are protective in the setting of experimental infection/sepsis and injury including ischemia-reperfusion, partly through attenuating HMGB1 release and systemic accumulation. Antioxid. Redox Signal. 14, 1315–1335.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Abd El-Gawad HMKhalifa AE. Quercetin, coenzyme Q10, and L-canavanine as protective agents against lipid peroxidation and nitric oxide generation in endotoxin-induced shock in rat brainPharmacol Res43257-2632001. 1. Abd El-Gawad HM and Khalifa AE. Quercetin, coenzyme Q10, and L-canavanine as protective agents against lipid peroxidation and nitric oxide generation in endotoxin-induced shock in rat brain. Pharmacol Res 43: 257–263, 2001.
2.
Abraham EArcaroli JCarmody AWang HTracey KJ. HMG-1 as a mediator of acute lung inflammationJ Immunol1652950-29542000. 2. Abraham E, Arcaroli J, Carmody A, Wang H, and Tracey KJ. HMG-1 as a mediator of acute lung inflammation. J Immunol 165: 2950–2954, 2000.
3.
Agresti ALupo RBianchi MEMuller S. HMGB1 interacts differentially with members of the Rel family of transcription factorsBiochem Biophys Res Commun302421-4262003. 3. Agresti A, Lupo R, Bianchi ME, and Muller S. HMGB1 interacts differentially with members of the Rel family of transcription factors. Biochem Biophys Res Commun 302: 421–426, 2003.
4.
Andersson UWang HPalmblad KAveberger ACBloom OErlandsson-Harris HJanson AKokkola RZhang MYang HTracey KJ. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytesJ Exp Med192565-5702000. 4. Andersson U, Wang H, Palmblad K, Aveberger AC, Bloom O, Erlandsson-Harris H, Janson A, Kokkola R, Zhang M, Yang H, and Tracey KJ. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J Exp Med 192: 565–570, 2000.
5.
Andrassy MVolz HCIgwe JCFunke BEichberger SNKaya ZBuss SAutschbach FPleger STLukic IKBea FHardt SEHumpert PMBianchi MEMairbaurl HNawroth PPRemppis AKatus HABierhaus A. High-mobility group box-1 in ischemia-reperfusion injury of the heartCirculation1173216-32262008. 5. Andrassy M, Volz HC, Igwe JC, Funke B, Eichberger SN, Kaya Z, Buss S, Autschbach F, Pleger ST, Lukic IK, Bea F, Hardt SE, Humpert PM, Bianchi ME, Mairbaurl H, Nawroth PP, Remppis A, Katus HA, and Bierhaus A. High-mobility group box-1 in ischemia-reperfusion injury of the heart. Circulation 117: 3216–3226, 2008.
6.
Apel KHirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transductionAnnu Rev Plant Biol55373-3992004. 6. Apel K and Hirt H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373–399, 2004.
7.
Apetoh LGhiringhelli FTesniere ACriollo AOrtiz CLidereau RMariette CChaput NMira JPDelaloge SAndre FTursz TKroemer GZitvogel L. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapyImmunol Rev22047-592007. 7. Apetoh L, Ghiringhelli F, Tesniere A, Criollo A, Ortiz C, Lidereau R, Mariette C, Chaput N, Mira JP, Delaloge S, Andre F, Tursz T, Kroemer G, and Zitvogel L. The interaction between HMGB1 and TLR4 dictates the outcome of anticancer chemotherapy and radiotherapy. Immunol Rev 220: 47–59, 2007.
8.
Aragones JFraisl PBaes MCarmeliet P. Oxygen sensors at the crossroad of metabolismCell Metab911-222009. 8. Aragones J, Fraisl P, Baes M, and Carmeliet P. Oxygen sensors at the crossroad of metabolism. Cell Metab 9: 11–22, 2009.
9.
Azevedo DTacnet FDelaunay ARodrigues-Pousada CToledano MB. Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signalingFree Radic Biol Med35889-9002003. 9. Azevedo D, Tacnet F, Delaunay A, Rodrigues-Pousada C, and Toledano MB. Two redox centers within Yap1 for H2O2 and thiol-reactive chemicals signaling. Free Radic Biol Med 35: 889–900, 2003.
10.
Bamboat ZMBalachandran VPOcuin LMObaid HPlitas GDematteo RP. Toll-like receptor 9 inhibition confers protection from liver ischemia-reperfusion injuryHepatology51621-6322010. 10. Bamboat ZM, Balachandran VP, Ocuin LM, Obaid H, Plitas G, and Dematteo RP. Toll-like receptor 9 inhibition confers protection from liver ischemia-reperfusion injury. Hepatology 51: 621–632, 2010.
11.
Banerjee SFriggeri ALiu GAbraham E. The C-terminal acidic tail is responsible for the inhibitory effects of HMGB1 on efferocytosisJ Leukoc Biol88973-9792010. 11. Banerjee S, Friggeri A, Liu G, and Abraham E. The C-terminal acidic tail is responsible for the inhibitory effects of HMGB1 on efferocytosis. J Leukoc Biol 88: 973–979, 2010.
12.
Banerjee SKundu TK. The acidic C-terminal domain and A-box of HMGB-1 regulates p53-mediated transcriptionNucleic Acids Res313236-32472003. 12. Banerjee S and Kundu TK. The acidic C-terminal domain and A-box of HMGB-1 regulates p53-mediated transcription. Nucleic Acids Res 31: 3236–3247, 2003.
13.
Barcellos-Hoff MHDix TA. Redox-mediated activation of latent transforming growth factor-beta 1Mol Endocrinol101077-10831996. 13. Barcellos-Hoff MH and Dix TA. Redox-mediated activation of latent transforming growth factor-beta 1. Mol Endocrinol 10: 1077–1083, 1996.
14.
Barnham KJMasters CLBush AI. Neurodegenerative diseases and oxidative stressNat Rev Drug Discov3205-2142004. 14. Barnham KJ, Masters CL, and Bush AI. Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discov 3: 205–214, 2004.
15.
Bell CWJiang WReich CF 3rdPisetsky DS. The extracellular release of HMGB1 during apoptotic cell deathAm J Physiol Cell Physiol291C1318-C13252006. 15. Bell CW, Jiang W, Reich CF 3rd, and Pisetsky DS. The extracellular release of HMGB1 during apoptotic cell death. Am J Physiol Cell Physiol 291: C1318–C1325, 2006.
16.
Benz CCYau C. Ageing, oxidative stress and cancer: paradigms in parallaxNat Rev Cancer8875-8792008. 16. Benz CC and Yau C. Ageing, oxidative stress and cancer: paradigms in parallax. Nat Rev Cancer 8: 875–879, 2008.
17.
Bianchi ME. HMGB1 loves companyJ Leukoc Biol86573-5762009. 17. Bianchi ME. HMGB1 loves company. J Leukoc Biol 86: 573–576, 2009.
18.
Bianchi MEManfredi AA. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunityImmunol Rev22035-462007. 18. Bianchi ME and Manfredi AA. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 220: 35–46, 2007.
19.
Biswas KKOyama YAbeyama KHashiguchi TMaruyama I. Uric acid induces high mobility group box1 protein release in monocytes/macrophages through P38 MAPK, ERK1/2, JNK and AP-1 activationASH Annu Meet Abstr10414642004. 19. Biswas KK, Oyama Y, Abeyama K, Hashiguchi T, and Maruyama I. Uric acid induces high mobility group box1 protein release in monocytes/macrophages through P38 MAPK, ERK1/2, JNK and AP-1 activation. ASH Annu Meet Abstr 104: 1464, 2004.
20.
Blankson HHolen ISeglen PO. Disruption of the cytokeratin cytoskeleton and inhibition of hepatocytic autophagy by okadaic acidExp Cell Res218522-5301995. 20. Blankson H, Holen I, and Seglen PO. Disruption of the cytokeratin cytoskeleton and inhibition of hepatocytic autophagy by okadaic acid. Exp Cell Res 218: 522–530, 1995.
21.
Bonaldi TTalamo FScaffidi PFerrera DPorto ABachi ARubartelli AAgresti ABianchi ME. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretionEMBO J225551-55602003. 21. Bonaldi T, Talamo F, Scaffidi P, Ferrera D, Porto A, Bachi A, Rubartelli A, Agresti A, and Bianchi ME. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J 22: 5551–5560, 2003.
22.
Bonomini FTengattini SFabiano ABianchi RRezzani R. Atherosclerosis and oxidative stressHistol Histopathol23381-3902008. 22. Bonomini F, Tengattini S, Fabiano A, Bianchi R, and Rezzani R. Atherosclerosis and oxidative stress. Histol Histopathol 23: 381–390, 2008.
23.
Brickman JMAdam MPtashne M. Interactions between an HMG-1 protein and members of the Rel familyProc Natl Acad Sci U S A9610679-106831999. 23. Brickman JM, Adam M, and Ptashne M. Interactions between an HMG-1 protein and members of the Rel family. Proc Natl Acad Sci U S A 96: 10679–10683, 1999.
24.
Brigelius-Flohe RBanning AKny MBol GF. Redox events in interleukin-1 signalingArch Biochem Biophys42366-732004. 24. Brigelius-Flohe R, Banning A, Kny M, and Bol GF. Redox events in interleukin-1 signaling. Arch Biochem Biophys 423: 66–73, 2004.
25.
Burdon RH. Control of cell proliferation by reactive oxygen speciesBiochem Soc Trans241028-10321996. 25. Burdon RH. Control of cell proliferation by reactive oxygen species. Biochem Soc Trans 24: 1028–1032, 1996.
26.
Bustin M. Revised nomenclature for high mobility group (HMG) chromosomal proteinsTrends Biochem Sci26152-1532001. 26. Bustin M. Revised nomenclature for high mobility group (HMG) chromosomal proteins. Trends Biochem Sci 26: 152–153, 2001.
27.
Calogero SGrassi FAguzzi AVoigtlander TFerrier PFerrari SBianchi ME. The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn miceNat Genet22276-2801999. 27. Calogero S, Grassi F, Aguzzi A, Voigtlander T, Ferrier P, Ferrari S, and Bianchi ME. The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat Genet 22: 276–280, 1999.
28.
Carta SCastellani PDelfino LTassi SVene RRubartelli A. DAMPs and inflammatory processes: the role of redox in the different outcomesJ Leukoc Biol86549-5552009. 28. Carta S, Castellani P, Delfino L, Tassi S, Vene R, and Rubartelli A. DAMPs and inflammatory processes: the role of redox in the different outcomes. J Leukoc Biol 86: 549–555, 2009.
29.
Case JIngram DAHaneline LS. Oxidative stress impairs endothelial progenitor cell functionAntioxid Redox Signal101895-19072008. 29. Case J, Ingram DA, and Haneline LS. Oxidative stress impairs endothelial progenitor cell function. Antioxid Redox Signal 10: 1895–1907, 2008.
30.
Chen GYTang JZheng PLiu Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responsesScience3231722-17252009. 30. Chen GY, Tang J, Zheng P, and Liu Y. CD24 and Siglec-10 selectively repress tissue damage-induced immune responses. Science 323: 1722–1725, 2009.
31.
Chiang HLTerlecky SRPlant CPDice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteinsScience246382-3851989. 31. Chiang HL, Terlecky SR, Plant CP, and Dice JF. A role for a 70-kilodalton heat shock protein in lysosomal degradation of intracellular proteins. Science 246: 382–385, 1989.
32.
Choi JJReich CF 3rdPisetsky DS. Release of DNA from dead and dying lymphocyte and monocyte cell lines in vitroScand J Immunol60159-1662004. 32. Choi JJ, Reich CF 3rd, and Pisetsky DS. Release of DNA from dead and dying lymphocyte and monocyte cell lines in vitro. Scand J Immunol 60: 159–166, 2004.
33.
Chung KYPark JJKim YS. The role of high-mobility group box-1 in renal ischemia and reperfusion injury and the effect of ethyl pyruvateTransplant Proc402136-21382008. 33. Chung KY, Park JJ, and Kim YS. The role of high-mobility group box-1 in renal ischemia and reperfusion injury and the effect of ethyl pyruvate. Transplant Proc 40: 2136–2138, 2008.
34.
Connor KMSubbaram SRegan KJNelson KKMazurkiewicz JEBartholomew PJAplin AETai YTAguirre-Ghiso JFlores SCMelendez JA. Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidationJ Biol Chem28016916-169242005. 34. Connor KM, Subbaram S, Regan KJ, Nelson KK, Mazurkiewicz JE, Bartholomew PJ, Aplin AE, Tai YT, Aguirre-Ghiso J, Flores SC, and Melendez JA. Mitochondrial H2O2 regulates the angiogenic phenotype via PTEN oxidation. J Biol Chem 280: 16916–16924, 2005.
35.
Coughlan MTCooper MEForbes JM. Renal microvascular injury in diabetes: RAGE and redox signalingAntioxid Redox Signal9331-3422007. 35. Coughlan MT, Cooper ME, and Forbes JM. Renal microvascular injury in diabetes: RAGE and redox signaling. Antioxid Redox Signal 9: 331–342, 2007.
36.
Cowan KJDiamond MIWelch WJ. Polyglutamine protein aggregation and toxicity are linked to the cellular stress responseHum Mol Genet121377-13912003. 36. Cowan KJ, Diamond MI, and Welch WJ. Polyglutamine protein aggregation and toxicity are linked to the cellular stress response. Hum Mol Genet 12: 1377–1391, 2003.
37.
Cuervo AMDice JF. A receptor for the selective uptake and degradation of proteins by lysosomesScience273501-5031996. 37. Cuervo AM and Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes. Science 273: 501–503, 1996.
38.
Das DPeterson RCScovell WM. High mobility group B proteins facilitate strong estrogen receptor binding to classical and half-site estrogen response elements and relax binding selectivityMol Endocrinol182616-26322004. 38. Das D, Peterson RC, and Scovell WM. High mobility group B proteins facilitate strong estrogen receptor binding to classical and half-site estrogen response elements and relax binding selectivity. Mol Endocrinol 18: 2616–2632, 2004.
39.
Das UN. Pyruvate is an endogenous anti-inflammatory and anti-oxidant moleculeMed Sci Monit12RA79-RA842006. 39. Das UN. Pyruvate is an endogenous anti-inflammatory and anti-oxidant molecule. Med Sci Monit 12: RA79–RA84, 2006.
40.
Dave SHTilstra JSMatsuoka KLi FDeMarco RABeer-Stolz DSepulveda ARFink MPLotze MTPlevy SE. Ethyl pyruvate decreases HMGB1 release and ameliorates murine colitisJ Leukoc Biol86633-6432009. 40. Dave SH, Tilstra JS, Matsuoka K, Li F, DeMarco RA, Beer-Stolz D, Sepulveda AR, Fink MP, Lotze MT, and Plevy SE. Ethyl pyruvate decreases HMGB1 release and ameliorates murine colitis. J Leukoc Biol 86: 633–643, 2009.
41.
Degryse BBonaldi TScaffidi PMuller SResnati MSanvito FArrigoni GBianchi ME. The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cellsJ Cell Biol1521197-12062001. 41. Degryse B, Bonaldi T, Scaffidi P, Muller S, Resnati M, Sanvito F, Arrigoni G, and Bianchi ME. The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J Cell Biol 152: 1197–1206, 2001.
42.
De Mori RStraino SDi Carlo AMangoni APompilio GPalumbo RBianchi MECapogrossi MCGermani A. Multiple effects of high mobility group box protein 1 in skeletal muscle regenerationArterioscler Thromb Vasc Biol272377-23832007. 42. De Mori R, Straino S, Di Carlo A, Mangoni A, Pompilio G, Palumbo R, Bianchi ME, Capogrossi MC, and Germani A. Multiple effects of high mobility group box protein 1 in skeletal muscle regeneration. Arterioscler Thromb Vasc Biol 27: 2377–2383, 2007.
43.
Demple BAmabile-Cuevas CF. Redox redux: the control of oxidative stress responsesCell67837-8391991. 43. Demple B and Amabile-Cuevas CF. Redox redux: the control of oxidative stress responses. Cell 67: 837–839, 1991.
44.
Dias ASPorawski MAlonso MMarroni NCollado PSGonzalez-Gallego J. Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic ratsJ Nutr1352299-23042005. 44. Dias AS, Porawski M, Alonso M, Marroni N, Collado PS, and Gonzalez-Gallego J. Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats. J Nutr 135: 2299–2304, 2005.
45.
Dintilhac ABernues J. HMGB1 interacts with many apparently unrelated proteins by recognizing short amino acid sequencesJ Biol Chem2777021-70282002. 45. Dintilhac A and Bernues J. HMGB1 interacts with many apparently unrelated proteins by recognizing short amino acid sequences. J Biol Chem 277: 7021–7028, 2002.
46.
Dong XDIto NLotze MTDemarco RAPopovic PShand SHWatkins SWinikoff SBrown CKBartlett DLZeh HJ 3rd. High mobility group box I (HMGB1) release from tumor cells after treatment: implications for development of targeted chemoimmunotherapyJ Immunother30596-6062007. 46. Dong XD, Ito N, Lotze MT, Demarco RA, Popovic P, Shand SH, Watkins S, Winikoff S, Brown CK, Bartlett DL, and Zeh HJ 3rd. High mobility group box I (HMGB1) release from tumor cells after treatment: implications for development of targeted chemoimmunotherapy. J Immunother 30: 596–606, 2007.
47.
Dumitriu IEBaruah PBianchi MEManfredi AARovere-Querini P. Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cellsEur J Immunol352184-21902005. 47. Dumitriu IE, Baruah P, Bianchi ME, Manfredi AA, and Rovere-Querini P. Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cells. Eur J Immunol 35: 2184–2190, 2005.
48.
Dumitriu IEBianchi MEBacci MManfredi AARovere-Querini P. The secretion of HMGB1 is required for the migration of maturing dendritic cellsJ Leukoc Biol8184-912007. 48. Dumitriu IE, Bianchi ME, Bacci M, Manfredi AA, and Rovere-Querini P. The secretion of HMGB1 is required for the migration of maturing dendritic cells. J Leukoc Biol 81: 84–91, 2007.
49.
Ellerman JEBrown CKde Vera MZeh HJBilliar TRubartelli ALotze MT. Masquerader: high mobility group box-1 and cancerClin Cancer Res132836-28482007. 49. Ellerman JE, Brown CK, de Vera M, Zeh HJ, Billiar T, Rubartelli A, and Lotze MT. Masquerader: high mobility group box-1 and cancer. Clin Cancer Res 13: 2836–2848, 2007.
50.
Ellis SKillender MAnderson RL. Heat-induced alterations in the localization of HSP72 and HSP73 as measured by indirect immunohistochemistry and immunogold electron microscopyJ Histochem Cytochem48321-3322000. 50. Ellis S, Killender M, and Anderson RL. Heat-induced alterations in the localization of HSP72 and HSP73 as measured by indirect immunohistochemistry and immunogold electron microscopy. J Histochem Cytochem 48: 321–332, 2000.
51.
El Marzouk SGahattamaneni RJoshi SRScovell WM. The plasticity of estrogen receptor-DNA complexes: binding affinity and specificity of estrogen receptors to estrogen response element half-sites separated by variant spacersJ Steroid Biochem Mol Biol110186-1952008. 51. El Marzouk S, Gahattamaneni R, Joshi SR, and Scovell WM. The plasticity of estrogen receptor-DNA complexes: binding affinity and specificity of estrogen receptors to estrogen response element half-sites separated by variant spacers. J Steroid Biochem Mol Biol 110: 186–195, 2008.
52.
El Mezayen REl Gazzar MSeeds MCMcCall CEDreskin SCNicolls MR. Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxinImmunol Lett11136-442007. 52. El Mezayen R, El Gazzar M, Seeds MC, McCall CE, Dreskin SC, and Nicolls MR. Endogenous signals released from necrotic cells augment inflammatory responses to bacterial endotoxin. Immunol Lett 111: 36–44, 2007.
53.
Enokido YYoshitake AIto HOkazawa H. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brainBiochem Biophys Res Commun376128-1332008. 53. Enokido Y, Yoshitake A, Ito H, and Okazawa H. Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochem Biophys Res Commun 376: 128–133, 2008.
54.
Fages CNolo RHuttunen HJEskelinen ERauvala H. Regulation of cell migration by amphoterinJ Cell Sci113Pt 4611-6202000. 54. Fages C, Nolo R, Huttunen HJ, Eskelinen E, and Rauvala H. Regulation of cell migration by amphoterin. J Cell Sci 113 (Pt 4): 611–620, 2000.
55.
Fan JLi YLevy RMFan JJHackam DJVodovotz YYang HTracey KJBilliar TRWilson MA. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signalingJ Immunol1786573-65802007. 55. Fan J, Li Y, Levy RM, Fan JJ, Hackam DJ, Vodovotz Y, Yang H, Tracey KJ, Billiar TR, and Wilson MA. Hemorrhagic shock induces NAD(P)H oxidase activation in neutrophils: role of HMGB1-TLR4 signaling. J Immunol 178: 6573–6580, 2007.
56.
Fink MP. Ethyl pyruvateCurr Opin Anaesthesiol21160-1672008. 56. Fink MP. Ethyl pyruvate. Curr Opin Anaesthesiol 21: 160–167, 2008.
57.
Fink MP. Ethyl pyruvate: a novel treatment for sepsisNovartis Found Symp280147-156; discussion 156–1642007. 57. Fink MP. Ethyl pyruvate: a novel treatment for sepsis. Novartis Found Symp 280: 147–156; discussion 156–164, 2007.
58.
Finkel THolbrook NJ. Oxidants, oxidative stress and the biology of ageingNature408239-2472000. 58. Finkel T and Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–247, 2000.
59.
Gardella SAndrei CFerrera DLotti LVTorrisi MRBianchi MERubartelli A. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathwayEMBO Rep3995-10012002. 59. Gardella S, Andrei C, Ferrera D, Lotti LV, Torrisi MR, Bianchi ME, and Rubartelli A. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep 3: 995–1001, 2002.
60.
Garrido CSchmitt ECande CVahsen NParcellier AKroemer G. HSP27 and HSP70: potentially oncogenic apoptosis inhibitorsCell Cycle2579-5842003. 60. Garrido C, Schmitt E, Cande C, Vahsen N, Parcellier A, and Kroemer G. HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell Cycle 2: 579–584, 2003.
61.
Germani ALimana FCapogrossi MC. Pivotal advances: high-mobility group box 1 protein—a cytokine with a role in cardiac repairJ Leukoc Biol8141-452007. 61. Germani A, Limana F, and Capogrossi MC. Pivotal advances: high-mobility group box 1 protein—a cytokine with a role in cardiac repair. J Leukoc Biol 81: 41–45, 2007.
62.
Goodwin GHJohns EW. The isolation and purification of the high mobility group (HMG) nonhistone chromosomal proteinsMethods Cell Biol16257-2671977. 62. Goodwin GH and Johns EW. The isolation and purification of the high mobility group (HMG) nonhistone chromosomal proteins. Methods Cell Biol 16: 257–267, 1977.
63.
Goula AVBerquist BRWilson DM 3rdWheeler VCTrottier YMerienne K. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic micePLoS Genet5e10007492009. 63. Goula AV, Berquist BR, Wilson DM 3rd, Wheeler VC, Trottier Y, and Merienne K. Stoichiometry of base excision repair proteins correlates with increased somatic CAG instability in striatum over cerebellum in Huntington's disease transgenic mice. PLoS Genet 5: e1000749, 2009.
64.
Gourlay CWCarpp LNTimpson PWinder SJAyscough KR. A role for the actin cytoskeleton in cell death and aging in yeastJ Cell Biol164803-8092004. 64. Gourlay CW, Carpp LN, Timpson P, Winder SJ, and Ayscough KR. A role for the actin cytoskeleton in cell death and aging in yeast. J Cell Biol 164: 803–809, 2004.
65.
Green JPaget MS. Bacterial redox sensorsNat Rev Microbiol2954-9662004. 65. Green J and Paget MS. Bacterial redox sensors. Nat Rev Microbiol 2: 954–966, 2004.
66.
Griendling KKAlexander RW. Oxidative stress and cardiovascular diseaseCirculation963264-32651997. 66. Griendling KK and Alexander RW. Oxidative stress and cardiovascular disease. Circulation 96: 3264–3265, 1997.
67.
Grover ATaylor JTroudt JKeyser ASommersted KSchenkel AIzzo AA. Mycobacterial infection induces the secretion of high-mobility group box 1 proteinCell Microbiol101390-14042008. 67. Grover A, Taylor J, Troudt J, Keyser A, Sommersted K, Schenkel A, and Izzo AA. Mycobacterial infection induces the secretion of high-mobility group box 1 protein. Cell Microbiol 10: 1390–1404, 2008.
68.
Hanspal MHanspal JS. The association of erythroblasts with macrophages promotes erythroid proliferation and maturation: a 30-kD heparin-binding protein is involved in this contactBlood843494-35041994. 68. Hanspal M and Hanspal JS. The association of erythroblasts with macrophages promotes erythroid proliferation and maturation: a 30-kD heparin-binding protein is involved in this contact. Blood 84: 3494–3504, 1994.
69.
Harja EBu DXHudson BIChang JSShen XHallam KKalea AZLu YRosario RHOruganti SNikolla ZBelov DLalla ERamasamy RYan SFSchmidt AM. Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE-/- miceJ Clin Invest118183-1942008. 69. Harja E, Bu DX, Hudson BI, Chang JS, Shen X, Hallam K, Kalea AZ, Lu Y, Rosario RH, Oruganti S, Nikolla Z, Belov D, Lalla E, Ramasamy R, Yan SF, and Schmidt AM. Vascular and inflammatory stresses mediate atherosclerosis via RAGE and its ligands in apoE-/- mice. J Clin Invest 118: 183–194, 2008.
70.
Harrison CARaftery MJWalsh JAlewood PIismaa SEThliveris SGeczy CL. Oxidation regulates the inflammatory properties of the murine S100 protein S100A8J Biol Chem2748561-85691999. 70. Harrison CA, Raftery MJ, Walsh J, Alewood P, Iismaa SE, Thliveris S, and Geczy CL. Oxidation regulates the inflammatory properties of the murine S100 protein S100A8. J Biol Chem 274: 8561–8569, 1999.
71.
Hartl FU. Molecular chaperones in cellular protein foldingNature381571-5791996. 71. Hartl FU. Molecular chaperones in cellular protein folding. Nature 381: 571–579, 1996.
72.
Hayakawa KMishima KIrie KHazekawa MMishima SFujioka MOrito KEgashira NKatsurabayashi STakasaki KIwasaki KFujiwara M. Cannabidiol prevents a post-ischemic injury progressively induced by cerebral ischemia via a high-mobility group box1-inhibiting mechanismNeuropharmacology551280-12862008. 72. Hayakawa K, Mishima K, Irie K, Hazekawa M, Mishima S, Fujioka M, Orito K, Egashira N, Katsurabayashi S, Takasaki K, Iwasaki K, and Fujiwara M. Cannabidiol prevents a post-ischemic injury progressively induced by cerebral ischemia via a high-mobility group box1-inhibiting mechanism. Neuropharmacology 55: 1280–1286, 2008.
73.
Hidalgo CDonoso P. Crosstalk between calcium and redox signaling: from molecular mechanisms to health implicationsAntioxid Redox Signal101275-13122008. 73. Hidalgo C and Donoso P. Crosstalk between calcium and redox signaling: from molecular mechanisms to health implications. Antioxid Redox Signal 10: 1275–1312, 2008.
74.
Higdon JVFrei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functionsCrit Rev Food Sci Nutr4389-1432003. 74. Higdon JV and Frei B. Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43: 89–143, 2003.
75.
Hightower LE. Heat shock, stress proteins, chaperones, and proteotoxicityCell66191-1971991. 75. Hightower LE. Heat shock, stress proteins, chaperones, and proteotoxicity. Cell 66: 191–197, 1991.
76.
Hofner PSeprenyi GMiczak ABuzas KGyulai ZMedzihradszky KFRouhiainen ARauvala HMandi Y. High mobility group box 1 protein induction by Mycobacterium bovis BCGMediators Inflamm2007538052007. 76. Hofner P, Seprenyi G, Miczak A, Buzas K, Gyulai Z, Medzihradszky KF, Rouhiainen A, Rauvala H, and Mandi Y. High mobility group box 1 protein induction by Mycobacterium bovis BCG. Mediators Inflamm 2007: 53805, 2007.
77.
Hoppe GTalcott KEBhattacharya SKCrabb JWSears JE. Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1Exp Cell Res3123526-35382006. 77. Hoppe G, Talcott KE, Bhattacharya SK, Crabb JW, and Sears JE. Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1. Exp Cell Res 312: 3526–3538, 2006.
78.
Hu JDong LOutten CE. The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrixJ Biol Chem28329126-291342008. 78. Hu J, Dong L, and Outten CE. The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J Biol Chem 283: 29126–29134, 2008.
79.
Huttunen HJFages CKuja-Panula JRidley AJRauvala H. Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasisCancer Res624805-48112002. 79. Huttunen HJ, Fages C, Kuja-Panula J, Ridley AJ, and Rauvala H. Receptor for advanced glycation end products-binding COOH-terminal motif of amphoterin inhibits invasive migration and metastasis. Cancer Res 62: 4805–4811, 2002.
80.
Ilmakunnas MTukiainen EMRouhiainen ARauvala HArola JNordin AMakisalo HHockerstedt KIsoniemi H. High mobility group box 1 protein as a marker of hepatocellular injury in human liver transplantationLiver Transpl141517-15252008. 80. Ilmakunnas M, Tukiainen EM, Rouhiainen A, Rauvala H, Arola J, Nordin A, Makisalo H, Hockerstedt K, and Isoniemi H. High mobility group box 1 protein as a marker of hepatocellular injury in human liver transplantation. Liver Transpl 14: 1517–1525, 2008.
81.
Ilzecka J. Serum-soluble receptor for advanced glycation end product levels in patients with amyotrophic lateral sclerosisActa Neurol Scand120119-1222009. 81. Ilzecka J. Serum-soluble receptor for advanced glycation end product levels in patients with amyotrophic lateral sclerosis. Acta Neurol Scand 120: 119–122, 2009.
82.
Inoue KKawahara KBiswas KKAndo KMitsudo KNobuyoshi MMaruyama I. HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaquesCardiovasc Pathol16136-1432007. 82. Inoue K, Kawahara K, Biswas KK, Ando K, Mitsudo K, Nobuyoshi M, and Maruyama I. HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques. Cardiovasc Pathol 16: 136–143, 2007.
83.
Ito NDemarco RAMailliard RBHan JRabinowich HKalinski PStolz DBZeh HJ 3rdLotze MT. Cytolytic cells induce HMGB1 release from melanoma cell linesJ Leukoc Biol8175-832007. 83. Ito N, Demarco RA, Mailliard RB, Han J, Rabinowich H, Kalinski P, Stolz DB, Zeh HJ 3rd, and Lotze MT. Cytolytic cells induce HMGB1 release from melanoma cell lines. J Leukoc Biol 81: 75–83, 2007.
84.
Ivanov SDragoi AMWang XDallacosta CLouten JMusco GSitia GYap GSWan YBiron CABianchi MEWang HChu WM. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNABlood1101970-19812007. 84. Ivanov S, Dragoi AM, Wang X, Dallacosta C, Louten J, Musco G, Sitia G, Yap GS, Wan Y, Biron CA, Bianchi ME, Wang H, and Chu WM. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood 110: 1970–1981, 2007.
85.
Izuishi KTsung AJeyabalan GCritchlow NDLi JTracey KJDemarco RALotze MTFink MPGeller DABilliar TR. Cutting edge: high-mobility group box 1 preconditioning protects against liver ischemia-reperfusion injuryJ Immunol1767154-71582006. 85. Izuishi K, Tsung A, Jeyabalan G, Critchlow ND, Li J, Tracey KJ, Demarco RA, Lotze MT, Fink MP, Geller DA, and Billiar TR. Cutting edge: high-mobility group box 1 preconditioning protects against liver ischemia-reperfusion injury. J Immunol 176: 7154–7158, 2006.
86.
Jalilian CGallant EMBoard PGDulhunty AF. Redox potential and the response of cardiac ryanodine receptors to CLIC-2, a member of the glutathione S-transferase structural familyAntioxid Redox Signal101675-16862008. 86. Jalilian C, Gallant EM, Board PG, and Dulhunty AF. Redox potential and the response of cardiac ryanodine receptors to CLIC-2, a member of the glutathione S-transferase structural family. Antioxid Redox Signal 10: 1675–1686, 2008.
87.
Jantzen HMAdmon ABell SPTjian R. Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteinsNature344830-8361990. 87. Jantzen HM, Admon A, Bell SP, and Tjian R. Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature 344: 830–836, 1990.
88.
Jaulmes AThierry SJanvier BRaymondjean MMarechal V. Activation of sPLA2-IIA and PGE2 production by high mobility group protein B1 in vascular smooth muscle cells sensitized by IL-1betaFASEB J201727-17292006. 88. Jaulmes A, Thierry S, Janvier B, Raymondjean M, and Marechal V. Activation of sPLA2-IIA and PGE2 production by high mobility group protein B1 in vascular smooth muscle cells sensitized by IL-1beta. FASEB J 20: 1727–1729, 2006.
89.
Jayaraman LMoorthy NCMurthy KGManley JLBustin MPrives C. High mobility group protein-1 (HMG-1) is a unique activator of p53Genes Dev12462-4721998. 89. Jayaraman L, Moorthy NC, Murthy KG, Manley JL, Bustin M, and Prives C. High mobility group protein-1 (HMG-1) is a unique activator of p53. Genes Dev 12: 462–472, 1998.
90.
Jiao YWang HCFan SJ. Growth suppression and radiosensitivity increase by HMGB1 in breast cancerActa Pharmacol Sin281957-19672007. 90. Jiao Y, Wang HC, and Fan SJ. Growth suppression and radiosensitivity increase by HMGB1 in breast cancer. Acta Pharmacol Sin 28: 1957–1967, 2007.
91.
Jin XWang LWu HSZhang LWang CYTian YZhang JH. N-acetylcysteine inhibits activation of toll-like receptor 2 and 4 gene expression in the liver and lung after partial hepatic ischemia-reperfusion injury in miceHepatobiliary Pancreat Dis Int6284-2892007. 91. Jin X, Wang L, Wu HS, Zhang L, Wang CY, Tian Y, and Zhang JH. N-acetylcysteine inhibits activation of toll-like receptor 2 and 4 gene expression in the liver and lung after partial hepatic ischemia-reperfusion injury in mice. Hepatobiliary Pancreat Dis Int 6: 284–289, 2007.
92.
Kaczorowski DJNakao AVallabhaneni RMollen KPSugimoto RKohmoto JZuckerbraun BSMcCurry KRBilliar TR. Mechanisms of Toll-like receptor 4 (TLR4)-mediated inflammation after cold ischemia/reperfusion in the heartTransplantation871455-14632009. 92. Kaczorowski DJ, Nakao A, Vallabhaneni R, Mollen KP, Sugimoto R, Kohmoto J, Zuckerbraun BS, McCurry KR, and Billiar TR. Mechanisms of Toll-like receptor 4 (TLR4)-mediated inflammation after cold ischemia/reperfusion in the heart. Transplantation 87: 1455–1463, 2009.
93.
Kalinina NAgrotis AAntropova YDiVitto GKanellakis PKostolias GIlyinskaya OTararak EBobik A. Increased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions: role of activated macrophages and cytokinesArterioscler Thromb Vasc Biol242320-23252004. 93. Kalinina N, Agrotis A, Antropova Y, DiVitto G, Kanellakis P, Kostolias G, Ilyinskaya O, Tararak E, and Bobik A. Increased expression of the DNA-binding cytokine HMGB1 in human atherosclerotic lesions: role of activated macrophages and cytokines. Arterioscler Thromb Vasc Biol 24: 2320–2325, 2004.
94.
Kaneto HKatakami NKawamori DMiyatsuka TSakamoto KMatsuoka TAMatsuhisa MYamasaki Y. Involvement of oxidative stress in the pathogenesis of diabetesAntioxid Redox Signal9355-3662007. 94. Kaneto H, Katakami N, Kawamori D, Miyatsuka T, Sakamoto K, Matsuoka TA, Matsuhisa M, and Yamasaki Y. Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Signal 9: 355–366, 2007.
95.
Kang RTang DSchapiro NELivesey KMFarkas ALoughran PBierhaus ALotze MTZeh HJ. The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survivalCell Death Differ17666-6762010. 95. Kang R, Tang D, Schapiro NE, Livesey KM, Farkas A, Loughran P, Bierhaus A, Lotze MT, and Zeh HJ. The receptor for advanced glycation end products (RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell survival. Cell Death Differ 17: 666–676, 2010.
96.
Kang RTang DYu YWang ZHu TWang HCao L. WAVE1 regulates Bcl-2 localization and phosphorylation in leukemia cellsLeukemia24177-1862010. 96. Kang R, Tang D, Yu Y, Wang Z, Hu T, Wang H, and Cao L. WAVE1 regulates Bcl-2 localization and phosphorylation in leukemia cells. Leukemia 24: 177–186, 2010.
97.
Kanki TWang KCao YBaba MKlionsky DJ. Atg32 is a mitochondrial protein that confers selectivity during mitophagyDev Cell1798-1092009. 97. Kanki T, Wang K, Cao Y, Baba M, and Klionsky DJ. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17: 98–109, 2009.
98.
Karabeyoglu MUnal BBozkurt BDolapci IBilgihan AKarabeyoglu ICengiz O. The effect of ethyl pyruvate on oxidative stress in intestine and bacterial translocation after thermal injuryJ Surg Res14459-632008. 98. Karabeyoglu M, Unal B, Bozkurt B, Dolapci I, Bilgihan A, Karabeyoglu I, and Cengiz O. The effect of ethyl pyruvate on oxidative stress in intestine and bacterial translocation after thermal injury. J Surg Res 144: 59–63, 2008.
99.
Kaushik SCuervo AM. Autophagy as a cell-repair mechanism: activation of chaperone-mediated autophagy during oxidative stressMol Aspects Med27444-4542006. 99. Kaushik S and Cuervo AM. Autophagy as a cell-repair mechanism: activation of chaperone-mediated autophagy during oxidative stress. Mol Aspects Med 27: 444–454, 2006.
100.
Kazama HRicci JEHerndon JMHoppe GGreen DRFerguson TA. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 proteinImmunity2921-322008. 100. Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, and Ferguson TA. Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29: 21–32, 2008.
101.
Khan BVHarrison DGOlbrych MTAlexander RWMedford RM. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cellsProc Natl Acad Sci U S A939114-91191996. 101. Khan BV, Harrison DG, Olbrych MT, Alexander RW, and Medford RM. Nitric oxide regulates vascular cell adhesion molecule 1 gene expression and redox-sensitive transcriptional events in human vascular endothelial cells. Proc Natl Acad Sci U S A 93: 9114–9119, 1996.
102.
Kiffin RBandyopadhyay UCuervo AM. Oxidative stress and autophagyAntioxid Redox Signal8152-1622006. 102. Kiffin R, Bandyopadhyay U, and Cuervo AM. Oxidative stress and autophagy. Antioxid Redox Signal 8: 152–162, 2006.
103.
Kiffin RChristian CKnecht ECuervo AM. Activation of chaperone-mediated autophagy during oxidative stressMol Biol Cell154829-48402004. 103. Kiffin R, Christian C, Knecht E, and Cuervo AM. Activation of chaperone-mediated autophagy during oxidative stress. Mol Biol Cell 15: 4829–4840, 2004.
104.
Kim HSCho IHKim JEShin YJJeon JHKim YYang YMLee KHLee JWLee WJYe SKChung MH. Ethyl pyruvate has an anti-inflammatory effect by inhibiting ROS-dependent STAT signaling in activated microgliaFree Radic Biol Med45950-9632008. 104. Kim HS, Cho IH, Kim JE, Shin YJ, Jeon JH, Kim Y, Yang YM, Lee KH, Lee JW, Lee WJ, Ye SK, and Chung MH. Ethyl pyruvate has an anti-inflammatory effect by inhibiting ROS-dependent STAT signaling in activated microglia. Free Radic Biol Med 45: 950–963, 2008.
105.
Kim JBLim CMYu YMLee JK. Induction and subcellular localization of high-mobility group box-1 (HMGB1) in the postischemic rat brainJ Neurosci Res861125-11312008. 105. Kim JB, Lim CM, Yu YM, and Lee JK. Induction and subcellular localization of high-mobility group box-1 (HMGB1) in the postischemic rat brain. J Neurosci Res 86: 1125–1131, 2008.
106.
Klionsky DJEmr SD. Autophagy as a regulated pathway of cellular degradationScience2901717-17212000. 106. Klionsky DJ and Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 290: 1717–1721, 2000.
107.
Knapp SMuller SDigilio GBonaldi TBianchi MEMusco G. The long acidic tail of high mobility group box 1 (HMGB1) protein forms an extended and flexible structure that interacts with specific residues within and between the HMG boxesBiochemistry4311992-119972004. 107. Knapp S, Muller S, Digilio G, Bonaldi T, Bianchi ME, and Musco G. The long acidic tail of high mobility group box 1 (HMGB1) protein forms an extended and flexible structure that interacts with specific residues within and between the HMG boxes. Biochemistry 43: 11992–11997, 2004.
108.
Kregel KCZhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerationsAm J Physiol Regul Integr Comp Physiol292R18-R362007. 108. Kregel KC and Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292: R18–R36, 2007.
109.
Kruger BKrick SDhillon NLerner SMAmes SBromberg JSLin MWalsh LVella JFischereder MKramer BKColvin RBHeeger PSMurphy BTSchroppel B. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantationProc Natl Acad Sci U S A1063390-33952009. 109. Kruger B, Krick S, Dhillon N, Lerner SM, Ames S, Bromberg JS, Lin M, Walsh L, Vella J, Fischereder M, Kramer BK, Colvin RB, Heeger PS, Murphy BT, and Schroppel B. Donor Toll-like receptor 4 contributes to ischemia and reperfusion injury following human kidney transplantation. Proc Natl Acad Sci U S A 106: 3390–3395, 2009.
110.
Krynetski EYKrynetskaia NFBianchi MEEvans WE. A nuclear protein complex containing high mobility group proteins B1 and B2, heat shock cognate protein 70, ERp60, and glyceraldehyde-3-phosphate dehydrogenase is involved in the cytotoxic response to DNA modified by incorporation of anticancer nucleoside analoguesCancer Res63100-1062003. 110. Krynetski EY, Krynetskaia NF, Bianchi ME, and Evans WE. A nuclear protein complex containing high mobility group proteins B1 and B2, heat shock cognate protein 70, ERp60, and glyceraldehyde-3-phosphate dehydrogenase is involved in the cytotoxic response to DNA modified by incorporation of anticancer nucleoside analogues. Cancer Res 63: 100–106, 2003.
111.
Kusume ASasahira TLuo YIsobe MNakagawa NTatsumoto NFujii KOhmori HKuniyasu H. Suppression of dendritic cells by HMGB1 is associated with lymph node metastasis of human colon cancerPathobiology76155-1622009. 111. Kusume A, Sasahira T, Luo Y, Isobe M, Nakagawa N, Tatsumoto N, Fujii K, Ohmori H, and Kuniyasu H. Suppression of dendritic cells by HMGB1 is associated with lymph node metastasis of human colon cancer. Pathobiology 76: 155–162, 2009.
112.
Lange SSMitchell DLVasquez KM. High mobility group protein B1 enhances DNA repair and chromatin modification after DNA damageProc Natl Acad Sci U S A10510320-103252008. 112. Lange SS, Mitchell DL, and Vasquez KM. High mobility group protein B1 enhances DNA repair and chromatin modification after DNA damage. Proc Natl Acad Sci U S A 105: 10320–10325, 2008.
113.
Lange SSVasquez KM. HMGB1: the jack-of-all-trades protein is a master DNA repair mechanicMol Carcinog48571-5802009. 113. Lange SS and Vasquez KM. HMGB1: the jack-of-all-trades protein is a master DNA repair mechanic. Mol Carcinog 48: 571–580, 2009.
114.
Levy RMMollen KPPrince JMKaczorowski DJVallabhaneni RLiu STracey KJLotze MTHackam DJFink MPVodovotz YBilliar TR. Systemic inflammation and remote organ injury following trauma require HMGB1Am J Physiol Regul Integr Comp Physiol293R1538-R15442007. 114. Levy RM, Mollen KP, Prince JM, Kaczorowski DJ, Vallabhaneni R, Liu S, Tracey KJ, Lotze MT, Hackam DJ, Fink MP, Vodovotz Y, and Billiar TR. Systemic inflammation and remote organ injury following trauma require HMGB1. Am J Physiol Regul Integr Comp Physiol 293: R1538–R1544, 2007.
115.
Li CYLee JSKo YGKim JISeo JS. Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activationJ Biol Chem27525665-256712000. 115. Li CY, Lee JS, Ko YG, Kim JI, and Seo JS. Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem 275: 25665–25671, 2000.
116.
Li JKokkola RTabibzadeh SYang ROchani MQiang XHarris HECzura CJWang HUlloa LWarren HSMoldawer LLFink MPAndersson UTracey KJYang H. Structural basis for the proinflammatory cytokine activity of high mobility group box 1Mol Med937-452003. 116. Li J, Kokkola R, Tabibzadeh S, Yang R, Ochani M, Qiang X, Harris HE, Czura CJ, Wang H, Ulloa L, Warren HS, Moldawer LL, Fink MP, Andersson U, Tracey KJ, and Yang H. Structural basis for the proinflammatory cytokine activity of high mobility group box 1. Mol Med 9: 37–45, 2003.
117.
Li WAshok MLi JYang HSama AEWang H. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1PLoS ONE2e11532007. 117. Li W, Ashok M, Li J, Yang H, Sama AE, and Wang H. A major ingredient of green tea rescues mice from lethal sepsis partly by inhibiting HMGB1. PLoS ONE 2: e1153, 2007.
118.
Li WFebbraio MReddy SPYu DYYamamoto MSilverstein RL. CD36 participates in a signaling pathway that regulates ROS formation in murine VSMCsJ Clin Invest1203996-40062010. 118. Li W, Febbraio M, Reddy SP, Yu DY, Yamamoto M, and Silverstein RL. CD36 participates in a signaling pathway that regulates ROS formation in murine VSMCs. J Clin Invest 120: 3996–4006, 2010.
119.
Li WSama AEWang H. Role of HMGB1 in cardiovascular diseasesCurr Opin Pharmacol6130-1352006. 119. Li W, Sama AE, and Wang H. Role of HMGB1 in cardiovascular diseases. Curr Opin Pharmacol 6: 130–135, 2006.
120.
Liang XChavez ARSchapiro NELoughran PThorne SHAmoscato AAZeh HJBeer-Stolz DLotze MTde Vera ME. Ethyl pyruvate administration inhibits hepatic tumor growthJ Leukoc Biol86599-6072009. 120. Liang X, Chavez AR, Schapiro NE, Loughran P, Thorne SH, Amoscato AA, Zeh HJ, Beer-Stolz D, Lotze MT, and de Vera ME. Ethyl pyruvate administration inhibits hepatic tumor growth. J Leukoc Biol 86: 599–607, 2009.
121.
Lim JHKwon TK. Curcumin inhibits phorbol myristate acetate (PMA)-induced MCP-1 expression by inhibiting ERK and NF-kappaB transcriptional activityFood Chem Toxicol4847-522010. 121. Lim JH and Kwon TK. Curcumin inhibits phorbol myristate acetate (PMA)-induced MCP-1 expression by inhibiting ERK and NF-kappaB transcriptional activity. Food Chem Toxicol 48: 47–52, 2010.
122.
Limana FGermani AZacheo AKajstura JDi Carlo ABorsellino GLeoni OPalumbo RBattistini LRastaldo RMuller SPompilio GAnversa PBianchi MECapogrossi MC. Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiationCirc Res97e73-e832005. 122. Limana F, Germani A, Zacheo A, Kajstura J, Di Carlo A, Borsellino G, Leoni O, Palumbo R, Battistini L, Rastaldo R, Muller S, Pompilio G, Anversa P, Bianchi ME, and Capogrossi MC. Exogenous high-mobility group box 1 protein induces myocardial regeneration after infarction via enhanced cardiac C-kit+ cell proliferation and differentiation. Circ Res 97: e73–e83, 2005.
123.
Lin MTBeal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseasesNature443787-7952006. 123. Lin MT and Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443: 787–795, 2006.
124.
Lindersson EKHojrup PGai WPLocker DMartin DJensen PH. Alpha-Synuclein filaments bind the transcriptional regulator HMGB-1Neuroreport152735-27392004. 124. Lindersson EK, Hojrup P, Gai WP, Locker D, Martin D, and Jensen PH. Alpha-Synuclein filaments bind the transcriptional regulator HMGB-1. Neuroreport 15: 2735–2739, 2004.
125.
Liu GWang JPark YJTsuruta YLorne EFZhao XAbraham E. High mobility group protein-1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserineJ Immunol1814240-42462008. 125. Liu G, Wang J, Park YJ, Tsuruta Y, Lorne EF, Zhao X, and Abraham E. High mobility group protein-1 inhibits phagocytosis of apoptotic neutrophils through binding to phosphatidylserine. J Immunol 181: 4240–4246, 2008.
126.
Liu JJSong CWYue YDuan CGYang JHe THe YZ. Quercetin inhibits LPS-induced delay in spontaneous apoptosis and activation of neutrophilsInflamm Res54500-5072005. 126. Liu JJ, Song CW, Yue Y, Duan CG, Yang J, He T, and He YZ. Quercetin inhibits LPS-induced delay in spontaneous apoptosis and activation of neutrophils. Inflamm Res 54: 500–507, 2005.
127.
Liu YPrasad RBeard WAHou EWHorton JKMcMurray CTWilson SH. Coordination between polymerase beta and FEN1 can modulate CAG repeat expansionJ Biol Chem28428352-283662009. 127. Liu Y, Prasad R, Beard WA, Hou EW, Horton JK, McMurray CT, and Wilson SH. Coordination between polymerase beta and FEN1 can modulate CAG repeat expansion. J Biol Chem 284: 28352–28366, 2009.
128.
Liu YPrasad RWilson SH. HMGB1: roles in base excision repair and related functionBiochim Biophys Acta1799119-1302010. 128. Liu Y, Prasad R, and Wilson SH. HMGB1: roles in base excision repair and related function. Biochim Biophys Acta 1799: 119–130, 2010.
129.
Livesey KMTang DZeh HJLotze MT. Autophagy inhibition in combination cancer treatmentCurr Opin Investig Drugs101269-12792009. 129. Livesey KM, Tang D, Zeh HJ, and Lotze MT. Autophagy inhibition in combination cancer treatment. Curr Opin Investig Drugs 10: 1269–1279, 2009.
130.
Livesey KMTang DZeh HJLotze MT. Not just nuclear proteins: “novel” autophagy cancer treatment targets—p53 and HMGB1Curr Opin Investig Drugs91259-12632008. 130. Livesey KM, Tang D, Zeh HJ, and Lotze MT. Not just nuclear proteins: “novel” autophagy cancer treatment targets—p53 and HMGB1. Curr Opin Investig Drugs 9: 1259–1263, 2008.
131.
Lotze MTDeisseroth ARubartelli A. Damage associated molecular pattern moleculesClin Immunol1241-42007. 131. Lotze MT, Deisseroth A, and Rubartelli A. Damage associated molecular pattern molecules. Clin Immunol 124: 1–4, 2007.
132.
Lotze MTDeMarco RA. Dealing with death: HMGB1 as a novel target for cancer therapyCurr Opin Investig Drugs41405-14092003. 132. Lotze MT and DeMarco RA. Dealing with death: HMGB1 as a novel target for cancer therapy. Curr Opin Investig Drugs 4: 1405–1409, 2003.
133.
Lotze MTTracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenalNat Rev Immunol5331-3422005. 133. Lotze MT and Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5: 331–342, 2005.
134.
Lotze MTZeh HJRubartelli ASparvero LJAmoscato AAWashburn NRDevera MELiang XTor MBilliar T. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunityImmunol Rev22060-812007. 134. Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, Devera ME, Liang X, Tor M, and Billiar T. The grateful dead: damage-associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220: 60–81, 2007.
135.
Manfredi AACapobianco AEsposito ADe Cobelli FCanu TMonno ARaucci ASanvito FDoglioni CNawroth PPBierhaus ABianchi MERovere-Querini PDel Maschio A. Maturing dendritic cells depend on RAGE for in vivo homing to lymph nodesJ Immunol1802270-22752008. 135. Manfredi AA, Capobianco A, Esposito A, De Cobelli F, Canu T, Monno A, Raucci A, Sanvito F, Doglioni C, Nawroth PP, Bierhaus A, Bianchi ME, Rovere-Querini P, and Del Maschio A. Maturing dendritic cells depend on RAGE for in vivo homing to lymph nodes. J Immunol 180: 2270–2275, 2008.
136.
Manjeet KRGhosh B. Quercetin inhibits LPS-induced nitric oxide and tumor necrosis factor-alpha production in murine macrophagesInt J Immunopharmacol21435-4431999. 136. Manjeet KR and Ghosh B. Quercetin inhibits LPS-induced nitric oxide and tumor necrosis factor-alpha production in murine macrophages. Int J Immunopharmacol 21: 435–443, 1999.
137.
Maret W. Zinc coordination environments in proteins as redox sensors and signal transducersAntioxid Redox Signal81419-14412006. 137. Maret W. Zinc coordination environments in proteins as redox sensors and signal transducers. Antioxid Redox Signal 8: 1419–1441, 2006.
138.
Maroso MBalosso SRavizza TLiu JAronica EIyer AMRossetti CMolteni MCasalgrandi MManfredi AABianchi MEVezzani A. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizuresNat Med16413-4192010. 138. Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M, Casalgrandi M, Manfredi AA, Bianchi ME, and Vezzani A. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med 16: 413–419, 2010.
139.
Massullo PDruhan LJBunnell BAHunter MGRobinson JMMarsh CBAvalos BR. Aberrant subcellular targeting of the G185R neutrophil elastase mutant associated with severe congenital neutropenia induces premature apoptosis of differentiating promyelocytesBlood1053397-34042005. 139. Massullo P, Druhan LJ, Bunnell BA, Hunter MG, Robinson JM, Marsh CB, and Avalos BR. Aberrant subcellular targeting of the G185R neutrophil elastase mutant associated with severe congenital neutropenia induces premature apoptosis of differentiating promyelocytes. Blood 105: 3397–3404, 2005.
140.
Massullo PSumoza-Toledo ABhagat HPartida-Sanchez S. TRPM channels, calcium and redox sensors during innate immune responsesSemin Cell Dev Biol17654-6662006. 140. Massullo P, Sumoza-Toledo A, Bhagat H, and Partida-Sanchez S. TRPM channels, calcium and redox sensors during innate immune responses. Semin Cell Dev Biol 17: 654–666, 2006.
141.
Matsuoka NItoh TWatarai HSekine-Kondo ENagata NOkamoto KMera TYamamoto HYamada SMaruyama ITaniguchi MYasunami Y. High-mobility group box 1 is involved in the initial events of early loss of transplanted islets in miceJ Clin Invest120735-7432010. 141. Matsuoka N, Itoh T, Watarai H, Sekine-Kondo E, Nagata N, Okamoto K, Mera T, Yamamoto H, Yamada S, Maruyama I, Taniguchi M, and Yasunami Y. High-mobility group box 1 is involved in the initial events of early loss of transplanted islets in mice. J Clin Invest 120: 735–743, 2010.
142.
McKinney KPrives C. Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 proteinMol Cell Biol226797-68082002. 142. McKinney K and Prives C. Efficient specific DNA binding by p53 requires both its central and C-terminal domains as revealed by studies with high-mobility group 1 protein. Mol Cell Biol 22: 6797–6808, 2002.
143.
Meissner FMolawi KZychlinsky A. Superoxide dismutase 1 regulates caspase-1 and endotoxic shockNat Immunol9866-8722008. 143. Meissner F, Molawi K, and Zychlinsky A. Superoxide dismutase 1 regulates caspase-1 and endotoxic shock. Nat Immunol 9: 866–872, 2008.
144.
Melki MTSaidi HDufour AOlivo-Marin JCGougeon ML. Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk—a pivotal role of HMGB1PLoS Pathog6e10008622010. 144. Melki MT, Saidi H, Dufour A, Olivo-Marin JC, and Gougeon ML. Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk—a pivotal role of HMGB1. PLoS Pathog 6: e1000862, 2010.
145.
Melloni ESparatore BPatrone MPessino APassalacqua MPontremoli S. Extracellular release of the “differentiation enhancing factor,” a HMG1 protein type, is an early step in murine erythroleukemia cell differentiationFEBS Lett368466-4701995. 145. Melloni E, Sparatore B, Patrone M, Pessino A, Passalacqua M, and Pontremoli S. Extracellular release of the “differentiation enhancing factor,” a HMG1 protein type, is an early step in murine erythroleukemia cell differentiation. FEBS Lett 368: 466–470, 1995.
146.
Meng XHarken AH. The interaction between Hsp70 and TNF-alpha expression: a novel mechanism for protection of the myocardium against post-injury depressionShock17345-3532002. 146. Meng X and Harken AH. The interaction between Hsp70 and TNF-alpha expression: a novel mechanism for protection of the myocardium against post-injury depression. Shock 17: 345–353, 2002.
147.
Messmer DYang HTelusma GKnoll FLi JMessmer BTracey KJChiorazzi N. High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarizationJ Immunol173307-3132004. 147. Messmer D, Yang H, Telusma G, Knoll F, Li J, Messmer B, Tracey KJ, and Chiorazzi N. High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J Immunol 173: 307–313, 2004.
148.
Mittal DSaccheri FVenereau EPusterla TBianchi MERescigno M. TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cellsEMBO J292242-22522010. 148. Mittal D, Saccheri F, Venereau E, Pusterla T, Bianchi ME, and Rescigno M. TLR4-mediated skin carcinogenesis is dependent on immune and radioresistant cells. EMBO J 29: 2242–2252, 2010.
149.
Monastyrska IRieter EKlionsky DJReggiori F. Multiple roles of the cytoskeleton in autophagyBiol Rev Camb Philos Soc84431-4482009. 149. Monastyrska I, Rieter E, Klionsky DJ, and Reggiori F. Multiple roles of the cytoskeleton in autophagy. Biol Rev Camb Philos Soc 84: 431–448, 2009.
150.
Muller SScaffidi PDegryse BBonaldi TRonfani LAgresti ABeltrame MBianchi ME. New EMBO members' review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signalEMBO J204337-43402001. 150. Muller S, Scaffidi P, Degryse B, Bonaldi T, Ronfani L, Agresti A, Beltrame M, and Bianchi ME. New EMBO members' review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J 20: 4337–4340, 2001.
151.
Nicholas SASumbayev VV. The role of redox-dependent mechanisms in the downregulation of ligand-induced Toll-like receptors 7, 8 and 4-mediated HIF-1alpha prolyl hydroxylationImmunol Cell Biol88180-1862010. 151. Nicholas SA and Sumbayev VV. The role of redox-dependent mechanisms in the downregulation of ligand-induced Toll-like receptors 7, 8 and 4-mediated HIF-1alpha prolyl hydroxylation. Immunol Cell Biol 88: 180–186, 2010.
152.
Noble CGDong JMManser ESong H. Bcl-xL and UVRAG cause a monomer-dimer switch in Beclin1J Biol Chem28326274-262822008. 152. Noble CG, Dong JM, Manser E, and Song H. Bcl-xL and UVRAG cause a monomer-dimer switch in Beclin1. J Biol Chem 283: 26274–26282, 2008.
153.
Ohndorf UMRould MAHe QPabo COLippard SJ. Basis for recognition of cisplatin-modified DNA by high-mobility-group proteinsNature399708-7121999. 153. Ohndorf UM, Rould MA, He Q, Pabo CO, and Lippard SJ. Basis for recognition of cisplatin-modified DNA by high-mobility-group proteins. Nature 399: 708–712, 1999.
154.
Oozawa SMori SKanke TTakahashi HLiu KTomono YAsanuma MMiyazaki INishibori MSano S. Effects of HMGB1 on ischemia-reperfusion injury in the rat heartCirc J721178-11842008. 154. Oozawa S, Mori S, Kanke T, Takahashi H, Liu K, Tomono Y, Asanuma M, Miyazaki I, Nishibori M, and Sano S. Effects of HMGB1 on ischemia-reperfusion injury in the rat heart. Circ J 72: 1178–1184, 2008.
155.
Orlova VVChoi EYXie CChavakis EBierhaus AIhanus EBallantyne CMGahmberg CGBianchi MENawroth PPChavakis T. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrinEMBO J261129-11392007. 155. Orlova VV, Choi EY, Xie C, Chavakis E, Bierhaus A, Ihanus E, Ballantyne CM, Gahmberg CG, Bianchi ME, Nawroth PP, and Chavakis T. A novel pathway of HMGB1-mediated inflammatory cell recruitment that requires Mac-1-integrin. EMBO J 26: 1129–1139, 2007.
156.
Outten FWTheil EC. Iron-based redox switches in biologyAntioxid Redox Signal111029-10462009. 156. Outten FW and Theil EC. Iron-based redox switches in biology. Antioxid Redox Signal 11: 1029–1046, 2009.
157.
Palumbo RDe Marchis FPusterla TConti AAlessio MBianchi ME. Src family kinases are necessary for cell migration induced by extracellular HMGB1J Leukoc Biol86617-6232009. 157. Palumbo R, De Marchis F, Pusterla T, Conti A, Alessio M, and Bianchi ME. Src family kinases are necessary for cell migration induced by extracellular HMGB1. J Leukoc Biol 86: 617–623, 2009.
158.
Palumbo RGalvez BGPusterla TDe Marchis FCossu GMarcu KBBianchi ME. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-{kappa}B activationJ Cell Biol17933-402007. 158. Palumbo R, Galvez BG, Pusterla T, De Marchis F, Cossu G, Marcu KB, and Bianchi ME. Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-{kappa}B activation. J Cell Biol 179: 33–40, 2007.
159.
Palumbo RSampaolesi MDe Marchis FTonlorenzi RColombetti SMondino ACossu GBianchi ME. Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferationJ Cell Biol164441-4492004. 159. Palumbo R, Sampaolesi M, De Marchis F, Tonlorenzi R, Colombetti S, Mondino A, Cossu G, and Bianchi ME. Extracellular HMGB1, a signal of tissue damage, induces mesoangioblast migration and proliferation. J Cell Biol 164: 441–449, 2004.
160.
Pardo MBudick-Harmelin NTirosh BTirosh O. Antioxidant defense in hepatic ischemia-reperfusion injury is regulated by damage-associated molecular pattern signal moleculesFree Radic Biol Med451073-10832008. 160. Pardo M, Budick-Harmelin N, Tirosh B, and Tirosh O. Antioxidant defense in hepatic ischemia-reperfusion injury is regulated by damage-associated molecular pattern signal molecules. Free Radic Biol Med 45: 1073–1083, 2008.
161.
Park HSKim SRLee YC. Impact of oxidative stress on lung diseasesRespirology1427-382009. 161. Park HS, Kim SR, and Lee YC. Impact of oxidative stress on lung diseases. Respirology 14: 27–38, 2009.
162.
Passalacqua MPatrone MPicotti GBDel Rio MSparatore BMelloni EPontremoli S. Stimulated astrocytes release high-mobility group 1 protein, an inducer of LAN-5 neuroblastoma cell differentiationNeuroscience821021-10281998. 162. Passalacqua M, Patrone M, Picotti GB, Del Rio M, Sparatore B, Melloni E, and Pontremoli S. Stimulated astrocytes release high-mobility group 1 protein, an inducer of LAN-5 neuroblastoma cell differentiation. Neuroscience 82: 1021–1028, 1998.
163.
Pattingre STassa AQu XGaruti RLiang XHMizushima NPacker MSchneider MDLevine B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagyCell122927-9392005. 163. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, and Levine B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122: 927–939, 2005.
164.
Peter ME. ROS eliminate dangerImmunity291-22008. 164. Peter ME. ROS eliminate danger. Immunity 29: 1–2, 2008.
165.
Popovic PJDeMarco RLotze MTWinikoff SEBartlett DLKrieg AMGuo ZSBrown CKTracey KJZeh HJ 3rd. High mobility group B1 protein suppresses the human plasmacytoid dendritic cell response to TLR9 agonistsJ Immunol1778701-87072006. 165. Popovic PJ, DeMarco R, Lotze MT, Winikoff SE, Bartlett DL, Krieg AM, Guo ZS, Brown CK, Tracey KJ, and Zeh HJ 3rd. High mobility group B1 protein suppresses the human plasmacytoid dendritic cell response to TLR9 agonists. J Immunol 177: 8701–8707, 2006.
166.
Porto APalumbo RPieroni MAprigliano GChiesa RSanvito FMaseri ABianchi ME. Smooth muscle cells in human atherosclerotic plaques secrete and proliferate in response to high mobility group box 1 proteinFASEB J202565-25662006. 166. Porto A, Palumbo R, Pieroni M, Aprigliano G, Chiesa R, Sanvito F, Maseri A, and Bianchi ME. Smooth muscle cells in human atherosclerotic plaques secrete and proliferate in response to high mobility group box 1 protein. FASEB J 20: 2565–2566, 2006.
167.
Prasad RLiu YDeterding LJPoltoratsky VPKedar PSHorton JKKanno SAsagoshi KHou EWKhodyreva SNLavrik OITomer KBYasui AWilson SH. HMGB1 is a cofactor in mammalian base excision repairMol Cell27829-8412007. 167. Prasad R, Liu Y, Deterding LJ, Poltoratsky VP, Kedar PS, Horton JK, Kanno S, Asagoshi K, Hou EW, Khodyreva SN, Lavrik OI, Tomer KB, Yasui A, and Wilson SH. HMGB1 is a cofactor in mammalian base excision repair. Mol Cell 27: 829–841, 2007.
168.
Qi MLTagawa KEnokido YYoshimura NWada YWatase KIshiura SKanazawa IBotas JSaitoe MWanker EEOkazawa H. Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseasesNat Cell Biol9402-4142007. 168. Qi ML, Tagawa K, Enokido Y, Yoshimura N, Wada Y, Watase K, Ishiura S, Kanazawa I, Botas J, Saitoe M, Wanker EE, and Okazawa H. Proteome analysis of soluble nuclear proteins reveals that HMGB1/2 suppress genotoxic stress in polyglutamine diseases. Nat Cell Biol 9: 402–414, 2007.
169.
Qin SWang HYuan RLi HOchani MOchani KRosas-Ballina MCzura CJHuston JMMiller ELin XSherry BKumar ALarosa GNewman WTracey KJYang H. Role of HMGB1 in apoptosis-mediated sepsis lethalityJ Exp Med2031637-16422006. 169. Qin S, Wang H, Yuan R, Li H, Ochani M, Ochani K, Rosas-Ballina M, Czura CJ, Huston JM, Miller E, Lin X, Sherry B, Kumar A, Larosa G, Newman W, Tracey KJ, and Yang H. Role of HMGB1 in apoptosis-mediated sepsis lethality. J Exp Med 203: 1637–1642, 2006.
170.
Qiu JNishimura MWang YSims JRQiu SSavitz SISalomone SMoskowitz MA. Early release of HMGB-1 from neurons after the onset of brain ischemiaJ Cereb Blood Flow Metab28927-9382008. 170. Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, Salomone S, and Moskowitz MA. Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab 28: 927–938, 2008.
171.
Qiu JXu JZheng YWei YZhu XLo EHMoskowitz MASims JR. High-mobility group box 1 promotes metalloproteinase-9 upregulation through Toll-like receptor 4 after cerebral ischemiaStroke412077-20822010. 171. Qiu J, Xu J, Zheng Y, Wei Y, Zhu X, Lo EH, Moskowitz MA, and Sims JR. High-mobility group box 1 promotes metalloproteinase-9 upregulation through Toll-like receptor 4 after cerebral ischemia. Stroke 41: 2077–2082, 2010.
172.
Raucci APalumbo RBianchi ME. HMGB1: a signal of necrosisAutoimmunity40285-2892007. 172. Raucci A, Palumbo R, and Bianchi ME. HMGB1: a signal of necrosis. Autoimmunity 40: 285–289, 2007.
173.
Rauvala HRouhiainen A. RAGE as a receptor of HMGB1 (Amphoterin): roles in health and diseaseCurr Mol Med7725-7342007. 173. Rauvala H and Rouhiainen A. RAGE as a receptor of HMGB1 (Amphoterin): roles in health and disease. Curr Mol Med 7: 725–734, 2007.
174.
Reggiori FMonastyrska IShintani TKlionsky DJ. The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiaeMol Biol Cell165843-58562005. 174. Reggiori F, Monastyrska I, Shintani T, and Klionsky DJ. The actin cytoskeleton is required for selective types of autophagy, but not nonspecific autophagy, in the yeast Saccharomyces cerevisiae. Mol Biol Cell 16: 5843–5856, 2005.
175.
Rendon-Mitchell BOchani MLi JHan JWang HYang HSusarla SCzura CMitchell RAChen GSama AETracey KJ. IFN-gamma induces high mobility group box 1 protein release partly through a TNF-dependent mechanismJ Immunol1703890-38972003. 175. Rendon-Mitchell B, Ochani M, Li J, Han J, Wang H, Yang H, Susarla S, Czura C, Mitchell RA, Chen G, Sama AE, and Tracey KJ. IFN-gamma induces high mobility group box 1 protein release partly through a TNF-dependent mechanism. J Immunol 170: 3890–3897, 2003.
176.
Riuzzi FSorci GDonato R. The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness. Functional inactivation of RAGE in L6 myoblasts results in tumor formation in vivoJ Biol Chem2818242-82532006. 176. Riuzzi F, Sorci G, and Donato R. The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness. Functional inactivation of RAGE in L6 myoblasts results in tumor formation in vivo. J Biol Chem 281: 8242–8253, 2006.
177.
Riuzzi FSorci GDonato R. RAGE expression in rhabdomyosarcoma cells results in myogenic differentiation and reduced proliferation, migration, invasiveness, and tumor growthAm J Pathol171947-9612007. 177. Riuzzi F, Sorci G, and Donato R. RAGE expression in rhabdomyosarcoma cells results in myogenic differentiation and reduced proliferation, migration, invasiveness, and tumor growth. Am J Pathol 171: 947–961, 2007.
178.
Rocksen DLilliehook BLarsson RJohansson TBucht A. Differential anti-inflammatory and anti-oxidative effects of dexamethasone and N-acetylcysteine in endotoxin-induced lung inflammationClin Exp Immunol122249-2562000. 178. Rocksen D, Lilliehook B, Larsson R, Johansson T, and Bucht A. Differential anti-inflammatory and anti-oxidative effects of dexamethasone and N-acetylcysteine in endotoxin-induced lung inflammation. Clin Exp Immunol 122: 249–256, 2000.
179.
Rong YDistelhorst CW. Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosisAnnu Rev Physiol7073-912008. 179. Rong Y and Distelhorst CW. Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Annu Rev Physiol 70: 73–91, 2008.
180.
Rossini AZacheo AMocini DTotta PFacchiano ACastoldi RSordini PPompilio GAbeni DCapogrossi MCGermani A. HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cellsJ Mol Cell Cardiol44683-6932008. 180. Rossini A, Zacheo A, Mocini D, Totta P, Facchiano A, Castoldi R, Sordini P, Pompilio G, Abeni D, Capogrossi MC, and Germani A. HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells. J Mol Cell Cardiol 44: 683–693, 2008.
181.
Rouhiainen AKuja-Panula JWilkman EPakkanen JStenfors JTuominen RKLepantalo MCarpen OParkkinen JRauvala H. Regulation of monocyte migration by amphoterin (HMGB1)Blood1041174-11822004. 181. Rouhiainen A, Kuja-Panula J, Wilkman E, Pakkanen J, Stenfors J, Tuominen RK, Lepantalo M, Carpen O, Parkkinen J, and Rauvala H. Regulation of monocyte migration by amphoterin (HMGB1). Blood 104: 1174–1182, 2004.
182.
Rovere-Querini PCapobianco AScaffidi PValentinis BCatalanotti FGiazzon MDumitriu IEMuller SIannacone MTraversari CBianchi MEManfredi AA. HMGB1 is an endogenous immune adjuvant released by necrotic cellsEMBO Rep5825-8302004. 182. Rovere-Querini P, Capobianco A, Scaffidi P, Valentinis B, Catalanotti F, Giazzon M, Dumitriu IE, Muller S, Iannacone M, Traversari C, Bianchi ME, and Manfredi AA. HMGB1 is an endogenous immune adjuvant released by necrotic cells. EMBO Rep 5: 825–830, 2004.
183.
Rubartelli ALotze MT. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redoxTrends Immunol28429-4362007. 183. Rubartelli A and Lotze MT. Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 28: 429–436, 2007.
184.
Rubartelli ASitia R. Stress as an intercellular signal: the emergence of stress associated molecular patterns (SAMP)Antioxid Redox Signal112621-26292009. 184. Rubartelli A and Sitia R. Stress as an intercellular signal: the emergence of stress associated molecular patterns (SAMP). Antioxid Redox Signal 11: 2621–2629, 2009.
185.
Sahu DDebnath PTakayama YIwahara J. Redox properties of the A-domain of the HMGB1 proteinFEBS Lett5823973-39782008. 185. Sahu D, Debnath P, Takayama Y, and Iwahara J. Redox properties of the A-domain of the HMGB1 protein. FEBS Lett 582: 3973–3978, 2008.
186.
Samuhasaneeto SThong-Ngam DKulaputana OSuyasunanont DKlaikeaw N. Curcumin decreased oxidative stress, inhibited NF-kappaB activation, and improved liver pathology in ethanol-induced liver injury in ratsJ Biomed Biotechnol20099819632009. 186. Samuhasaneeto S, Thong-Ngam D, Kulaputana O, Suyasunanont D, and Klaikeaw N. Curcumin decreased oxidative stress, inhibited NF-kappaB activation, and improved liver pathology in ethanol-induced liver injury in rats. J Biomed Biotechnol 2009: 981963, 2009.
187.
Sandoval HThiagarajan PDasgupta SKSchumacher APrchal JTChen MWang J. Essential role for Nix in autophagic maturation of erythroid cellsNature454232-2352008. 187. Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, and Wang J. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454: 232–235, 2008.
188.
Sappington PLYang RYang HTracey KJDelude RLFink MP. HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in miceGastroenterology123790-8022002. 188. Sappington PL, Yang R, Yang H, Tracey KJ, Delude RL, and Fink MP. HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology 123: 790–802, 2002.
189.
Sarsour EHKumar MGChaudhuri LKalen ALGoswami PC. Redox control of the cell cycle in health and diseaseAntioxid Redox Signal112985-30112009. 189. Sarsour EH, Kumar MG, Chaudhuri L, Kalen AL, and Goswami PC. Redox control of the cell cycle in health and disease. Antioxid Redox Signal 11: 2985–3011, 2009.
190.
Scaffidi PMisteli TBianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammationNature418191-1952002. 190. Scaffidi P, Misteli T, and Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418: 191–195, 2002.
191.
Schafer FQBuettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione coupleFree Radic Biol Med301191-12122001. 191. Schafer FQ and Buettner GR. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30: 1191–1212, 2001.
192.
Scherz-Shouval RElazar Z. ROS, mitochondria and the regulation of autophagyTrends Cell Biol17422-4272007. 192. Scherz-Shouval R and Elazar Z. ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17: 422–427, 2007.
193.
Scherz-Shouval RShvets EFass EShorer HGil LElazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4EMBO J261749-17602007. 193. Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, and Elazar Z. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26: 1749–1760, 2007.
194.
Schulze PCLee RT. Oxidative stress and atherosclerosisCurr Atheroscler Rep7242-2482005. 194. Schulze PC and Lee RT. Oxidative stress and atherosclerosis. Curr Atheroscler Rep 7: 242–248, 2005.
195.
Schwertassek UBalmer YGutscher MWeingarten LPreuss MEngelhard JWinkler MDick TP. Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin-1EMBO J263086-30972007. 195. Schwertassek U, Balmer Y, Gutscher M, Weingarten L, Preuss M, Engelhard J, Winkler M, and Dick TP. Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin-1. EMBO J 26: 3086–3097, 2007.
196.
Semino CAngelini GPoggi ARubartelli A. NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1Blood106609-6162005. 196. Semino C, Angelini G, Poggi A, and Rubartelli A. NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood 106: 609–616, 2005.
197.
Sevier CSKaiser CA. Formation and transfer of disulphide bonds in living cellsNat Rev Mol Cell Biol3836-8472002. 197. Sevier CS and Kaiser CA. Formation and transfer of disulphide bonds in living cells. Nat Rev Mol Cell Biol 3: 836–847, 2002.
198.
Shaikhali JHeiber ISeidel TStroher EHiltscher HBirkmann SDietz KJBaier M. The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymesBMC Plant Biol8482008. 198. Shaikhali J, Heiber I, Seidel T, Stroher E, Hiltscher H, Birkmann S, Dietz KJ, and Baier M. The redox-sensitive transcription factor Rap2.4a controls nuclear expression of 2-Cys peroxiredoxin A and other chloroplast antioxidant enzymes. BMC Plant Biol 8: 48, 2008.
199.
Sharma PChakraborty RWang LMin BTremblay MLKawahara TLambeth JDHaque SJ. Redox regulation of interleukin-4 signalingImmunity29551-5642008. 199. Sharma P, Chakraborty R, Wang L, Min B, Tremblay ML, Kawahara T, Lambeth JD, and Haque SJ. Redox regulation of interleukin-4 signaling. Immunity 29: 551–564, 2008.
200.
Shukla PKKhanna VKKhan MYSrimal RC. Protective effect of curcumin against lead neurotoxicity in ratHum Exp Toxicol22653-6582003. 200. Shukla PK, Khanna VK, Khan MY, and Srimal RC. Protective effect of curcumin against lead neurotoxicity in rat. Hum Exp Toxicol 22: 653–658, 2003.
201.
Simon HUHaj-Yehia ALevi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis inductionApoptosis5415-4182000. 201. Simon HU, Haj-Yehia A, and Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5: 415–418, 2000.
202.
Soderberg ABarral AMSoderstrom MSander BRosen A. Redox-signaling transmitted in trans to neighboring cells by melanoma-derived TNF-containing exosomesFree Radic Biol Med4390-992007. 202. Soderberg A, Barral AM, Soderstrom M, Sander B, and Rosen A. Redox-signaling transmitted in trans to neighboring cells by melanoma-derived TNF-containing exosomes. Free Radic Biol Med 43: 90–99, 2007.
203.
Soro-Paavonen AWatson AMLi JPaavonen KKoitka ACalkin ACBarit DCoughlan MTDrew BGLancaster GIThomas MForbes JMNawroth PPBierhaus ACooper MEJandeleit-Dahm KA. Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetesDiabetes572461-24692008. 203. Soro-Paavonen A, Watson AM, Li J, Paavonen K, Koitka A, Calkin AC, Barit D, Coughlan MT, Drew BG, Lancaster GI, Thomas M, Forbes JM, Nawroth PP, Bierhaus A, Cooper ME, and Jandeleit-Dahm KA. Receptor for advanced glycation end products (RAGE) deficiency attenuates the development of atherosclerosis in diabetes. Diabetes 57: 2461–2469, 2008.
204.
Sparatore BPatrone MPassalacqua MPedrazzi MGaggero DPontremoli SMelloni E. Extracellular processing of amphoterin generates a peptide active on erythroleukaemia cell differentiationBiochem J357569-5742001. 204. Sparatore B, Patrone M, Passalacqua M, Pedrazzi M, Gaggero D, Pontremoli S, and Melloni E. Extracellular processing of amphoterin generates a peptide active on erythroleukaemia cell differentiation. Biochem J 357: 569–574, 2001.
205.
Sparatore BPedrazzi MPassalacqua MGaggero DPatrone MPontremoli SMelloni E. Stimulation of erythroleukaemia cell differentiation by extracellular high-mobility group-box protein 1 is independent of the receptor for advanced glycation end-productsBiochem J363529-5352002. 205. Sparatore B, Pedrazzi M, Passalacqua M, Gaggero D, Patrone M, Pontremoli S, and Melloni E. Stimulation of erythroleukaemia cell differentiation by extracellular high-mobility group-box protein 1 is independent of the receptor for advanced glycation end-products. Biochem J 363: 529–535, 2002.
206.
Sparvero LJAsafu-Adjei DKang RTang DAmin NIm JRutledge RLin BAmoscato AAZeh HJLotze MT. RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammationJ Transl Med7172009. 206. Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, Rutledge R, Lin B, Amoscato AA, Zeh HJ, and Lotze MT. RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med 7: 17, 2009.
207.
Stott KWatson MHowe FSGrossmann JGThomas JO. Tail-mediated collapse of HMGB1 is dynamic and occurs via differential binding of the acidic tail to the A and B domainsJ Mol Biol403706-7222010. 207. Stott K, Watson M, Howe FS, Grossmann JG, and Thomas JO. Tail-mediated collapse of HMGB1 is dynamic and occurs via differential binding of the acidic tail to the A and B domains. J Mol Biol 403: 706–722, 2010.
208.
Stros MMuselikova-Polanska EPospisilova SStrauss F. High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loopsBiochemistry437215-72252004. 208. Stros M, Muselikova-Polanska E, Pospisilova S, and Strauss F. High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops. Biochemistry 43: 7215–7225, 2004.
209.
Stros MOzaki TBacikova AKageyama HNakagawara A. HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoterJ Biol Chem2777157-71642002. 209. Stros M, Ozaki T, Bacikova A, Kageyama H, and Nakagawara A. HMGB1 and HMGB2 cell-specifically down-regulate the p53- and p73-dependent sequence-specific transactivation from the human Bax gene promoter. J Biol Chem 277: 7157–7164, 2002.
210.
Stumbo ACCortez ERodrigues CAHenriques MGPorto LCBarbosa HSCarvalho L. Mitochondrial localization of non-histone protein HMGB1 during human endothelial cell-Toxoplasma gondii infectionCell Biol Int32235-2382008. 210. Stumbo AC, Cortez E, Rodrigues CA, Henriques MG, Porto LC, Barbosa HS, and Carvalho L. Mitochondrial localization of non-histone protein HMGB1 during human endothelial cell-Toxoplasma gondii infection. Cell Biol Int 32: 235–238, 2008.
211.
Sundberg EFasth AEPalmblad KHarris HEAndersson U. High mobility group box chromosomal protein 1 acts as a proliferation signal for activated T lymphocytesImmunobiology214303-3092009. 211. Sundberg E, Fasth AE, Palmblad K, Harris HE, and Andersson U. High mobility group box chromosomal protein 1 acts as a proliferation signal for activated T lymphocytes. Immunobiology 214: 303–309, 2009.
212.
Surh YJKundu JKNa HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicalsPlanta Med741526-15392008. 212. Surh YJ, Kundu JK, and Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 74: 1526–1539, 2008.
213.
Tang DKang RCao LZhang GYu YXiao WWang HXiao X. A pilot study to detect high mobility group box 1 and heat shock protein 72 in cerebrospinal fluid of pediatric patients with meningitisCrit Care Med36291-2952008. 213. Tang D, Kang R, Cao L, Zhang G, Yu Y, Xiao W, Wang H, and Xiao X. A pilot study to detect high mobility group box 1 and heat shock protein 72 in cerebrospinal fluid of pediatric patients with meningitis. Crit Care Med 36: 291–295, 2008.
214.
Tang DKang RCheh CWLivesey KMLiang XSchapiro NEBenschop RSparvero LJAmoscato AATracey KJZeh HJLotze MT. HMGB1 release and redox regulates autophagy and apoptosis in cancer cellsOncogene295299-53102010. 214. Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE, Benschop R, Sparvero LJ, Amoscato AA, Tracey KJ, Zeh HJ, and Lotze MT. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 29: 5299–5310, 2010.
215.
Tang DKang RLivesey KMCheh CAdam Farkas ALoughran PHoppe GBianchi METracey KJZeh HJLotze MT. Endogenous HMGB1 regulates autophagyJ Cell Biol190881-8922010. 215. Tang D, Kang R, Livesey KM, Cheh C, Adam Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ, and Lotze MT. Endogenous HMGB1 regulates autophagy. J Cell Biol 190: 881–892, 2010.
216.
Tang DKang RXiao WJiang LLiu MShi YWang KWang HXiao X. Nuclear heat shock protein 72 as a negative regulator of oxidative stress (hydrogen peroxide)-induced HMGB1 cytoplasmic translocation and releaseJ Immunol1787376-73842007. 216. Tang D, Kang R, Xiao W, Jiang L, Liu M, Shi Y, Wang K, Wang H, and Xiao X. Nuclear heat shock protein 72 as a negative regulator of oxidative stress (hydrogen peroxide)-induced HMGB1 cytoplasmic translocation and release. J Immunol 178: 7376–7384, 2007.
217.
Tang DKang RXiao WWang HCalderwood SKXiao X. The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophagesJ Immunol1791236-12442007. 217. Tang D, Kang R, Xiao W, Wang H, Calderwood SK, and Xiao X. The anti-inflammatory effects of heat shock protein 72 involve inhibition of high-mobility-group box 1 release and proinflammatory function in macrophages. J Immunol 179: 1236–1244, 2007.
218.
Tang DKang RXiao WZhang HLotze MTWang HXiao X. Quercetin prevents lipopolysaccharide-induced HMGB1 release and proinflammatory functionAm J Respir Cell Mol Biol41651-6602009. 218. Tang D, Kang R, Xiao W, Zhang H, Lotze MT, Wang H, and Xiao X. Quercetin prevents lipopolysaccharide-induced HMGB1 release and proinflammatory function. Am J Respir Cell Mol Biol 41: 651–660, 2009.
219.
Tang DKang RZeh HJ 3rdLotze MT. High-mobility group box 1 and cancerBiochim Biophys Acta1799131-1402010. 219. Tang D, Kang R, Zeh HJ 3rd, and Lotze MT. High-mobility group box 1 and cancer. Biochim Biophys Acta 1799: 131–140, 2010.
220.
Tang DLotze MTZeh HJ 3rdKang R. The redox protein HMGB1 regulates cell death and survival in cancer treatmentAutophagy61181-11832010. 220. Tang D, Lotze MT, Zeh HJ 3rd, and Kang R. The redox protein HMGB1 regulates cell death and survival in cancer treatment. Autophagy 6: 1181–1183, 2010.
221.
Tang DShi YJang LWang KXiao WXiao X. Heat shock response inhibits release of high mobility group box 1 protein induced by endotoxin in murine macrophagesShock23434-4402005. 221. Tang D, Shi Y, Jang L, Wang K, Xiao W, and Xiao X. Heat shock response inhibits release of high mobility group box 1 protein induced by endotoxin in murine macrophages. Shock 23: 434–440, 2005.
222.
Tang DShi YKang RLi TXiao WWang HXiao X. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1J Leukoc Biol81741-7472007. 222. Tang D, Shi Y, Kang R, Li T, Xiao W, Wang H, and Xiao X. Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J Leukoc Biol 81: 741–747, 2007.
223.
Taniguchi NKawahara KYone KHashiguchi TYamakuchi MGoto MInoue KYamada SIjiri KMatsunaga SNakajima TKomiya SMaruyama I. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokineArthritis Rheum48971-9812003. 223. Taniguchi N, Kawahara K, Yone K, Hashiguchi T, Yamakuchi M, Goto M, Inoue K, Yamada S, Ijiri K, Matsunaga S, Nakajima T, Komiya S, and Maruyama I. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum 48: 971–981, 2003.
224.
Tatsuta TLanger T. Quality control of mitochondria: protection against neurodegeneration and ageingEMBO J27306-3142008. 224. Tatsuta T and Langer T. Quality control of mitochondria: protection against neurodegeneration and ageing. EMBO J 27: 306–314, 2008.
225.
Tesniere APanaretakis TKepp OApetoh LGhiringhelli FZitvogel LKroemer G. Molecular characteristics of immunogenic cancer cell deathCell Death Differ153-122008. 225. Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L, and Kroemer G. Molecular characteristics of immunogenic cancer cell death. Cell Death Differ 15: 3–12, 2008.
226.
Thomas JO. HMG1 and 2: architectural DNA-binding proteinsBiochem Soc Trans29395-4012001. 226. Thomas JO. HMG1 and 2: architectural DNA-binding proteins. Biochem Soc Trans 29: 395–401, 2001.
227.
Tian JAvalos AMMao SYChen BSenthil KWu HParroche PDrabic SGolenbock DSirois CHua JAn LLAudoly LLa Rosa GBierhaus ANaworth PMarshak-Rothstein ACrow MKFitzgerald KALatz EKiener PACoyle AJ. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGENat Immunol8487-4962007. 227. Tian J, Avalos AM, Mao SY, Chen B, Senthil K, Wu H, Parroche P, Drabic S, Golenbock D, Sirois C, Hua J, An LL, Audoly L, La Rosa G, Bierhaus A, Naworth P, Marshak-Rothstein A, Crow MK, Fitzgerald KA, Latz E, Kiener PA, and Coyle AJ. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 8: 487–496, 2007.
228.
Tirouvanziam RConrad CKBottiglieri THerzenberg LAMoss RB. High-dose oral N-acetylcysteine, a glutathione prodrug, modulates inflammation in cystic fibrosisProc Natl Acad Sci U S A1034628-46332006. 228. Tirouvanziam R, Conrad CK, Bottiglieri T, Herzenberg LA, and Moss RB. High-dose oral N-acetylcysteine, a glutathione prodrug, modulates inflammation in cystic fibrosis. Proc Natl Acad Sci U S A 103: 4628–4633, 2006.
229.
Topalova DUgrinova IPashev IGPasheva EA. HMGB1 protein inhibits DNA replication in vitro: a role of the acetylation and the acidic tailInt J Biochem Cell Biol401536-15422008. 229. Topalova D, Ugrinova I, Pashev IG, and Pasheva EA. HMGB1 protein inhibits DNA replication in vitro: a role of the acetylation and the acidic tail. Int J Biochem Cell Biol 40: 1536–1542, 2008.
230.
Treutiger CJMullins GEJohansson ASRouhiainen ARauvala HMErlandsson-Harris HAndersson UYang HTracey KJAndersson JPalmblad JE. High mobility group 1 B-box mediates activation of human endotheliumJ Intern Med254375-3852003. 230. Treutiger CJ, Mullins GE, Johansson AS, Rouhiainen A, Rauvala HM, Erlandsson-Harris H, Andersson U, Yang H, Tracey KJ, Andersson J, and Palmblad JE. High mobility group 1 B-box mediates activation of human endothelium. J Intern Med 254: 375–385, 2003.
231.
Tsung AKlune JRZhang XJeyabalan GCao ZPeng XStolz DBGeller DARosengart MRBilliar TR. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signalingJ Exp Med2042913-29232007. 231. Tsung A, Klune JR, Zhang X, Jeyabalan G, Cao Z, Peng X, Stolz DB, Geller DA, Rosengart MR, and Billiar TR. HMGB1 release induced by liver ischemia involves Toll-like receptor 4 dependent reactive oxygen species production and calcium-mediated signaling. J Exp Med 204: 2913–2923, 2007.
232.
Tsung ASahai RTanaka HNakao AFink MPLotze MTYang HLi JTracey KJGeller DABilliar TR. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusionJ Exp Med2011135-11432005. 232. Tsung A, Sahai R, Tanaka H, Nakao A, Fink MP, Lotze MT, Yang H, Li J, Tracey KJ, Geller DA, and Billiar TR. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion. J Exp Med 201: 1135–1143, 2005.
233.
Ulloa LMessmer D. High-mobility group box 1 (HMGB1) protein: friend and foeCytokine Growth Factor Rev17189-2012006. 233. Ulloa L and Messmer D. High-mobility group box 1 (HMGB1) protein: friend and foe. Cytokine Growth Factor Rev 17: 189–201, 2006.
234.
Ulloa LOchani MYang HTanovic MHalperin DYang RCzura CJFink MPTracey KJ. Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammationProc Natl Acad Sci U S A9912351-123562002. 234. Ulloa L, Ochani M, Yang H, Tanovic M, Halperin D, Yang R, Czura CJ, Fink MP, and Tracey KJ. Ethyl pyruvate prevents lethality in mice with established lethal sepsis and systemic inflammation. Proc Natl Acad Sci U S A 99: 12351–12356, 2002.
235.
Uramoto HIzumi HNagatani GOhmori HNagasue NIse TYoshida TYasumoto KKohno K. Physical interaction of tumour suppressor p53/p73 with CCAAT-binding transcription factor 2 (CTF2) and differential regulation of human high-mobility group 1 (HMG1) gene expressionBiochem J371301-3102003. 235. Uramoto H, Izumi H, Nagatani G, Ohmori H, Nagasue N, Ise T, Yoshida T, Yasumoto K, and Kohno K. Physical interaction of tumour suppressor p53/p73 with CCAAT-binding transcription factor 2 (CTF2) and differential regulation of human high-mobility group 1 (HMG1) gene expression. Biochem J 371: 301–310, 2003.
236.
Urbonaviciute VMeister SFurnrohr BGFrey BGuckel ESchett GHerrmann MVoll RE. Oxidation of the alarmin high-mobility group box 1 protein (HMGB1) during apoptosisAutoimmunity42305-3072009. 236. Urbonaviciute V, Meister S, Furnrohr BG, Frey B, Guckel E, Schett G, Herrmann M, and Voll RE. Oxidation of the alarmin high-mobility group box 1 protein (HMGB1) during apoptosis. Autoimmunity 42: 305–307, 2009.
237.
Varma SDDevamanoharan PSAli AH. Prevention of intracellular oxidative stress to lens by pyruvate and its esterFree Radic Res28131-1351998. 237. Varma SD, Devamanoharan PS, and Ali AH. Prevention of intracellular oxidative stress to lens by pyruvate and its ester. Free Radic Res 28: 131–135, 1998.
238.
Velazquez JMLindquist S. hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recoveryCell36655-6621984. 238. Velazquez JM and Lindquist S. hsp70: nuclear concentration during environmental stress and cytoplasmic storage during recovery. Cell 36: 655–662, 1984.
239.
Verrier CSRoodi NYee CJBailey LRJensen RABustin MParl FF. High-mobility group (HMG) protein HMG-1 and TATA-binding protein-associated factor TAF(II)30 affect estrogen receptor-mediated transcriptional activationMol Endocrinol111009-10191997. 239. Verrier CS, Roodi N, Yee CJ, Bailey LR, Jensen RA, Bustin M, and Parl FF. High-mobility group (HMG) protein HMG-1 and TATA-binding protein-associated factor TAF(II)30 affect estrogen receptor-mediated transcriptional activation. Mol Endocrinol 11: 1009–1019, 1997.
240.
Victor VMRocha MSola EBanuls CGarcia-Malpartida KHernandez-Mijares A. Oxidative stress, endothelial dysfunction and atherosclerosisCurr Pharm Des152988-30022009. 240. Victor VM, Rocha M, Sola E, Banuls C, Garcia-Malpartida K, and Hernandez-Mijares A. Oxidative stress, endothelial dysfunction and atherosclerosis. Curr Pharm Des 15: 2988–3002, 2009.
241.
Wang HBloom OZhang MVishnubhakat JMOmbrellino MChe JFrazier AYang HIvanova SBorovikova LManogue KRFaist EAbraham EAndersson JAndersson UMolina PEAbumrad NNSama ATracey KJ. HMG-1 as a late mediator of endotoxin lethality in miceScience285248-2511999. 241. Wang H, Bloom O, Zhang M, Vishnubhakat JM, Ombrellino M, Che J, Frazier A, Yang H, Ivanova S, Borovikova L, Manogue KR, Faist E, Abraham E, Andersson J, Andersson U, Molina PE, Abumrad NN, Sama A, and Tracey KJ. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248–251, 1999.
242.
Wang HWard MFSama AE. Novel Hmgb1-inhibiting therapeutic agents for experimental sepsisShock32348-3572009. 242. Wang H, Ward MF, and Sama AE. Novel Hmgb1-inhibiting therapeutic agents for experimental sepsis. Shock 32: 348–357, 2009.
243.
Wang HYang HTracey KJ. Extracellular role of HMGB1 in inflammation and sepsisJ Intern Med255320-3312004. 243. Wang H, Yang H, and Tracey KJ. Extracellular role of HMGB1 in inflammation and sepsis. J Intern Med 255: 320–331, 2004.
244.
Wang QDing QZhou YGou XHou LChen SZhu ZXiong L. Ethyl pyruvate attenuates spinal cord ischemic injury with a wide therapeutic window through inhibiting high-mobility group box 1 release in rabbitsAnesthesiology1101279-12862009. 244. Wang Q, Ding Q, Zhou Y, Gou X, Hou L, Chen S, Zhu Z, and Xiong L. Ethyl pyruvate attenuates spinal cord ischemic injury with a wide therapeutic window through inhibiting high-mobility group box 1 release in rabbits. Anesthesiology 110: 1279–1286, 2009.
245.
Watanabe TKubota SNagaya MOzaki SNagafuchi HAkashi KTaira YTsukikawa SOowada SNakano S. The role of HMGB-1 on the development of necrosis during hepatic ischemia and hepatic ischemia/reperfusion injury in miceJ Surg Res12459-662005. 245. Watanabe T, Kubota S, Nagaya M, Ozaki S, Nagafuchi H, Akashi K, Taira Y, Tsukikawa S, Oowada S, and Nakano S. The role of HMGB-1 on the development of necrosis during hepatic ischemia and hepatic ischemia/reperfusion injury in mice. J Surg Res 124: 59–66, 2005.
246.
Webb CTwedt D. Oxidative stress and liver diseaseVet Clin North Am Small Anim Pract38125-135, v,2008. 246. Webb C and Twedt D. Oxidative stress and liver disease. Vet Clin North Am Small Anim Pract 38: 125–135, v, 2008.
247.
Wegerich FTurano PAllegrozzi MMohwald HLisdat F. Cytochrome C mutants for superoxide biosensorsAnal Chem812976-29842009. 247. Wegerich F, Turano P, Allegrozzi M, Mohwald H, and Lisdat F. Cytochrome C mutants for superoxide biosensors. Anal Chem 81: 2976–2984, 2009.
248.
Welch WJFeramisco JR. Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cellsJ Biol Chem2594501-45131984. 248. Welch WJ and Feramisco JR. Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J Biol Chem 259: 4501–4513, 1984.
249.
Wells PGMcCallum GPChen CSHenderson JTLee CJPerstin JPreston TJWiley MJWong AW. Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancerToxicol Sci1084-182009. 249. Wells PG, McCallum GP, Chen CS, Henderson JT, Lee CJ, Perstin J, Preston TJ, Wiley MJ, and Wong AW. Oxidative stress in developmental origins of disease: teratogenesis, neurodevelopmental deficits, and cancer. Toxicol Sci 108: 4–18, 2009.
250.
Wilmanski JSiddiqi MDeitch EASpolarics Z. Augmented IL-10 production and redox-dependent signaling pathways in glucose-6-phosphate dehydrogenase-deficient mouse peritoneal macrophagesJ Leukoc Biol7885-942005. 250. Wilmanski J, Siddiqi M, Deitch EA, and Spolarics Z. Augmented IL-10 production and redox-dependent signaling pathways in glucose-6-phosphate dehydrogenase-deficient mouse peritoneal macrophages. J Leukoc Biol 78: 85–94, 2005.
251.
Winterbourn CCHampton MB. Thiol chemistry and specificity in redox signalingFree Radic Biol Med45549-5612008. 251. Winterbourn CC and Hampton MB. Thiol chemistry and specificity in redox signaling. Free Radic Biol Med 45: 549–561, 2008.
252.
Wu HChen GWyburn KRYin JBertolino PEris JMAlexander SISharland AFChadban SJ. TLR4 activation mediates kidney ischemia/reperfusion injuryJ Clin Invest1172847-28592007. 252. Wu H, Chen G, Wyburn KR, Yin J, Bertolino P, Eris JM, Alexander SI, Sharland AF, and Chadban SJ. TLR4 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 117: 2847–2859, 2007.
253.
Yan SDChen XFu JChen MZhu HRoher ASlattery TZhao LNagashima MMorser JMigheli ANawroth PStern DSchmidt AM. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's diseaseNature382685-6911996. 253. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, and Schmidt AM. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer's disease. Nature 382: 685–691, 1996.
254.
Yanai HBan TWang ZChoi MKKawamura TNegishi HNakasato MLu YHangai SKoshiba RSavitsky DRonfani LAkira SBianchi MEHonda KTamura TKodama TTaniguchi T. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responsesNature46299-1032009. 254. Yanai H, Ban T, Wang Z, Choi MK, Kawamura T, Negishi H, Nakasato M, Lu Y, Hangai S, Koshiba R, Savitsky D, Ronfani L, Akira S, Bianchi ME, Honda K, Tamura T, Kodama T, and Taniguchi T. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462: 99–103, 2009.
255.
Yang DChen QYang HTracey KJBustin MOppenheim JJ. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarminJ Leukoc Biol8159-662007. 255. Yang D, Chen Q, Yang H, Tracey KJ, Bustin M, and Oppenheim JJ. High mobility group box-1 protein induces the migration and activation of human dendritic cells and acts as an alarmin. J Leukoc Biol 81: 59–66, 2007.
256.
Yang HHreggvidsdottir HSPalmblad KWang HOchani MLi JLu BChavan SRosas-Ballina MAl-Abed YAkira SBierhaus AErlandsson-Harris HAndersson UTracey KJ. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine releaseProc Natl Acad Sci U S A10711942-119472010. 256. Yang H, Hreggvidsdottir HS, Palmblad K, Wang H, Ochani M, Li J, Lu B, Chavan S, Rosas-Ballina M, Al-Abed Y, Akira S, Bierhaus A, Erlandsson-Harris H, Andersson U, and Tracey KJ. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. Proc Natl Acad Sci U S A 107: 11942–11947, 2010.
257.
Yang JHuang CJiang HDing J. Statins attenuate high mobility group box-1 protein induced vascular endothelial activation: a key role for TLR4/NF-kappaB signaling pathwayMol Cell Biochem345189-1952010. 257. Yang J, Huang C, Jiang H, and Ding J. Statins attenuate high mobility group box-1 protein induced vascular endothelial activation: a key role for TLR4/NF-kappaB signaling pathway. Mol Cell Biochem 345: 189–195, 2010.
258.
Yang QWLu FLZhou YWang LZhong QLin SXiang JLi JCFang CQWang JZ. HMBG1 mediates ischemia-reperfusion injury by TRIF-adaptor independent Toll-like receptor 4 signalingJ Cereb Blood Flow Metab2010Aug11[Epub ahead of print];. 258. Yang QW, Lu FL, Zhou Y, Wang L, Zhong Q, Lin S, Xiang J, Li JC, Fang CQ, and Wang JZ. HMBG1 mediates ischemia-reperfusion injury by TRIF-adaptor independent Toll-like receptor 4 signaling. J Cereb Blood Flow Metab 2010 Aug 11 [Epub ahead of print]; DOI: 10.1038/jcbfm.2010.129.
259.
Yao DBrownlee M. Hyperglycemia-induced reactive oxygen species increase expression of RAGE and RAGE ligandsDiabetes59249-2552010. 259. Yao D and Brownlee M. Hyperglycemia-induced reactive oxygen species increase expression of RAGE and RAGE ligands. Diabetes 59: 249–255, 2010.
260.
Yee KSWilkinson SJames JRyan KMVousden KH. PUMA- and Bax-induced autophagy contributes to apoptosisCell Death Differ161135-11452009. 260. Yee KS, Wilkinson S, James J, Ryan KM, and Vousden KH. PUMA- and Bax-induced autophagy contributes to apoptosis. Cell Death Differ 16: 1135–1145, 2009.
261.
Yen WLKlionsky DJ. How to live long and prosper: autophagy, mitochondria, and agingPhysiology (Bethesda)23248-2622008. 261. Yen WL and Klionsky DJ. How to live long and prosper: autophagy, mitochondria, and aging. Physiology (Bethesda) 23: 248–262, 2008.
262.
Yin YXYao YMLiu RMZhai HXLi LZhang JJChen HWWang LLi NXia YF. [The effect of simvastatin on the expression of high mobility group box-1 protein in atherosclerotic rats]Zhongguo Wei Zhong Bing Ji Jiu Yi Xue22306-3082010. 262. Yin YX, Yao YM, Liu RM, Zhai HX, Li L, Zhang JJ, Chen HW, Wang L, Li N, and Xia YF. [The effect of simvastatin on the expression of high mobility group box-1 protein in atherosclerotic rats]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 22: 306–308, 2010.
263.
Youn JHShin JS. Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretionJ Immunol1777889-78972006. 263. Youn JH and Shin JS. Nucleocytoplasmic shuttling of HMGB1 is regulated by phosphorylation that redirects it toward secretion. J Immunol 177: 7889–7897, 2006.
264.
Yu MWang HDing AGolenbock DTLatz ECzura CJFenton MJTracey KJYang H. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2Shock26174-1792006. 264. Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, Fenton MJ, Tracey KJ, and Yang H. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26: 174–179, 2006.
265.
Yu YMKim JBLee KWKim SYHan PLLee JK. Inhibition of the cerebral ischemic injury by ethyl pyruvate with a wide therapeutic windowStroke362238-22432005. 265. Yu YM, Kim JB, Lee KW, Kim SY, Han PL, and Lee JK. Inhibition of the cerebral ischemic injury by ethyl pyruvate with a wide therapeutic window. Stroke 36: 2238–2243, 2005.
266.
Yuk JMYang CSShin DMKim KKLee SKSong YJLee HMCho CHJeon BHJo EK. A dual regulatory role of apurinic/apyrimidinic endonuclease 1/redox factor-1 in HMGB1-induced inflammatory responsesAntioxid Redox Signal11575-5882009. 266. Yuk JM, Yang CS, Shin DM, Kim KK, Lee SK, Song YJ, Lee HM, Cho CH, Jeon BH, and Jo EK. A dual regulatory role of apurinic/apyrimidinic endonuclease 1/redox factor-1 in HMGB1-induced inflammatory responses. Antioxid Redox Signal 11: 575–588, 2009.
267.
Yun NEum HALee SM. Protective role of heme oxygenase-1 against liver damage caused by hepatic ischemia and reperfusion in ratsAntioxid Redox Signal131503-15122010. 267. Yun N, Eum HA, and Lee SM. Protective role of heme oxygenase-1 against liver damage caused by hepatic ischemia and reperfusion in rats. Antioxid Redox Signal 13: 1503–1512, 2010.
268.
Zafarullah MLi WQSylvester JAhmad M. Molecular mechanisms of N-acetylcysteine actionsCell Mol Life Sci606-202003. 268. Zafarullah M, Li WQ, Sylvester J, and Ahmad M. Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60: 6–20, 2003.
269.
Zeh HJ 3rdLotze MT. Addicted to death: invasive cancer and the immune response to unscheduled cell deathJ Immunother281-92005. 269. Zeh HJ 3rd and Lotze MT. Addicted to death: invasive cancer and the immune response to unscheduled cell death. J Immunother 28: 1–9, 2005.
270.
Zeng SDun HIppagunta NRosario RZhang QYLefkowitch JYan SFSchmidt AMEmond JC. Receptor for advanced glycation end product (RAGE)-dependent modulation of early growth response-1 in hepatic ischemia/reperfusion injuryJ Hepatol50929-9362009. 270. Zeng S, Dun H, Ippagunta N, Rosario R, Zhang QY, Lefkowitch J, Yan SF, Schmidt AM, and Emond JC. Receptor for advanced glycation end product (RAGE)-dependent modulation of early growth response-1 in hepatic ischemia/reperfusion injury. J Hepatol 50: 929–936, 2009.
271.
Zhang CCKrieg SShapiro DJ. HMG-1 stimulates estrogen response element binding by estrogen receptor from stably transfected HeLa cellsMol Endocrinol13632-6431999. 271. Zhang CC, Krieg S, and Shapiro DJ. HMG-1 stimulates estrogen response element binding by estrogen receptor from stably transfected HeLa cells. Mol Endocrinol 13: 632–643, 1999.
272.
Zhang XWheeler DTang YGuo LShapiro RARibar TJMeans ARBilliar TRAngus DCRosengart MR. Calcium/calmodulin-dependent protein kinase (CaMK) IV mediates nucleocytoplasmic shuttling and release of HMGB1 during lipopolysaccharide stimulation of macrophagesJ Immunol1815015-50232008. 272. Zhang X, Wheeler D, Tang Y, Guo L, Shapiro RA, Ribar TJ, Means AR, Billiar TR, Angus DC, and Rosengart MR. Calcium/calmodulin-dependent protein kinase (CaMK) IV mediates nucleocytoplasmic shuttling and release of HMGB1 during lipopolysaccharide stimulation of macrophages. J Immunol 181: 5015–5023, 2008.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 14Issue Number 7April 1, 2011
Pages: 1315 - 1335
PubMed: 20969478

History

Published in print: April 1, 2011
Published online: 8 March 2011
Published ahead of production: 24 October 2010
Accepted: 24 October 2010
Revision received: 20 September 2010
Received: 4 June 2010

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Daolin Tang
The DAMP Laboratory, Department of Surgery, G.27 Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.
Rui Kang
The DAMP Laboratory, Department of Surgery, G.27 Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.
Herbert J. Zeh, III
The DAMP Laboratory, Department of Surgery, G.27 Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.
Michael T. Lotze
The DAMP Laboratory, Department of Surgery, G.27 Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania.

Notes

Address correspondence to:Dr. Daolin TangThe DAMP LaboratoryDepartment of SurgeryG.21 Hillman Cancer CenterPittsburgh, PA 15213E-mail: [email protected]
Prof. Michael T. LotzeThe DAMP LaboratoryDepartment of SurgeryG.27A Hillman Cancer CenterPittsburgh, PA 15213E-mail: [email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top